老师职责的一部分是要弄自己的教案课件,当然教案课件里的内容一定要很完善。 学生反应是教学过程中持续发展的动力之一。您可以从以下资料中查找到涉及您所需的“平行四边形的面积教案”信息,我们将不断努力改进和提高希望您能多多关注我们的网站!
教学目标
1、知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。
交流、评价的意识。
4、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
教材分析:
重点:使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。
难点:平行四边形面积公式的推导过程。
教具
1、多媒体计算机及课件;
尺子。
教学过程
一、质疑引新:
这图形你认识吗?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]
(出示平行四边形)这又是什么图形?指出平行四边形的底和高?
2、谈话引入:你想知道你所做的平行四边形面积有多大吗?[板书课题:平行四边形的面积]——————————请同学们打开课本69页。
二、引导探求:
㈠、提出问题:
1、用数方格法求平行四边形的面积
⑴、谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P。
⑵、数出方格图中平行四边形的面积。提问:
A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“
B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?
⑶、若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?
2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。
1平方厘米
请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?
电脑逐步显示:平行四边形的面积=长方形的面积。
平行四边形的底=长方形的长;
平行四边形的高=长方形的宽;
引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!
电脑展示:
(高、不变,面积不变。
(高改变,面积变化。
你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?
㈡、推导公式:
1、小组合作研究:
长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出
⑴、怎样剪拼才能将平行四边形转化成长方形?
⑵、转化后的图形与原平行四边形有什么关系?
(要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)
2、各小组实验操作,教师巡视指导。
3、各小组交流实验情况:
⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!
⑵、有没有不同的剪拼方法?(继续请同学演示)。
⑶、电脑演示各种转化方法。
4、小组合作讨论归纳总结规律:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶、剪样成的图形面积怎样计算?
⑷、小组上台汇报,指着图形说一次得出:
因为:长方形的面积=长×宽
所以:平行四边形的面积=底×高(同位指着图形说)
。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“、”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a、h或S=ah(板书)。
㈢、巩固公式:
㈣、应用解决:
1、自学教材P70例题
下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长
板书:
答:它的面积约是
(挑一学生的作业投影评讲)
教材分析:
《平行四边形的面积》是人教版新课程标准五年级上册第六单元的内容,平行四边形面积的计算是在学生已经学会并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上进行教学的。而且,这部分知识的运用为学习后面的三角形和梯形面积计算奠定良好的基础。
教学目标:
1、知识与技能:知识与技能:学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。
2、过程与方法:学生通过观察,操作,比较经历平行四边形面积公式的推导过程,培养学生的空间观念。
3、情感态度与价值观:通过活动,激发学生学习兴趣,培养学生探究知识的精神,增强学生学习数学的积极性;感受学习数学的快乐。
教学重难点:
教学重点:理解并掌握平行四边形面积的计算公式,能正确计算平行四边形的面积。
教学难点:学生探究平行四边形的面积计算公式的过程中,充分体验转化和建模的数学思想。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
3块平行四边形彩色纸片、三角板、直尺、剪刀。
由故事引入课堂,王老汉给儿子分地,大儿子一块长方形地,小儿子一块平行四边形地,俩个儿子都认为自已的地少,王老汉没有办法,想让同学们帮他解决这个问题。让学生自己去体验平行四边形面积推导的必要性,从而激发学生的探究欲望。
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?
师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?
生汇报猜测结果,师随机板书。
师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?激发学生探求知识的兴趣。
提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的`面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
学生动手剪拼(可以小组合作),并在小组内交流。
师:你是怎样做的呢?谁愿意上来演示并说一说呢?
(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)
师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。
师:请同学们观察一下,哪种图形的面积我们懂得计算呢?
师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!
师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。
(1)平行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
教学内容:
书上总复习及练一练
教学目标:
使学生进一步理解和掌握平面图形的面积计算方法以及面积公式的推导过程,整理完善知识结构,正确解决实际问题。
教学过程:
一、课题引入:
最近我班有许多同学家里都买了新房子,所以在装修的时候,常要用到一些面积计算的方法。今天这节课我们就来学一学平面图形的面积。
二、说一说(计算方法)
1、提问:我们学过了哪些平面图形?
2、你能用字母公式来表达这些图形的面积吗?
三、想一想:(推导过程)
1、这六种图形的面积计算公式是怎样推导出来的?(学生每人选一个,说给同桌听)
2、全班交流:(学生口答,教师用电脑演示推导过程)。
其中三角形面积和圆面积的推导过程中再插入提问。
三角形:
①把三角形转化为什么图形?
②等底等高的三角形和平行四边形的面积有什么关系?
③如果已知三角形面积是5平方厘米,那么平行四边形的面积是多少?如果已知平行四边形的面积是5平方厘米,那么三角形的面积是多少?
圆:已知半径是3厘米,求圆的面积。
已知直径是4厘米,求圆的面积。
四、理一理:(知识结构)
1、在小学里我们首先学习的是长方形的面积计算,那么刚才哪几种图形在推导面积公式时,是把它转化为长方形来计算的?
2、三角形和梯形是转化为什么图形来计算的?
3、让学生说说怎样用图来表示这六种图形之间的关系?
4、观察结构图,说说之间的联系:
①从左往右看:根据长方形的面积公式可以推导出其他图形的面积公式。
②从右往左看:我们在探讨一种新的图形面积计算公式时,都是把它转化为学过的图形
平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
2、教学目标:
(1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。
(2)通过操作,让学生尝试用转化的思想方法解决新的问题。
(3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。
平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作 观察思考 归纳概括 初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知 形成表象 抽象概念。
教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。
教具逐个出示:
1、图(1)是什么图形? 它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?
2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?
学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)
3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?
学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。)
图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)
你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。出示课题。
1、学生独立思考,动手操作,尝试计算平行四边形的面积。
谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。
到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)
一、课前引入、渗透转化。
1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2、播放制作七巧板的视频。
3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1、电子白板导出两个花坛,比一比,哪个大?
2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1、利用数方格,初步探究
2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的`铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
1、探索把一个平行四边形转化成已学习过的图形。
2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
3、平行四边形的面积=底×高
4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1、课件出示例1
2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件
六、课堂小结,反思回顾。
回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?
教案课件是老师们必备的教学工具,因此编写时需要花费时间和精力。教案的编写对于学生掌握知识和技能非常关键。在这里,我们为你整理了多个关于“平行四边形的面积教案”的实用案例资料,请不要忘记将这篇文章收藏起来,以备日后需要之时!
【教学目标】
1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。
2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。
【教学重点、难点】
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。
【教具、学具准备】
多媒体课件,平行四边形纸片三个、直尺(三角尺)、剪刀、平行四边形图片一个。
【教学过程】
一、创设情境,抽取方法、导入新课
1、师: 同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)
师:老师今天带来了两个图形,但是并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。
学生思考、回答:
(1)数格子的方法。
(2)把第一个图右边的小正方形剪下移到左边空格处,第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。
动画演示割补的过程。
师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地计算它们的面积——这种方法在数学上叫做“割补——转化”法。 “转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?
既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积,看哪个小组最快研究出来。
二、应用方法,动手操作,探究新知
1、预设问题:
师:我们来看下面的问题:
实验小学有一个花坛,想要计算出它的面积,怎么计算呢?
师:首先来看一看,花坛是个什么图形?(平行四边形),抽取图形:
怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。
2、探究公式:
(1) 出示问题:
师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。
友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:
① 平行四边形可以转化成学过的哪种图形?
② 平行四边形的底和高分别与转化后的图形有什么关系?
③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?
(学生在独立思考的基础上进行合作探究)
(2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?
(3) 小组探究。
(4) 组间展示交流:
师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)
师:谁还有不同的剪法?
动画展示割补——转化的过程:
怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。
2、探究公式:
(1) 出示问题:
师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。
友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:
① 平行四边形可以转化成学过的哪种图形?
② 平行四边形的底和高分别与转化后的图形有什么关系?
③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?
(学生在独立思考的基础上进行合作探究)
(2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?
(3) 小组探究。
(4) 组间展示交流:
师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)
师:谁还有不同的剪法?
动画展示割补——转化的过程:
(其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)
(4)师生交流提炼,形成板书:
师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:
师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)
3、教学例1:
师:有了这个成果,我们会解决前面的问题了吗?
出示例1:下图平行四边形花坛的面积是多少?
学生回答,教师板书:S=ah=6×4=24(cm2)
3、巩固小结:
通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。
三、分层训练,巩固内化
1、求下面的平行四边形的面积,只列式不计算:
(第三个图形计算中提问:用12×9.6行不行?强调底与高的对应)
2、慧眼识对错:
(1) 一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。( )
(2) 平行四边形的底越长,面积就越大。( )
(3) 下面平行四边形的面积是:8×5=40(平方厘米)( )
,人教新课标五上《平行四边形的面积》教案2
(4) 一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。( )
3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,如图:
师:我为了预算需要准备多少钱,需要先知道它的面积有多大,同学们能不能帮助老师解决这个问题?先说说你会怎样做?(先测量底和高,再利用公式计算)(提示:测量结果保留整数)
我把这个图形按比例缩小了,画在了我们面前的纸片上(出示纸片),你们亲自测量一下,帮我把面积算出来好吗?(底6cm,高3cm)
学生测量、计算、展示。
师:谢谢你们帮我算出了停车位的面积,只要把单位改成平方米,就是我的停车位的实际面积了。
4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1.5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪最少?你想到了什么?
四、课堂小结:
师:这节课你有什么有收获?
师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。
一、填空
(1)4.5平方米()平方分米2400平方厘米()平方分米
(2)一个平行四边形的底是9分米,高是底的2倍,它的面积是()平方分米。
(3)一个平行四边形的底是12厘米,面积是156平方厘米,高是()厘米。
(4)一块平行四边形钢板,底是1.5米,高是1.2米,如果每平方米钢板重23.5千克,这块钢板重()千克。
二、判断题。
(1)平行四边形的面积等于长方形面积。()
(2)一个平行四边形的底是5分米,高是20厘米,面积是100平方分米。()
(3)一个平行四边形面积是42平方米,高是6米,底是7米。()
三、选择题。
(1)下面的长方形和平行四边形面积()
a.相等b.不相等
(2)用木条钉成的长方形拉成一个平行四边形,它的高和面积()
a.都比原来大b.都比原来小c.都与原来相等
(3)平行四边形的底扩大3倍,高缩小3倍,面积()
扩大3倍b.缩小3倍c.不变d.不好判断
一、说教材
1、地位:
学生要想很好地理解与掌握平行四边形面积公式,就必须以长方形的面积计算和平行四边形的特征为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。从而完成新知的建构过程。同时,也为学生自主学习三角形面积和梯形面积的计算夯实基石。
2、教学目标
认知目标:使学生理解并掌握平行四边形面积计算公式(方法),会运用平行四边形的面积公式求平行四边形的面积。
能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
3、教学重点与难点
教学重点:掌握平行四边形的面积计算公式,并能正确运用。
教学难点:把平行四边形转化学过的图形,通过找关系推导出平行四边形的面积公式。
二、说教法设计
本课采用建构主义理论指导下的主体式、抛锚式教学方式。以网络、几何画板为载体,为学生提供了一个活生生的学习环境,把静止的、封闭的、模式化的教学内容,转变为开放、动态的、多元化的学习内容,创设自主探索空间,激发自主学习兴趣,增强积极参与意识,充分培养学生的创新精神与实践能力。
三、说学法指导
建构主义学习理论强调以学生为中心,要求学生由知识的灌输对象转变为信息加工的主体。故此,本课教学过程中,巧妙设计,让学生通过课堂讨论、相互合作、实际操作等方式,自我探索,自主学习,使学生在完成任务的过程中不知不觉实现知识的传递、迁移和融合。
四、说教学程序
学生是数学学习的主人,教师则成了学生数学学习的组织者、引导者与合作者。根据本课教学内容结合四年级学生的实际认知水平和生活情感,坚持以人为本发展至上的思想,特设计教学流程如下:
(一)利用几何画板创设情境,激情导入
首先用鲜为人知的孙悟空变戏法的故事激发学生学习情感,调动学生参与的积极性,接着让学生点击老师推荐的学习专题网上的试一试链接到几何画板进行剪拼操作。
此环节设计目的是利用几何画板创设美好的学习情境,调动学生的积极性,激发学生的学习兴趣,使学生在情景中主动、积极地接受任务,从而乐学。
(二)利用几何画板大胆放手、导学达标
1、数格子算面积。
2、猜想平行四边形的面积可能和什么有关?
3、证明猜想
在证明猜想是否正确时,大胆放手,指导学生在几何画板上操作,并小组合作完成填空:长方形的面积与原平行四边形的面积_________,长方形的长相当于平行四边形的________,因为长方形的面积=_________,所以平行四边形的面积=_________。
经师生互动、交流,得出了平行四边形的面积计算公式:平行四边形的面积=底*高。
(三)利用网络,精心设计形式多样的练习。
在本设计中,我则根据学生的年龄特点与认知规律,教材体系与网络优势,设计了一个专题学习网站,通过设置多点链接,整合信息技术与数学学科,整合网络技术与几何画板工具,利用强大的交互功能,让学生进行个性化的自主性学习活动。使学生在教师的指导下,自主选择学习的策略和方法,自己控制和调节学习的进程,在师生、生生、人机、个体与集体之间多纬度的交流,凭借网络资源的优势,在开放的环境中完成知识的意义建构过程。
在本课中,我把练习设计设计成试试你的本领。让学生自由上网自由选题进行训练。同学可以调阅学习伙伴的学习情况。也可以利用网络进行讨论。能力差点的学生可以得到更多的关心,真正体现生生互动。
(四)归纳总结,拓展延伸
教师引导学生自己先进行课堂小结,有助于知识的巩固和自主学习能力的提高,通过学生归纳本课内容,使学生更清楚地认识到今天到底学什么。通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,体验到学习成功的快乐。教师顺势揭示了课题,突出重点。
课末提出了你还能用折纸或其他方法证明平行四边形的面积计算公式吗?。鼓励学生想出多种方法来证明平行四边形面积的计算公式,体现了方法多样化,使学生体验了解决问题策略的多样性,提高了学生的学习能力,更培养了学生的创新精神。
在课的组织形式上,我将通过师生互动、生生互动和人机对话等多种形式,使学生在积极的互动中相互协作、相互学习,最终达到信息互补、共同提高的目的。
纵观本课设计,我坚持以学生为本以学定教的思想,凭借网络强大的功能,给学生以积极参与的机会,鼓励学生自己动手操作,自我探索,自我发现,自我发展,成为一个真正的研究者与探索者、建构者。在课堂教学中,学生是学习的主人,是信息加工的主体,是意义主动建构者,而教师则是意义建构的帮助者、促进者。本方案设想,使学生在开放的网络环境中凭借几何画板工具,自主探索,自主探索、完成知识的意义建构过程。
五、说板书设计:
平行四边形的面积
平行四边形的面积=底高
一、说教材
1、教材分析
本节课的知识点是平行四边形面积的计算,学生对于平面图形中边与边不成直角的情况的面积的计算是第一次遇到。学生要用转化的思想解决平行四边形面积的计算问题,而后面学习三角形,梯形等平面几何图形的面积推导都需要用到转化的思想所以这节课的学习犹为重要。
2、学情分析
教是为学生的学服务的,只有了解学生的学情,服务才能到位,才能更好的突出学生的住体地位,五年级的学生不论是学习习惯还是思维水平都有了一定的基础。从学生的心理特点来看这部分的内容也是符合学生的认知水平的。
3、教学目标
(1)知识技能:探索平行四边形面积计算公式的形成过程,并能运用公式解决生活中的数学问题。
(2)过程于方法:在动手操作合作交流的过程中体验平行四边形面积公式的推导过程,感受探索、研究的乐趣。
(3)情感与态度:培养学生团结协作,运用数学解决实际问题的能力。
4、重点、难点:探究平行四边形面积计算公式。
关键:运用转化的方法探究平行四边形面积的计算。
二、说教法、学法
(1)改变过去教师讲学生听满堂灌、老师问学生答满堂问的教学模式,力求通过平等的师生对话培养学生的创新精神和实践能力。
(2)利用多媒体课件辅助教学提高课堂教学效率,让学生经历从具体事物抽象成数学模型,再从数学知识还原到现实世界的过程。获得由浅入深的数学学习经历。
(3)引导学生进行反思,让学生畅谈什么地方表现的最好,什么地方自己进步了,使每个孩子都觉得自己使成功者。
(4)通过合作学习,让每个学生再小组活动中都有事要做、有事可做,并做到有分工有合作,处理好小组合作与独立思考的关系。
(5)不断丰富学生的学习方式,通过复习发现问题,通过思考提出问题,通过交流分析问题,通过合作得出结论,作出调整。再通过反思提出问题在循环中增强了学生的问题意识。
三、说教学程序
(一)创设情境,渗透学法
现实的富有挑战性得情境最能够激发学生的兴趣,调动学生积极的学习情感,引法学生得学习兴趣。在课的开始创设一个这样的一个情境:在美丽的操场上有很多不同形状的花坛,(长方形、正方形、平形四边形)问你想知道计算它们的面积是多少吗?学生有的想知道长方形花坛的面积,有的想知道正方形花坛的面积,有的想知道平形四边形花坛的面积,平行四边形的面积怎么算就成了学生学习的需求。紧接又出示一些不规则图形的花坛上面画着方格,又问:这些不规则的花坛的平面图形的面积你会求吗?你能很快的说出他们的面积是多少吗?为了很快的寻求答案,学生很自然的想到了割补转化的方法。这样就为后面探究平行四边形面积的计算做了铺垫。
(二)小组合作,探究面积
数学课程标准提出:有效的数学学习不能单纯的依靠模仿和记忆,动手操作、自主探索、合作交流是学习数学的有效方式,平行四边形的面积的计算怎样探究,从哪里开始探究学生有一定的困难。这个环节的设计可以采用小组合作探索平行四边形的面积。当学生提出设想:我们能不能把平行四边形转化成学过的图形求出它的面积时,我就让他们尝试:动手试试看能不能转化成以学过的平面图形。1、老师要求同学们先独立思考,然后闭上眼睛想象一下转化后的图形的样子,再开始小组合作。2、引导小组合作,并让小组长做好分工。3、学生展示小组合作的成果,学生们可能会有很多种转化的方法,但要让学生把每一种转化的过程展示出来。4、组织小组讨论:观察转化后的图形与原来的平行四边形之间有什么关系?学生说的面可能会很广,要把他们引导到面积、长、底、宽、高之间的关系。在这个过程中学生可以在小组内发表自己的见解,倾听同学的想法,不断调整自己的方案,经历平行四边形面积计算公式的推导过程。这样才能学会合作交流,提高他们的数学素养。
(三)联系生活、灵活运用
学生数学学习的目的在于运用,通过练习使学生加深对书本数学与生活数学的区别,密切数学与生活的联系,也为了更好的培养学生运用数学解决简单的实际问题的能力。在这个环节中设计可设计:
1、解决课前第一个情境中的求平形四边形花坛面积的问题。操场上要设计更多的不同形状的花坛,(有学过的平面图形,有没有学过的平面图形)让学生任选其中的两个算出它的面积。
2、出示一块近似平行四边形的菜地,让学生求出它的面积,学生首先必须把它想象成平行四边形,让后提出要量出它的底和高,这时我就提供给他们两组数据(底和高不对应)以引起学生的争议,让他们发表自己不同的见解,最后形成共识:要求平行四边形的面积必须要有相对应的底和高相乘。
3、设计同底等高的多个平行四边形让学生判断它们的面积是否相等。通过猜测、讨论、交流、验证得出同底等高得平行四边形不管它得形状是什么样的,它们的面积总是相等的。
(四)反思交流、拓展延伸
学生只有学会不断的反思,才能够不断的进步,在课末组织学生畅谈在这节课中你觉得什么地方表现的最好,什么地方还有待于提高,什么人最值得你学习最后引导学生运用转化的方法回去后尝试着去探究三角形或梯形面积计算公式的推导。
总之,本节课努力为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境,和探索解决问题的过程,努力为学生提供充分的活动条件和活动空间,使学生的数学学习成为一个不断感受、体验、探索、交流和应用数学的过程。始终把学生看作学习的主人,达到培养和提高学生数学素养的目的。
坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。
小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
“学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让学生真正做到会学习、会创造、会生活的一代新人,让数学课堂真正成为学生活动的、创造的课堂。
《平行四边形的面积》的说课稿
敬的各位老师:大家好!
今天我说课的题目是《平行四边形的面积》。接下来我将从以下四个方面来完成我的说课:
一、说教材
教学内容:本节教学内容是人教版九年制义务教育课程标准实验教科书五年级上册第五单元第一课《平行四边形的面积》。
教材所占的地位:本节教材是在学生掌握了面积概念和面积单位,长方形、正方形的面积计算,以及认识平行四边形特征的基础上进行教学的,是进一步要学习三角形的面积、梯形的面积、组合图形的面积及六年级圆的面积与立体图形表面积的基础。可见这节课的内容在整个教材体系中起着承上启下、举足轻重的作用。
二、说学情
学情分析:五年级的小学生虽然已经具有了一定的知识与生活经验,但知识和认知水平还存在一定的局限性,空间想象能力不够丰富,对图形的转化、公式的推导会有一定的难度。本课学生对数格子法、剪割拼补法有了一定的了解,但是,让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念.因此本节课的学习就要让学生充分利用好已有知识和经验,调动他们多种感官全面参与新知的发生发展和形成的过程。
教学目标:根据课程标准、本节课的教学内容及学生实际水平特制定以下教学目标:
1、(知识目标)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
2、(能力目标)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
3、(情感目标)培养学生学习数学的兴趣及积极参与、团结协作的精神。
依据新课程对图形与空间的教学要突出探究性活动的要求,体现《数学课程》的“过程性”目标,同时根据学生已有的知识水平,我确立了本节课教学的重难点
教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:平行四边形面积公式的推导过程。教具准备:课件、剪刀、平行四边形。
三、说教法、学法
整节课,我采用新课程努力倡导的“创设情境----猜想----验证与解释----应用与拓展”的新型教学模式,主要采用“动手操作、自主探究、自我感悟、合作交流”的学习方式,尽可能让学生充分暴露自己的思维过程,立足“基本”,注重“过程”,不仅使他们“学会”还要使他们“会学”。
四、教学流程
为凸显本节课的设计理念、切实高校完成教学目标、突出教学重点、突破教学难点,我设计了如下教学环节:
(一)、专项训练(3分钟口算)
(二)、创设情境,激趣导入
为了让学生体会到数学生活的快乐。在新课伊始,用学生喜欢的魔术导入《平行四边形的面积》。根据学生现有知识水平中无法解决的《平行四边形的面积》,从而激发了学生积极探求知识奥秘的欲望。在探索的过程中找到解决问题的方法,使学生不是在学习纯粹的数学知识。而是再解决生活中的实际问题。使学生在玩中初步理解了抽象的问题,使课堂教学充满活力。
(三)动手操作,探究新知
首先(课件出示数方格图)要求认真观察,然后填写表格,最后讨论总结出:即长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,并得出两个图形面积相同的答案。这一组实践操作,实际上是组织学生从感性到理性认识长方形的长与平行四边形的底、宽与高相同的内在联系。学生在充足的时间里进行合作探究,他们学习的主动性和学习的潜能得到充分的发挥,学生的个性得到彰显。汇报交流时,他们争先恐后发表自己的见解,课堂气氛异常活跃,民主、宽松、和谐、愉悦的氛围自然形成,学生获得积极的情感体验,同时,也为下一步推导平行四边面积计算公式做好充分的准备。
(四)抓住重点环节,深入推导梳理
学生认知是由浅入深的,通过动手实践,他们已经知道:两个图形面积相等,长方形的长和平行四边形底相等,宽和高也相等。但这三个结论之间并没有在学生思维中产生联系,而这个联系正是本节课的重难点,于是让学生自主操作探索,探究新知(1)实验操作 学生小组合作动手操作把平行四边形转化为长方形,并选取小组代表把拼剪的图形张贴在黑板上。学生操作方法如有误,可用课件演示正确方法,使学生学会平移图形的方法。这一环节的安排,既锻炼了学生的动手能力,也发展了学生的空间概念,更为下一步探究面积公式积累了感性经验,同时也培养了学生的协作精神。(2)合作探究
通过感性经验的积累和实践的结果,讨论:
1、拼出的长方形和原来的平行四边形比,什么变了,什么没变?
2、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
3、你能根据长方形面积的计算公式推导出平行四边形面积的计算公式吗?
整个新知识的教学,充分尊重学生的主体地位,让学生动手、动口、动脑,发现、比较、归纳,利用多媒体课件,从具体到 抽象,从感性到理性循序渐进,推导出平行四边形面积计算公式,突破了难点,解决了关键,培养发展了学生能力。
(五)反馈练习,发展思维
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计如下六道练习题:
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
一、教材简析
“平行四边形面积的计算”是九年义务教育苏教版六年制小学数学第八册第四单元第42页——44页的学习内容。教材从一年级第一册起逐步安排学生能够接受的几何初步知识,其中第六册教材中安排了长方形和正方形的面积计算;第七册教材中安排了平行四边形、三角形和梯形的认识,清楚了解其特征及底和高的概念。而本册(第八册)教材中"平行四边形面积的计算"是在学生掌握上述内容的基础上安排的。使整个安排体现了线形的、层递的、系统的体系,这也完全吻合了学生的认知规律和心理特点。
因此,学生要想很好地理解与掌握平行四边形面积公式,就必须以长方形的面积计算和平行四边形的特征为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。从而完成新知的建构过程。同时,也为学生自主学习三角形面积和梯形面积的计算夯实基石。
二、教学目标
认知目标:使学生理解并掌握平行四边形面积计算公式(方法),会运用平行四边形的面积公式求平行四边形的面积。
能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
三、教学重点与难点
教学重点:掌握平行四边形的面积计算公式,并能正确运用。
教学难点:把平行四边形转化学过的图形,通过找关系推导出平行四边形的面积公式。
四、教学对象分析
建构主义认为,虽然学生要学习的数学都是前人已经建造好了的,但对学生来说,仍是全新的、未知的。需要每个人再现类似的创造的过程来形成。即学生用自己的活动对人类已有的数学知识建构起自己的正确理解,而不是去仔细地吸收课本上的或教师叙述的现成结论。应该是一个学生亲身参与的充满丰富、生动的概念或思想活动的组织过程。
随着信息社会的飞速发展,小学中年级的学生已经掌握了必要的信息技术。“几何画板”的简单运用与操作已经成为了小学生形体知识的认知和探究工具。
在课堂上,学生很容易产生一些“奇异妙想”,“几何画板”凭着强大的交互性给学生以参与的机会,让学生自己操作,实现自我学习,想象力得到充分发挥,是学生成为一个真正的研究者。
“几何画板”凭借着信息平台的优势,提供了学生反复学习的机会,在学习中,反复使用它,使学生注意力更为集中,极大地激发了学生学习兴趣,调动学生学习的积极性。
学生在平行四边形的面积公式推导过程中,依据原有知识体系,以“几何画板”为探索工具,通过采用剪—移—拼的方法,对平行四边形进行转化,学生将很容易自主发现规律,及平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。
五、基本理念
整堂课在建构主义的理论指导下,充分贯彻新课程标准,从数学自身特点出发,遵循学生学习数学的心理规律,让学生从已有的经验出发,通过各种方式,自主探索,自我研究,积极完成知识的意义建构过程。
六、教法阐述、学法指导
本课采用建构主义理论指导下的主体式、抛锚式教学方式。以网络、“几何画板”为载体,为学生提供了一个活生生的学习环境,把静止的、封闭的、模式化的教学内容,转变为“开放、动态的、多元化”的学习内容,创设自主探索空间,激发自主学习兴趣,增强积极参与意识,充分培养学生的创新精神与实践能力。
建构主义学习理论强调以学生为中心,要求学生由知识的灌输对象转变为信息加工的主体。故此,本课教学过程中,巧妙设计,让学生通过课堂讨论、相互合作、实际操作等方式,自我探索,自主学习,使学生在完成任务的过程中不知不觉实现知识的传递、迁移和融合。
七、教学准备
提供“几何画板”软件平台和相关课件,制作一个开放式的、且具有人文性的数学专题网站,为学生搭建好协作学习的舞台。
八、教学过程
学生是数学学习的主人,教师则成了学生数学学习的组织者、引导者与合作者。根据本课教学内容结合四年级学生的实际认知水平和生活情感,坚持“以人为本”“发展至上”的思想,特设计教学流程如下:
(一)利用“几何画板”创设情境,激情导入
首先用鲜为人知的“孙悟空变戏法”的故事激发学生学习情感,调动学生参与的积极性,接着让学生点击老师推荐的学习专题网上的“试一试”链接到“几何画板”进行剪拼操作。
此环节设计目的是利用“几何画板”创设美好的学习情境,调动学生的积极性,激发学生的学习兴趣,使学生在情景中主动、积极地接受任务,从而乐学。
( 二)、利用“几何画板”大胆放手 导学达标
1、数格子算面积。
2、猜想平行四边形的面积可能和什么有关?
一、教材分析
平行四边形是人教版九年义务教育第九册第五单元多边形面积的计算第一小节的内容。几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。平行四边行面积的计算是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边行特征的基础上,进行教学的。而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。
二、学生分析
新课程沐浴下成长的五年级学生,在灵活开放的课堂中,学生们善于独立思考,乐于合作交流,课上表现极为活跃,语言表达能力较强,十分愿意发表独立见解,有较好的学习数学的能力。本课学生对数格子法、剪割拼补法有了一定的了解,但是,让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念
三、教学目标
根据新课标的要求及教材的特点,以“学生的全域发展”作为标准,从“知识与技能,过程与方法,情感、态度与价值观”三个维度确定如下教学目标:
知识目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。
能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。
情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
四、教学重点难点
依据新课程对图形与空间的教学要突出探究性活动的要求,体现《数学课程》的“过程性”目标,同时根据学生已有的知识水平,我确立了本节课教学的重难点
重点:平行四边形面积计算公式的推导。
难点:使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
五、教学方式、学习方式及评价方式
教学方式:标准中指出:有效的数学活动不能单纯地靠模仿与记忆,动手操作、自主探索与合作交流是学习数学的重要方式。本节课,采用了情境教学法和引导探究法,组织学生开展丰富多彩的数学活动。在活动中充分调动学生学习的积极性、主动性,为他们创建一个发现、探索的思维空间,使学生更好地去发现、去创造。
学习方式:数学学习活动充满着观察、操作、推理、比较、交流
模拟等探索性与挑战性的活动,本课多次鼓励学生自主探究、合作实践,组织学生认真观察、分析和讨论,在解决生活实际问题的过程中,通过动手实践、合作梳理来完成探究任务。
评价方式:1、恰当评价学生的基础知识和基本技能。
2、注重对学生数学学习过程、学习状况、学习态度的评价。
3、重视对学生探究能力、解决问题能力的评价。
4、评价主体多元化,采用自评、互评、师评相结合的方式。
六、教具学具准备
教具平行四边形课件长方形
学具学生每人一个任意大小的平行四边形纸片剪刀
七、教学流程
为了能更好地凸显“自主探究”的.教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。
(一)结合生活设疑 激发情趣导入
为了跳出陈旧的数学课单纯讲知传道的框架,让学生体会到数学生活的快乐。在新课伊始,我结合书上情境图设疑导入,根据学生的兴趣特征设计了学生在现有知识水平中无法解决的生活实际问题,从而激发了学生积极探求知识奥秘的欲望。在探索的过程中找到解决问题的方法,使学生不是在学习纯粹的数学知识。而是再解决生活中的实际问题。使学生在玩中初步理解了抽象的问题,使课堂教学充满活力。
(二)动手实践,多维探究
首先(课件出示数方格图)要求认真观察,然后填写表格,最后讨论总结出:即长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,并得出两个图形面积相同的答案。这一组实践操作,实际上是组织学生从感性到理性认识长方形的长与平行四边形的底、宽与高相同的内在联系。学生在充足的时间里进行合作探究,他们学习的主动性和学习的潜能得到充分的发挥,学生的个性得到彰显。汇报交流时,他们争先恐后发表自己的见解,课堂气氛异常活跃,民主、宽松、和谐、愉悦的氛围自然形成,学生获得积极的情感体验,同时,也为下一步推导平行四边面积计算公式做好充分的准备。
(三)抓住重点环节,深入推导梳理
学生认知是由浅入深的,通过动手实践,他们已经知道:两个图形面积相等,长方形的长和平行四边形底相等,宽和高也相等。但这三个结论之间并没有在学生思维中产生联系,而这个联系正是本节课的重难点,于是让学生自主操作探索,探究新知
(1)实验操作
学生小组合作动手操作把平行四边形转化为长方形,并选取小组代表把拼剪的图形张贴在黑板上。学生操作方法如有误,可用课件演示正确方法,使学生学会平移图形的方法。这一环节的安排,既锻炼了学生的动手能力,也发展了学生的空间概念,更为下一步探究面积公式积累了感性经验,同时也培养了学生的协作精神。
(2)合作探究
通过感性经验的积累和实践的结果,讨论:
a、是不是任何一个平行四边形都能剪拼成长方形?平行四边形转化成长方形后它的面积有没有变化?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
小组通过讨论达成共识,推导出平行四边形面积公式。
(课件展示板书)
整个新知识的教学,充分尊重学生的主体地位,让学生动手、动口、动脑,发现、比较、归纳,利用多媒体课件,从具体到抽象,从感性到理性循序渐进,推导出平行四边形面积计算公式,突破了难点,解决了关键,培养发展了学生能力。
(四)分层运用新知,逐步理解内化
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:
1基础练习出示填空题,巩固平行四边形面积公式计算过程。
2提升练习出示计算题,使学生熟练应用平行四边形面积计算公式进行计算。
3判断练习对学到的平行四边形的面积计算公式进行巩固。
4选择练习用题型多样化对本课所学知识进行巩固。
5发散练习此题需要学生综合运用知识,进行逻辑推理,使学生明白等底等高的平行四边形的面积相等。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
教学目标:
(一)知识方面
1.使学生理解并掌握平行四边形面积的计算公式。
2.能正确地计算平行四边形的面积。
(二)能力方面
1.通过操作,进一步发展学生思维能力。
2.培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。
(三)德育方面
引导学生运用转化的思想探索规律,培养探索知识的兴趣。
教学重点:理解并掌握平行四边形面积的计算公式。
难点关键:理解平行四边形面积计算公式的推导过程。
教具:课件、实物投影仪。
学具:两个同样的平行四边形、剪刀、尺子。
教学步骤:
一、复习辅垫
1.出示一个长方形。
这是一个(长方形),它有什么特征?如果每个小方格为1平方厘米,这个长方形的面积是多少平方厘米?你是用什么方法得出来的?(板书:长方形的面积=长宽)
2.出示不规则图形(1)、(2),
(1)(2)
问:这个图形的面积是多少?你是怎么知道的?除了一个一个数之外,还有没有其他方法?(学生说割补的过程,电脑演示)
3.出示平形四边形。
问:这是一个(平形四边形),请同学们用数方格的方法数一数它的面积是多少。同学们发现这些方格中(有些是整格的,有些是不满一格的)不满一格的怎么办,请你想个办法。你怎么知道算半格?(学生说,电脑演示两个不满一格的拼成一个整格的过程)我们一起来数一数,先数什么?再数什么?这个平行四边形的面积是多少平方厘米?(电脑演示)
4.刚才我们用数方格的方法计算了平形四边形的面积,方不方便?如果是一个平形四边形的水塘呢?还能不能用数方格的方法来计算?我们能不能也像计算长方形的面积那样,找出平行四边形面积的计算方法呢?今天我们就一起来研究一下平行四边形的面积计算方法。(出示课题)
二、操作探究
1.动手操作
(1)提问:平行四边形的面积如果能转化成什么图形的面积我们就会求了?到底行不行,请你拿出平行四边形,试试看。(学生操作,教师巡视)
(2)做好的同学放好,思考这三个问题:
A你转化后的图形是不是长方形?
B这个长方形和原来的平行四边形之间有什么关系?
C由这些关系你能不能得出平行四边形面积的计算方法?
2.汇报总结
我们一起来看这三个问题。
(1)你转化后的图形是不是长方形?你是怎么转化的呢?谁能大胆的
上来说一说。
(2)你是沿着高剪开的,你是不是沿着高剪开的?为什么要沿着高剪
开呢?沿着底边上的高剪开,这个角是什么?(直角)长方形的四个角都是直角。所以只有沿着高剪开才能转化成长方形。
(3)电脑演示转化过程,教师口述。找出底,画高,剪开,平移,拼
补,转化成了长方形。
(4)这个长方形和原来的平形四边形之间有什么关系呢?平行四边形
转化成长方形后,面积有没有变化?长方形的面积和原来的平行四边形的面积怎么样?(板书:=)长方形的长和什么有关?(板书)长方形的宽和什么有关?(板书)从这个关系中,同学们发现了什么?(板书)谁再来完整的主一遍。(学生说,电脑演示)请学们看着这个板书自己说一说。
3.验证。这个公式到底对不对呢?打开书本对照一下。我们通过转化推导出来的面积计算公式和书本上的一样。同学们真是了不起,会自己发现数学知识了。
4.用字母表示。平行四边形的面积计算公式还可以用字母来表示。请同学们自学这一页的最后两段。汇报。
5.小结。从公式中我们可以知道要求平行四边形的面积,必须知道什么?齐读公式。
三、巩固发展
1.口算下列各题。
53分米
4厘米分3米
米
3厘米1.5米
2.选择合适的条件计算面积。(单位:厘米)
4
2.8
2.1
3
用公式计算需要知道哪两个条件,你能不能说得更准确一些?(底和相对应的高)
3.下面的平行四边形是24的请打勾。
224
24
44
2
4.学会了平行四边形的面积计算,可以解决实际生活的一些问题。出示例题。做一做。
5.出示中图地图。我们国家有三十几个省市自治区,其中这个是出西省,山西省的形状近视于一个什么图形?同学们想知道什么?要求山西省土地的面积,应该怎么办?经过测量底约为560千米,高约为280千米,请你计算一下它的面积约为多少平方千米?得数保留整万千米。
6.比较。
这两个平等四边形有没有关系?得出等底等高的平行四边形面积相等。那么这个平行四边形的面积呢?(电脑演示)
四、回故总结。
这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积是怎样推导出来的?同学们,前面我们学习了长方形和正方形的面积计算,今天我们用转化的方法学习了平行四边行的面积计算,今后我们还要运用这种方法来学习三角形,梯形的面积计算。
板书设计
平行四边形面积的计算
旧知
长方形的面积=长宽
割║║║
补
平行四边形的面积=底高
新知S=ah
S=ah
S=ah
尊师重道一直都是中华民族的传统美德,教案要充分发挥学习的积极性和创造性。通过教案课后反思写作的数量和质量都得到了提高。什么样的教案算是好教案?幼儿教师教育网花时间特意编辑了平行四边形的面积教案,相信一定会对你有所帮助。
教学目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重、难点:探索并掌握平行四边形的面积计算公式及推导过程。
教具学具:课件、平行四边形卡片、剪刀、三角板、直尺等。
教学模式:“我能行”四步教学法。(详见文后注)
教学流程:
课前交流:同学们,你们想了解老师吗?你想知道关于我的什么情况?
预设:老师的年龄是多少?教几年级?
师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?
生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。
师:想得真好,许老师就是(30)岁。
师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。 这节课我们就用这种数学“转化”思想来学习本节课。
一、情境导入,确定目标
师:1.在数学课堂上哪些地方用到了“转化”?
预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。
看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。
2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?
生:演示方法。
3.师:为什么把它拼成一个长方形呢?
预设:学过长方形面积的计算,而且能够拼成长方形。
这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。
4.刚才的图形“转化”过程,什么变了,什么没变?
5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。
(1)我会用“转化”的数学思想推导平行四边形的面积计算公式。
(2)我会用平行四边形面积公式解决实际问题。
【设计意图】情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。
二、互动展示,生成问题
师:1.你猜一猜平行四边形的面积会与什么有关?
预设:长方形、正方形、底、高、夹角、相邻的边等。
2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。
3.请带着问题自学。(课件)
4.四人小组交流一下你是怎样“转化”平行四边形面积的。
【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。
三、启发思路,引导归纳
师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?
2.平行四边形的面积怎么算?
3.板书:平行四边形的面积=底×高
4.你是怎样推导的?说一下你的操作过程。
5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)
6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)
7.这个平行四边形与剪拼的长方形之间有什么关系?
预设:平行四边形的面积与长方形的面积相等(板书)
8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?
9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)
【设计意图】在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。
四、练习检测,拓展链接
1.练习检测卡一题。
2.课件:判断、选择题、口答列式。
3.练习检测卡二、三题。
4.谈谈你对这节课的收获,好吗?
拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。
【设计意图】归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。
板书设计:
(注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)
一、教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
二、教学重点、难点及关键点剖析:
1、重点:平行四边形面积公式的推导及应用。
2、难点:理解平行四边形面积计算公式的推导过程。
三、教具、学具准备:
平行四边形纸片、剪刀及电脑课件、
四、教学过程:
一、创设情境,导入新课
猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?
生:算出这两块地的面积,比比就知道了。
师:那长方形的面积怎么算呢?
生:长方形的面积=长×宽
师:平行四边形的面积怎么算呢?
生摇摇头。
师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)
齐读学习目标:
1、通过操作,能推导出平行四边形的面积计算公式。
2、会运用平行四边形的面积计算公式解决实际问题。
二、自主学习
在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)
小组讨论:(1)仔细观察、比较表格中的数据,你发现了
(2)猜想:平行四边形的面积=_________________________
三、动手操作,验证猜想
(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)
(2)以小组为单位进行剪拼。
(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。
(4)讨论:
A、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)
B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。
(6)交流汇报
板书:长方形的面积=长×宽
↓ ↓ ↓
平行四边形的面积=底×高
师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h,也可以写成S=ah或S=ah(师板书)
四、当堂检测
1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生独立完成,并展示学生作业。
2、计算下面平行四边形面积,列式正确的是:()
A:8×3B:8×6C:4×6D:4×3
通过做此题,你想提醒大家注意什么?
3、你能想办法求出下面这个平行四边形的面积吗?
五、拓展提升
下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
1.4cm
2.5cm
通过做此题,你发现了什么?
六、课堂小结
说说本节课,你收获了什么?
七、板书设计:
平行四边形的面积
长方形的面积=长×宽
↓ ↓ ↓
平行四边形的面积=底×高
S=a×h
=ah
=ah
“平行四边形的面积”是五年级上册第五单元“多边形的面积的计算”第一小节的内容。它是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。教材在编写时注意培养学生实际操作能力。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。
虽说学生已经掌握了平行四边形的特征和长方形面积的计算方法,也已经有了“利用数方格推导长方形面积计算方法”的这一活动经验。但是长方形面积的计算是三年级的时候学的,四年级没有涉及到图形面积的计算,只是认识了平行四边形,如果在不看书的情况下,引入新课教学,学生很难想到用数方格的方法去求面积。所以学生已经淡忘了“数方格求面积”的这种方法。再加上小学生的空间想象力不够丰富,这都对平行四边形面积计算公式的推导造成一定的困难。
为了有效地突出重点,突破难点,从学生已有的知识水平和认识规律出发,让学生在“复习旧知———大胆猜想———推理判断———动手实践———直观验证”的学习过程中,启发学生用“转化”的思想,动手操作,推导归纳出平行四边形面积计算的公式。充分发挥直观教具教学在知识形成过程中的积极作用,从而使学生从感性认识上升到理性认识,最终体会到知识的由来,引发学生主动探索问题的积极态度,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高。
一、复习旧知、铺垫引入
布卢姆认为,在影响信息的所有变量中,认知前提占百分之五十。长方形面积计算是平行四边形面积计算的生长点,是认知的前提。为架起新旧知识之间的桥梁,我设计了几个问题让学生回忆长方形面积是怎么求的。想一想我们三年级的时候是怎么推导出公式来的。然后直接出示平行四边形的图形,让学生思考平行四边形的面积可以怎么求,并由此导入新课。
二、主动探索、获取新知
自主探究是新课程改革的最大亮点,也是课堂教学的难点。它难在学生在探究之前对结果一无所知,必须先进行猜想,然后才能实验验证。
1、大胆猜想,展示自己观点。直接向学生呈现问题:展开你的想象猜一猜,平行四边形的面积该怎样计算呢?并以此作为展开教学的.依据引起学生探究的欲望,开展下面的探索活动。
2、推理判断,展示真实思维。我采用了先证伪,再证真的过程。(30+20)×2是不是平行四边形的面积呢?大部分学生能够判断出这样算出的是平行四边形的周长,而不是面积。那么30×20也就是底边乘邻边是不是平行四边形的面积呢?学生根据已有知识经验,平行四边形一拉变成长方形,认为30×20就是平行四边形的面积,通过演示把平行四边形拉成长方形,观察发现拉成的长方形面积变大了,30×20是拉成的长方形面积,而不是平行四边形的面积。我接着追问:你从哪里看到面积变了,请你上来画一画,指一指。第二种猜想也被排除了。那30×12也就是底乘高可以吗?为什么?这时学生看出了把右边的三角形剪下来补在左边,把平行四边形转化成长方形,底乘高对了。为了突破难点,这时我设计了一个疑问:刚才把平行四边形拉成长方形,底乘邻边算出的不是平行四边形的面积。现在也是变成长方形,底乘高算出平行四边形面积,为什么就对了呢?至此错误得以澄清,正确算法得以掌握,割补转化意识已形成。下面把平行四边形割补转化成长方形已顺理成章了。
3、动手实践,推导面积公式。由于前面推理过程,这一环节我完全放手于学生。学生四人一组分工合作,动手剪一剪、拼一拼、把平行四边形转化成长方形,来推导平行四边形的面积计算,为了突破第二个难点我设计了这样的三个思考引导:
(1)拼出的长方形和原来的平行四边形比,面积变大了吗?
(2)拼成的长方形的长和宽与平行四边形的底和高有什么关系?
(3)根据长方形的面积计算公式推导出平行四边形面积计算公式。接着学生汇报,形成板书,最后介绍字母公式。在这一环节中,学生通过动手操作,体验了图形的平移,转化的数学思想方法,促使空间观念进一步发展。同时也培养了学生语言组织能力和概括能力。
4、凑数方格,直观验证结论。我尊重教材编写意图:让学生经历数方格的方法体验凑数的过程。在得到平行四边形面积计算公式之后,我让学生用数方格的方法验证平行四边形的面积。通过方格直观验证,平行四边形面积是底×高。
三、巩固练习、学以致用
实践是认识的源泉,也是认识的目的和归宿。为了能让学生熟练掌握、灵活运用新知,练习设计由基本练习、判断选择、变式练习、拓展练习、动手实践组成。
1、基本练习,计算不同形状平行四边形的面积。(通过练习,巩固新知识,加深对新知识的理解。)
2、判断选择提升练习,巩固平行四边形面积公式。
3、变式练习,出示一块近似平行四边形的菜地,让学生求出它的面积,学生首先必须把它想象成平行四边形,然后提出要量出它的底和高,这时我就提供给他们两组数据(底和高不对应)以引起学生的争议,让他们发表自己不同的见解,最后形成共识:要求平行四边形的面积必须要有相对应的底和高相乘。
4、拓展练习,设计同底等高的多个平行四边形让学生判断它们的面积是否相等。通过猜测、讨论、交流、验证得出同底等高的平行四边形不管它的形状是什么样的,它们的面积总是相等的。
5、动手实践,让学生测量自带的平行四边形并求出其面积。一方面培养学生解决实际问题的能力和创新思维,另一方面加深学生对平行四边形计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣、有用的数学,从而激发学生的学习兴趣。
整个习题设计,虽然题量不大,但涵盖了本节课所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了学生思考、发展了学生思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
四、反思交流、拓展延伸
学生只有学会不断的反思,才能够不断的进步,在课末我组织学生畅谈在这节课中学到了什么?对本节课的学习有什么体会?本节课的问题解决主要采用了什么方法?还有别的方法吗?本节课的学习对你的生活有什么影响?最后我还引导学生运用转化的方法回去后尝试着去探究三角形或梯形面积计算公式的推导。
总之,本节课立足“基本”,注重“过程”,努力为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境,和探索解决问题的过程,努力为学生提供充分的活动条件和活动空间,使学生的数学学习成为一个不断感受、体验、探索、交流和应用数学的过程。始终把学生看作学习的主人,达到培养和提高学生数学素养的目的。
教学内容:五年级上册第79-81页。
教学目标:
1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:掌握平行四边的面积计算公式,并能正确运用。
教学难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学方法:动手操作、小组讨论、演示等
教学准备:每个学生一把剪刀,一个平行四边形
教学过程:
一、导入:
1、出示课本P79主题图,“这是一幅街道图,仔细观察,找一找图中有哪些学过的图形?你会计算哪些图形的面积?”板书:长方形的面积=长X宽
2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”
二、探索新知
1、用数方格的方法验证:
我们把这两个花坛按比例缩小画到纸上,用数方格的方法数数看,它们的面积各是多少。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。”让学生打开书第80页,先独立思考并数一数,填一填下面的表格,然后再和同桌互相交流。(注意再引导学生找找平行四边形的底和高分别是哪里)“观察表格中的数据。你发现了什么?
2、猜测:
谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法是怎样的?这个猜想到底对不对呢?
2、探究平行四边形面积公式
不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)
学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”
小组讨论:平行四边形转化成长方形后,什么变了?什么没变?
转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?
平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底X高)(字母式)
小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。
3、应用:出示例1,谁来说一说你是怎么做的?
要求平行四边形的面积,我们必须知道哪些条件?
三、巩固练习
四、提高练习
五、总结
反思:在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。
一、说教材
(一)说课内容:人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》中的《平行四边形的面积》
(二)教材内容的地位、作用和意义:
小学数学关于几何知识的安排,是按由易到难的顺序进行的。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的。主要让学生初步运用转化的方法推导出平行四边形面积公式,并在理解的基础上掌握公式。本节课在整个教材体系中起承上启下的作用。
(三)教学目标:
根据新课标要求及教材特点,我确立了如下目标:
1、知识与技能目标:使学生在理解的基础上掌握平行四边形面积的计算公式,并能正确计算平行四边形面积。
2、过程与方法目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析。
(四)教学重点、难点及关键:
教学重点:使学生理解和掌握平行四边形的面积的计算公式,并能正确地计算平行四边形的面积。
教学难点:使学生理解平行四边形面积公式的推导方法及过程。
关键:通过剪、移、拼的实践操作来分解难点。
(五)教具、学具准备:
多媒体课件,学生准备任意大小的平行四边形纸片,剪刀,直尺。
二、说教法
本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,亲身体验知识的形成过程。
三、说学法
本节课以培养学生的实践能力、探索能力和创新精神为目标,引导学生通过观察、比较、操作、概括等行为来解决问题。
四、说教学过程
为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,我设计了以下六个教学环节:
(一)、复习旧知,渗透转化
新课开始,我先让学生回忆长方形面积的计算方法,然后找平行四边形的底和对应的高。
设计意图:唤取学生对旧知的回忆,为新知识的学习做好铺垫。
(二)、创设情景,引出课题
我出示一个长方形和一个平行四边形,这对好朋友发生了争论了,它们都说是自己的面积大,你们认为谁的面积大呢?引出并板书课题:平行四边形的面积。
设计意图:主要是向学生暗示了当长方形和平行四边形长与底,宽与高分别相等时,它们的面积会相等。
(三)、动手操作,探索发现
(1)、数方格法求面积
看课本80页图数一数,(不满一格按半格计算,每小格表示1平方厘米),小组讨论自己的发现,最后全班交流。
设计意图:让学生初步感知到了平行四边形的面积与底和高有关。
(2)、剪拼法,验证猜想
教师启发谈话,如果要求在实际生活中平行四边形的面积,经常用数方格这种方法方便吗?这就需要寻找一种更简单的方法。
然后让学生实践操作,拿出剪好的平行四边形,以组为单位,想一想,剪一剪,拼一拼,看能不能把一个平行四边形拼成一个面积相等的长方形呢?
可选择几名学生给全班演示,说说他们的想法。然后教师再重点的演示剪、移、拼的过程。
(3)、归纳:
提问:这个平行四边形转换成了什么图形?它们的面积有变化没有?拼成的这个长方形与平行四边形的底和高有什么关系?得出结论:平行四边形的面积=底×高,用字母表示S=ah。
(四)实际应用:
自学例题,学习新的解题格式,巩固应用新学的知识。
(五)分层训练
第一层:基本练习:
有利于学生加深对平行四边形面积认识,正确理解平行四边形的面积只与底和高有关。
第二层:综合练习:
通过不同的高,让学生明确在计算平行四边形面积时要找准相对应的底和高。
第三层:扩展练习:
学生综合运用知识,逻辑推理,明白平行四边形的面积只与底和高有关,从而得出结论:等底同高的平行四边形的面积相等。
整个习题设计,涵盖了本节课的所有知识点,同时练习题排列遵循由易到难的原则,层层深入。
(六)课堂总结,
这节课我们学习了什么,你学会了什么?
主要目的是了解学生对这节课的掌握情况,充分提高学生归纳和总结能力。
五、说板书设计:
板书设计是课堂教学的重要手段,此板书力求全面而简明的将授课内容传递给学生,清晰直观,便于理解和记忆。
长方形面积=长×宽
平行四边形面积=底×高
S = ah
教学内容:
《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。
教学目标
1.知识与技能
1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2)使学生理解转化的思想,初步学会运用转化法来解决问题。
3)培养学生的合作意识和自主探究解决问题的能力。
2.过程与方法
让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。
3.情感态度与价值观
通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。
教学重点、难点
教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
教学准备:
多媒体课件、平行四边形学具等。
教学过程:
一、设置悬念激发兴趣
师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?
[学情预设:摇头或不知道。]
(出示:中国版图)
师:请大家仔细观察,山西省近似我们学过的什么平面图形?
[学情预设:学生根据观察可能会说:四边形或平行四边形。]
师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?
[学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]
师:对,这节课我们就一起来研究“平行四边形的面积”。
(引出课题并板书:平行四边形的面积)
[设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]
二、动手操作引发欲望
1、回忆平行四边形的底和高。
师:同学们,平行四边形有哪些特征,你们还记得吗?
[学情预设:
生1:平行四边形对边平行、对角相等。
生2:还有底和高。]
师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?
[学情预设:学生根据不同的高,找到所对应的底。]
师:由此,你发现了什么?
生:底要和高相对应。
师:对,这一点值得注意。
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]
2、第一次探究
师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。
(小组活动,教师巡视)
[学情预设:
生1:直接数。
生2:间接数。
生3:沿边上的高剪开。
生4:沿中间的高剪开。
生5:沿两边的高剪开。……]
师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。
(小组汇报)
[学情预设:
组1:用直接数方格的方法。]
[问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]
师:哪个小组和他们的方法不一样?
[学情预设:
组2:间接数。
组3:沿边上的高剪开。
组4:沿中间的高剪开。
组5:沿两边的高剪开。……]
师:由此,你又发现了什么?
小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。
[设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]
3、第二次探究
师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?
师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?
生:不能。
师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?
生:有。
[学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]
(板书:长方形的面积=长×宽
平行四边形的面积=底×高)
师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。
[学情预设:学生汇报自学成果,教师板书字母公式。]
师:用字母表示平行四边形的面积公式:S=ah
小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。
即:平行四边形的面积=底×高
[设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]
三、联系实际解决问题。
师:解决课前遗留问题:山西省的面积大约有多大?
[设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]
四、课后延伸渗透转化
师:吉林省近似学过的什么平面图形?
生:三角形
师:会计算它的面积吗?(不会)我建议大家利用转化的`思想方法下课后继续研究。
[设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]
五、板书设计:
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
教学目标:
1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。
3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。
教学重点:理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。
教学准备:平行四边形卡片 剪刀 方格子
教学过程:
一、 创设情境,激趣导入
师:前些日子,我们学校租车组织了一部分同学去清源山脚下的假日农庄拔萝卜,我们班也有三个同学去了,现在我们现场采访一下,这几位同学拔完萝卜后有什么感受?
学生汇报
师:这次拔萝卜让我们体会到了劳动的快乐,也让我们感受到了丰收的喜悦。可是我们还要租车大老远跑到那边去很不方便,偶然的机会,我们知道了农庄有一位老伯有块地在承天寺,我们就商量:能不能把地换一下?老伯说:“好啊!”于是我们到两块地里去看了一下,感到为难了。同学们,你们愿意帮我们解决问题吗?(愿意)原来,这两块地的形状不一样,一块是长方形,一块是平行四边形,怎样知道他们的大小呢?这样换公平吗?
(多媒体出示一块长方形的地,一块平行四边形的地)
学生汇报
师:你们准备怎样解决呢?
生:分别算出长方形和平行四边形的面积就行了。
师:怎样才能知道这块长方形地的面积呢? (引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。)
多媒体出示方格和长方形的长与宽,学生求出长方形的面积。
师:那这块平行四边形面积怎样求呢?
学生小组交流
师:今天我们就来研究怎样求平行四边形的面积。(板书:平行四边形的面积)
二、动手实践,探索新知
学生汇报,教师引导:
1、 数格子求平行四边形的面积
(多媒体出示格子,并说明一个方格表示1平方厘米)
师:现在就请同学们用这个方法算出平行四边形的面积(说明要求:不满一格的都按半格计算)。
学生汇报,得出平行四边形的面积。
师:通过数格子,我们发现我们的平行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公平了吗?(公平)
引导:我们用数方格的方法算出了这个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
2、 割补法求平行四边形的面积
学生猜测
师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的平行四边形卡片、剪刀等学具,想办法来验证验证。
学生动手实践,合作交流。
学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的平行四边形,它的面积等于长乘宽)
教师用课件演示剪——平移——拼的过程。
师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?引导学生讨论:
1、拼出的长方形和原来的平行四边形比,面积变了没有?什么变了?
2、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
3、你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?
学生汇报,教师归纳:
经过同学们的努力,我们发现把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。
师:现在谁能用一句话概括出平行四边形的面积?
学生汇报,教师板书:
此主题相关图片如下:
如果用s表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式可以怎么写呢?
s=a×h
师:刚才我们已经推导出了平行四边形的面积公式,知道了要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
三、 练习深化,巩固新知
1、计算下列图形的面积。(单位:cm)
此主题相关图片如下:
2、先估一估,再算一算下面哪个平行四边形的面积与给出的平行四边形的面积一样大?
此主题相关图片如下:
3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
此主题相关图片如下:
四、知识应用,总结评价
师:生活中还有哪些地方应用到我们今天所学的知识呢?
学生交流
师:我发现同学们通过今天的学习,收获还是很大的,谁愿意来跟我们分享一下你通过今天的学习,有什么收获呢?你认为你今天的表现怎么样?
学生交流。
优秀的人总是会提前做好准备,身为一位人民教师,我们都希望孩子们能学到知识,因此,老师们都会选择准备一份教案,教案对教学过程进行预测和推演,从而更好地实现教学目标。您知道幼儿园教案应该要怎么下笔吗?或许你需要"平行四边形的面积优秀教案2500字精选"这样的内容,强烈建议你能收藏本页以方便阅读!
一、说教材。
《平行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。它是在学生已经掌握了长方形和正方形的面积计算、面积概念和面积单位,以及认识了平行四边形,清楚了其特征及底和高的概念的基础上来进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的面积公式打下基础。为了更好地体现《数学课程标准》的理念,通过学习来解决生活中的实际问题,让学生感受到数学就在身边,人人学有价值的数学。
根据以上对教材的理解与内容的分析,按照新课程标准中掌握4~6学段空间与图形的要求,我将本节课的教学目标定为:
1、知识目标:能应用公式计算平行四边形的面积;
2、能力目标:理解推导平行四边形面积计算公式的过程,培养学生抽象概括的能力。
3、情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。
根据新课程标准中的教学内容和学生的认知能力,我将本节课的教学重点定为:
能应用公式计算平行四边形的面积。
教学难点定为:理解平行四边形面积的推导过程,并能运用公式解决实际问题。
二、说教法、学法。
根据本节课的教学内容和学生的思维特点,以及新课程理念学生是学习的主体,教师是引导者、组织者、合作者,我准备采用以下几种教法和学法:
1、教学中,我将通过生活情境的创设,利用多媒体教学课件,引发学生学习数学的兴趣和积极思维的动机,引导学生主动地探索。
2、动手实践、主动探索、合作交流是学生学习数学的重要方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考。
3、满足不同层次学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积计算方法,提高学生的思维能力。
4、联系生活实际解决身边的问题,让学生初步感受数学与生活的密切联系,体验数学的应用,促进学生的发展。
教学内容
教材第79~81页,平行四边形的面积。
教学目标
1、知识与技能:
理解并掌握平行四边形面积的计算公式,能正确计算。
2、过程与方法:
通过操作、观察和比较,使学生运用转化的方法经历计算公式的推导过程,进一步发展学生思维。
3、情感态度与价值观:
引导学生运用转化的思想探索知识的变化规律,培养学生分析和解决问题的能力;通过动手操作,使学生感悟数学知识的内在联系,激发学习兴趣。
教学重难点
重点:掌握平行四边形的面积计算公式,并能正确运用。
难点:平行四边形面积计算公式的推导。
教具、学具准备
多媒体课件,展台,平行四边形学具纸片,剪刀,尺子等。
教学过程
一、导出课题
课件出示图形,怎样求面积呢?生回答。数格子的方法比较麻烦,可以用割补法,通过剪、拼,转化成长方形,来求出面积。导出课题。
二、探究新知
1、动手操作,探究新知
展示学习目标,课件出示图形,怎样求这个平行四边形的面积呢?
小组合作,动手操作,寻找平行四边形面积的计算方法。
①生用平行四边形纸片和剪刀进行剪拼。
②师巡视,个别指导。
③生拼好后,指名上黑板实物投影拼得方法和过程。
④师课件演示剪拼过程.
得知平行四边形的面积和拼成的长方形的面积相等。
2、引导推导平行四边形面积计算公式。
师:给你一个平行四边形水池,求面积,还能去剪么?
生:不能。
师:那想一个什么方法来求平行四边形的面积呢?
小组讨论。观察拼出的长方形和原来的平行四边形,你能根据它们的面积相等和长方形的面积公式推导出平行四边形面积计算公式么?
多媒体课件演示整个推导过程。
①拼成的长方形的面积与原来平行四边形面积相等,
②拼成的长方形的长与原来平行四边形的底相等,
③拼成的长方形的长与原来平行四边形的高相等,
因为长方形的面积 =长×宽,所以平行四边形的面积=底×高
用字母表示平行四边形的面积公式S=ah
师强调:高必须是和底对应的高。
[设计意图:让学生参与学习新知的全过程,充分发挥学生的主体作用,让学生通过自主探索,合作交流,“创造”出新知,发展学生的能力,让学生体验到成功的喜悦]
三、应用公式,解决问题
1、独立完计算,课件出示图形。
S=8×5=40平方厘米 S=12×7=84平方米
2、提高练习
一个停车位是平行四边形,它的面积是15㎡,底是6m。它的高是多少?
h=S÷a=15÷6=2.5m
答:它的高是2.5m。
3、拓展延伸
用木条做成一个长方形框,把它拉成一个平行四边形,周长和面积有变化吗?
(周长不变;底不变,高变小,所以面积变小。)
[设计意图:通过多种形式的练习,巩固所学的知识,解决生活中的数学问题,加强数学与生活的联系。]
4、全课总结
师:说一说这节课,你学会了什么?
板书设计
长方形的面积 = 长 × 宽
↓ ↓ ↓
平行四边形的面积=底 × 高
S表示面积,a表示底,h表 示 高 。那 么 面 积 公 式 就 是S = ah
教学目标:
1、能用割补的方法,把平行四边形转化成面积不变的长方形,通过长方形面积的计算方法推导出平行四边形面积的计算方法
2、能用平行四边形面积的计算方法解决简单的实际问题。
3、在操作、观察、比较中,渗透转化的思想方法。
4、在探究活动中,体验到成功的快乐。
教学重点:
推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。
教学难点:
推导平行四边形面积公式
教学准备:
课件平行四边形硬纸片剪刀透明方格纸
教学过程:
一、情境激趣:
师:同学们,你们去过宁江区的江滨公园?美不美?公园还要在这里铺草坪,这是其中的两块(电脑出示草坪图),根据图中提供的数学信息你能提出哪些数学问题?
1、铺长方形草坪需要多少钱?(根据长方形的面积公式学生可以解决)
2、铺平行四边形的草坪需要多少钱?师:需要先求什么?
生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)
二、实验探究:
1、猜想
那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、实验
1)独立自主探究:
师:每个小组的桌上都有一些学具,有数格子用的格子纸、印的平行四边形和长方形和表格、剪刀、平行四边形,想一想你打算用什么方法来研究?
生:我用数格子的方法。
师:数格子时,不足一格的按一格算,把得到的数据填在表格里
师:还有什么方法?
生:我用剪一剪、拼一拼的方法。
师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。
2)小组内交流:
师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。
3)学生汇报:
第一个小组:
(1)数格子(把表格带到前面说)
(2)剪拼
师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)
是这样吗?师课件演示解说强调平移
师:还有其他的剪拼方法吗?(你们组的方法与人不同,让同学们又学了一招啊!)生汇报后师演示
(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)
师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)
师:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的`面积公式又该怎样写呢?s=ah
四、运用公式解决
师:现在我们来算一下铺这块平行四边形草坪要用多少钱?
(生口算)
五、拓展练习
1、求下列图形的面积是多少?
底15厘米,高11厘米
(不仅准确计算出了结果,速度还很快,真不错。)
2、开放题:这是一张全国地图,有一个省的地形很接近了平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)
(能在实际问题的解决中恰当运用公式,了不起)
3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)
六、全课小结:
师:这节课,你是怎么学习的?你有哪些收获?
(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写一篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。
教学内容:
平行四边形的面积的计算
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
2块平行四边形彩色纸片、三角板、直尺、剪刀
教学过程:
师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)
一、情境创设,揭示课题
1、创设故事情境
同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?
2、复习旧知,揭示课题
(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长times;宽)
(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。
二、自主探究,操作交流
1、大胆猜想
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?
(两个图形的面积相等,都是18平方米hellip;hellip;)(知识点)
师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?
(师出示一个平行四边形纸板,生看图猜测。)
生汇报猜测结果,师随机板书。
师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?
2、操作验证
提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.
(师参与到小组活动中,巡视指导。)
3、汇报交流
师:你是怎样做的呢?谁愿意上来演示并说一说呢?
(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形hellip;hellip;)
师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。
师:请同学们观察一下,哪种图形的面积我们懂得计算呢?
生:长方形。
师:怎样剪才能拼成长方形呢?
师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!
生再次操作。
4、发现方法
师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。
(电脑显示思考题)
小组讨论交流。
(1)平行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
学生一边说教师一边板书:长方形面积=长times;宽
平行四边形面积=底times;高(知识点)(能力点)
5、回顾公式推导过程
(1)结合课件演示各部分间的相等关系。
(2)指名说说平行四边形面积公式是怎么样推导出来的?
6、学习用字母表示公式。
师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)
7、记忆公式
闭上眼睛记记公式。
如果要求平行四边形的面积,必需要知道哪些条件呢?
8、尝试运用
师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?
(出示喜羊羊的草地图)(说明格式要求)学生独立完成。
三、深化运用,加深理解
通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”
1、算出下列平行四边形的面积(考查点)
课件出示图形
(羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)
2、选一选。(题目见课件)(考查点、能力点)
(强调:平行四边形的面积=底times;底边对应的高)
你有什么结论?(等底等高的两个平行四边形面积相等。)
3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)
(考查点、能力点)
有一块地近似平行四边形,底是15米,高是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?
四、解决问题,应用拓展
1、小小设计师
羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?
2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?
五、总结全课,提高认识
这节课我们学习了什么知识?是怎么来学会这些知识的?
小学五年级数学《平行四边形的面积》优秀教案范本二
教学目标:
1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2.通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3.运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
教学重点:
探索并掌握平行四边形的面积计算方法。
教学难点:
理解平行四边形面积计算公式的推导过程。
教学工具:
电子白板课件、平行四边形模型、剪刀、初步探究学习卡
教学过程:
一、课前引入、渗透转化。
1.课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2.播放制作七巧板的视频。
3.出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1.电子白板导出两个花坛,比一比,哪个大?
2.揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1.利用数方格,初步探究
2.出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
1.探索把一个平行四边形转化成已学习过的图形。
2.观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
3.平行四边形的面积=底times;高
4.引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1.课件出示例1
2.课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件
六、课堂小结,反思回顾。
回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?
小学五年级数学《平行四边形的面积》优秀教案范本三
教学目标:
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积
2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3、对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:
理解公式并正确计算平行四边形的面积.
教学难点:
理解平行四边形面积公式的推导过程.
学具准备:
每个学生准备一个平行四边形。
教学过程:
一、导入新课。
1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?
2、好,下面谁来说一说你找到了哪些学过的图形?
3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长times;宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就平行四边形面积计算。
二、民主导学
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长times;宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底times;高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=atimes;h
说明在含有字母的式子里,字母和字母中间的乘号可以记作“middot;”,写成amiddot;h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=amiddot;h,或者S=ah。
(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
三、检测导结
1、学生自学例1后,教师根据学生提出的问题讲解。
2、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
3、做书上82页2题。
4、小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
5、作业
练习十五第1题。
附:板书设计
平行四边形面积的计算
长方形的面积=长times;宽
平行四边形的面积=底times;高
S=atimes;h
S=amiddot;h或S=ah
幼儿教师教育网的幼儿园教案频道为您编辑的《[最新]关于平行四边形的面积教案精选》内容,希望能帮到您!同时我们的平行四边形教案专题还有需要您想要的内容,欢迎您访问!
相关文章
最新文章