做好教案课件是老师上好课的前提,所以在写的时候老师们就要花点时间咯。 教学质量的提高需要关注学生的反应情况。以下内容是小编精心准备的“实数教案”,我相信这篇文章会对您有所帮助!
师:本章的主要内容是开方运算。下面,我们以组为单位小结一下本章的知识点。
生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系。
开方包括开平方与开立方。通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根。依据这一思路,我们画出的知识结构图是:
师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗?
生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要。因此我们是这样总结的`:
师:同样是开方运算,算术平方根,平方根,立方根有哪些区别和联系呢?
生:比较算术平方根,平方根,立方根的概念和性质,我们总结出了如下表的区别与联系。
师:同学们总结的非常好!不仅全面而且重点突出。下面我们针对刚才总结的内容做几道练习。
二、强化基础,巩固拓展。(也可以由学生提出典型薄弱题型进行讲解)
1.求下列各数的平方根:
(1) ;(2) ;(3) .
师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根。
(2)是求16的平方根;
(3)是求 的平方根。
由学生独立完成。
2.x取何值时,下列各式有意义。
生:对于 ,必须满足a≥0,它才有意义,所以被开方数必须是非负数。
(1)4+x≥0;
(2)4+x ≥0;
(3)2x-1取任意实数。
(1)x≥4;
(2)不论x取什么实数,x ≥0,4+x ≥0,即x的取值范围是:x为全体实数。
(3)2x-1取任意实数,即x的取值范围是全体实数。
师:认真审题,考虑一下所给的这些数有什么特点。
生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0.
生:实数a的绝对值,表示为|a|,|a|是非负数;实数a的平方,表示为a2,a2是非负数;非负实数a的算术平方根表示为 , 是非负数。
(2)若几个非负数的和为0,则每一个非负数都必须为0.
那么:0.17201的平方根是多少呢?师:同学们仔细观察这道题,你发现了什么规律?如果是立方根呢?
由学生自己观察归纳。
三、查缺补漏,归纳提升。
1.通过今天的探究学习,你们有哪些收获?
2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零。此性质在解题时经常会被用到。
3.对于本章的内容你还有那些疑问?
【知识与技能】
1、通过拼图活动,让学生感受无理数产生的必要性。
2、借助计算器探索无理数是无限不循环小数。
3、会判断一个数是有理数还是无理数。
【过程与方法】
让学生亲自动手做拼图活动,培养学生的动手能力和合作精神,通过辨别一个数是有理数还是无理数,训练大家的思维判断能力。
【情感态度】
1、了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神。
2、让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力。
【教学重点】
1、无理数的探索过程。
2、了解无理数与有理数的区别,并能正确判断。
【教学难点】
把两个边长为1的正方形拼成一个大正方形的动手操作过程。
一、创设情境,导入新课
同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?
在小学我们学过自然数、小数、分数。在初一我们还学过负数。对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?下面我们就来共同研究这个问题。
【教学说明】随着学习的深入,知识层次的提高,有理数的范围不能适应现代生活的需要,这就要对数进行扩充,为学生学习新知识作准备。
二、思考探究,获取新知
无理数的概念 拼一拼:
请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?
【教学说明】通过小组合作交流,动手操作得到一个大的正方形,学生非常高兴地投入到活动中,调动了学生的积极性。同学们展示,拼图的结果。
下面大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?
【教学说明】探索拼图的过程,对于学生理解大正方形的边长是a是不是有理数很有帮助。
【归纳结论】因为12=1,22=4,32=9,……整数的平方越来越大,所以a应在1和2之间,故a不可能是整数,又(1/2)2=1/4,
(1/3)2=1/9,(2/3)2=4/9,…两个相同因数的乘积都为分数,所以a不可能是分数。做一做:
大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由。
【教学说明】结合图形,让学生进一步理解面积为2的正方形边长不是有理数,而是一种新数。同学们能不能确定一下面积为2的正方形的边长为a的大致范围呢? 请大家用计算器探索,用表格的形式整理如下。
还可以进行下去吗?a是有限小数吗?
【教学说明】教师引导学生探索,让学生对这种不是有理数的新数有了初步的认识,为下面引出无理数的概念打下了基础。
【归纳结论】像这种无限不循环小数就叫做无理数。如:圆周率π=3…也是一个无限不循环小数,0。…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数。? ,它们都能化成有限小数或循环小数,这些数都是有理数。而3,45,,
三、运用新知,深化理解
1、判断题
(1)有理数与无理数的差都是有理数。
(2)无限小数都是无理数。
(3)无理数都是无限小数。
(4)两个无理数的和不一定是无理数
2、下列各数中,哪些是有理数?哪些是无理数?
四、师生互动,课堂小结
通过本节课的学习,你是如何判断一个数是有理数还是无理数?还有哪些困难?
【教学说明】引导学生寻找知识点间的区别和联系,加深对易错点的理解,有助于学生正确解题。
1、习题第1、2、3题。
2、完成本课时练习部分。
这节课的内容是无理数的概念以及判断一个数是有理数还是无理数。是数的范围的又一次扩充,是很重要的一节。培养了学生分类归纳的思想。但对概念的理解掌握一些同学还不是很好,只能在以后的教学过程中不断的完善。
学习目标:
1、使学生了解无理数和实数的意义能用夹值法求一个数的算术平方根的近似值;.
2、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数
夹值法及估计一个(无理)数的大小的思想。
学习重点:无理数及实数的概念
学习难点;实数概念、分类.
学习过程:
一、学习准备
1、写出有理数两种分类图示
2、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
二、合作探究
1、阅读课本第11页的思考,想一想怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?动手试一试,并绘出示意图
方法1:方法2:
2、我们已经知道:正数x满足=a,则称x是a的算术平方根.当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如,=4;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?例如课本第11页的大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?阅读课本第11、12页夹值法探究,尝试探究,完成填空:
因为()2=3
所以
因为()2=3
所以
因为()2=3
所以
因为()2=3
所以
像上面这样逐步逼近,我们可以得到:≈
3、用计算器得出,的结果,再把结果平方,你有什么发现?多试试几个。
4、什么是无理数?例举我们学过的一些无理数
5、无理数有几种分类方法,写出图示。
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试
1、判断:
①实数不是有理数就是无理数。()②无理数都是无限不循环小数。()
③无理数都是无限小数。()④带根号的数都是无理数。()
⑤无理数一定都带根号。()
2、实数,,,3.1416,,,0.2020020002……(每两个2之间多一个零)中,无理数的个数有()
A.2个B.3个C.4个D.5个
3、下列说法中正确的是()
A、A.无理数是开方开不尽的数B.无限小数不能化成分数
C.无限不循环小数是无理数D.一个负数的立方根是无理数
4、将0,3.14,,,π,,,,,,0.7070070007…分别填入相应的集合内.
有理数集合{ …};正分数集合{ …}
无理数集合{ …};负整数集合{ …}
实数集合{ …}.
拓展训练:
1、在实数范围内,下列各式一定不成立的有()
(1)=0;(2)+a=0;(3)+=0;(4)=0.
A.1个B.2个C.3个D.4个
2、阅读课本第18页“不是有理数”的证明。
3、根据右图拼图的启示:
(1)计算+=________;
(2)计算+=________;
(3)计算+=________.
数学小知识——祖冲之和π值的计算
祖冲之(429~500),中国南北朝时期著名的数学家和天文学家.他在数学上的主要贡献是:
1.推算出圆周率π在不足近似值3.1415926和过剩近似值3.1415927之间、精确到小数点后7位.
2.和祖暅一起解决了球体积的计算问题,得到球体积公式,并提出了“幂势既同、则积不容异”的原理.
祖冲之还找到了两个近似于的分数值,一个是,称为约率,另一个是,称为幂率,后者是祖冲之独创的,因此,后人称之为“祖率”,以纪念这位数学家.
一、教材分析
1、教材的地位和作用
本节课是在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数范围。在中学阶段,大多数问题是在实数的范围内研究的,它也是进一步二次根式、一元二次方程以及函数等知识的基础。因此,让学生正确而深刻地理解实数是非常重要的。
无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数美的有效载体,也是发展学生逻辑思维能力的重要内容。
2、教学重难点
根据教学大纲对这部分内容的要求及本课的特点,结合学生实际情况,我把本节课的教学重难点确定为:
重点:了解无理数和实数的概念;
知道实数与数轴上的点具有一一对应的关系。
难点:对无理数的认识。
3、教学目标
知识与技能:了解无理数和实数的概念;
知道实数与数轴上的点具有一一对应的关系。
过程与方法:通过无理数的引入,经历数系从有理数扩展到实数的过程,
培养从特殊到一般、具体到抽象的逻辑思维能力;
渗透数形结合及分类的思想。
情感与态度:了解无理数的产生过程,使学生感受丰富的数学文化,
体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。
二、学情分析
新的《课程标准》对学生掌握实数要求不高,但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。
在学习本节课前,学生已掌握平方根、立方根同时也初步接触过等具体的无理数。无理数的概念比较抽象,特别是无理数在数轴上的表示、实数与数轴上的一一对应关系都需要一个渐进的理解过程。要让学生充分讨论与思考,归纳与总结,历经知识发展与运用。
三、教法学法分析
1.教法分析
为了更好的把握教学内容的整体性、连续性,本节课采用问题导入法引入新课,让学生回顾认识数的过程;通过类比归纳法和探究分析法经历实数的认识过程,从而较好地完成实数概念的构建和实数与数轴上的点的一一对应关系的认识,达到教学目标。
2.学法分析
为了有效地突出重点、突破难点,本节课我采用以学生自主探究、小组合作交流相结合,把无理数和实数的概念及知道实数与数轴的点的一一对应关系确定为教学重点;无理数的认识确定为教学难点。课堂上充份调动学生的积极性,启发学生进行观察、类比、分析,让参与到概念的建立,真正的让学生进行探究,突出学生教学主体的地位。
四、教学媒体
教学形式上充分利用电脑多媒体优化数学课堂教学,从生活实际出发,让学生亲身感受数学的奇妙,激发学生学习的兴趣。增强用数学的意识,养成及时归纳总结的良好习惯,提高课堂效率。
五、课堂结构
曾经有人说过这么一句话“人的心灵深处都有一个根深蒂固的需要,这就是希望感到自己是一个发现者,研究者,探究者。”为此在教学过程中我努力贯彻“教师为主导,学生为主体,探究为主线,思维为核心”的教学思想,我设计了以下课堂教学流程。
第一个环节:探究新知,引入课题
第二个环节:自学新知,自主探索
第三个环节:探究新知,拓展深化
第四个环节:应用新知,及时反馈
第五个环节:课堂小结,反思新知
第六个环节:布置作业,巩固新知
六、教学过程
1、探究新知,引入课题
问题1有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现?
师生活动:学生完成分数到小数的换算,观察小数的形式。教师逐步引导学生对小数点后数字的探究,让学生发现:任意一个分数一定都能写出有限小数或是无限循环小数的形式;进一步引导学生对整数的研究,让学生得出结论:整数可以看成小数点后是0的小数。最后总结:任何一个有理数都可以写成有限小数或是无限循环小数的形式;反过来,任何有限小数和无限循环小数也都是有理数。
设计意图:让学生从探究活动开始,体会有理数都可以写成有限小数和无限循环小数的形式。注重新旧知识的连贯性,使学生体会到学习的内容是融会贯通的,激发学生的求知欲。
2、自学新知,自主探索
问题2你认为小数除了上述类型外,还会有什么类型?
师生活动:通过对数的归纳辨析,与有理数对照,师生共同归纳出前两节学过的一些平方根和立方根都是无限不循环小数,他们不同于有限小数和无限不循环小数,是一类不同于有理数的数,由此教师给出无理数的概念:无限不循环小数叫无理数,并指出π=3.14159265…也是无理数。像有理数一样,无理数也有正负之分,例如、、π是正无理数,—,—,—π是负无理数,进而给出实数的概念及实数的分类。分类如下:
设计意图:让学生回忆曾经学过的无限不循环小数是不同于有理数的数,为教师引出无理数概念作准备。
问题3因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小关系对实数分类吗?
师生活动:教师在逐步引导时,启发学生类比有理数的分类,明确分类的基本原则:按照某个标准,不重不漏。学生独立思考后,小组讨论得到如下分类:
设计意图:通过学生互相的讨论和交流,可以加深对无理数和实数的理解,同时让学生明确实数的分类可以有不同的方法,初步形成对实数整体性的认识。
3、探究新知,拓展深化
问题4我们知道每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?
师生活动:学生独立思考后讨论交流,借助第6.1节的得出和手中的学具进行操作(图1)
设计意图:通过具体操作,让学生知道无理数也可以在数轴上表示。
问题5直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?
师生活动:教师参与并指导实际操作,指出无理数π可以用数轴上的点表示出来(图2)。由于学生知识水平的限制,他们不可能也没有必要将所有无理数都用数轴上的点表示出来。解决了问题4,5后,教师直接给出实数与数轴上的点是一一对应的结论。
〖教学目标〗
(-)知识目标
1.了解有理数的运算法则在实数范围内仍然适用.2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式.4.了解二次根式和最简二次根式的概念.
(二)能力目标
1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力.2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.
(三)情感目标
通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。
时代在进步,科学在发展,只靠在学校积累的知识已远远不能适应时代的要求,因此在校学习期间应培养学生的能力,具备某种能力之后就能应付日新月异的新问题.其中类比的学习方法就是一种学习的能力,本节课旨在让学生通过在有理数范围内的法则,类比地学习在实数范围内的有关计算、,重要的是培养
这种类比学习的能力,使得学生在以后的学习和工作中能轻松完成任务.〖教学重点〗
1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:.并能用规律进行计算.〖教学难点〗
类比的学习方法.2.发现规律的过程.〖教学方法〗尝试法〖教学过程〗
一、课前布置
自学:阅读课本P112~P113,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).
二、师生互动
(一)二次根式的理解:形如()的式子叫做二次根式说明:1.被开方数大于0;2.()具有非负数的特性.3.性质:一般地是a的算术平方根,于是有?练习:
1.若有意义,则______2.(06泸州中考)要使二次根式有意义,字母x的取值必须满足的条件是()A.x≥1
B.x≤1
C.x1
D.x13.(06海淀)已知实数x,y满足,求代数式的值。4.计算:(1);(2);?解:1.
2.A3.解:依题意
解得
当时,
4.解:(1);(2)。
(二)一起交流课本P112的“做一做”
[师生共析]在有理数范围内,可以进行加、减、乘、除和乘方运算,运算后所得到的数仍然是有理数。把数从有理数扩充到实数以后,在实数范围内不仅可以进行加、减、乘、除、乘方运算,而且正数和零可以进行开平方和开立方运算,负数可以进行开立方运算。即:正数和零的平方根是实数,任何一个实数的立方根是实数。
关于有理数的运算律和运算性质,在进行实数运算时仍然成立。1.理解积的算术平方根的性质,必须注意:
(1)被开方数的每一个因子或因式必须是非负数,没有这个条件,性质不成立.(2)这个公式的作用是化简二次根式,如果被开方数中有的因式(或因子)能开得尽方,可以利用此公式及公式=a(a≥0),将这些因式(或因子)开出来,因此化简二次根式时,一般先将被开方数进行因式分解或因子分解.(3)积的算术平方根的性质对于当因子是三个或三个以上时仍然成立.如:=···(a≥0,b≥0,c≥0,d≥0).(4)积的算术平方根的性质反过来,就得到二次根式的乘法公式,即·=(a≥0,b≥0),运用这个公式可以进行简单的二次根式的乘法运算.2.二次根式的性质:=·(a≥0,b≥0),=(a≥0,b0).
(三)利用性质化简
[师]利用你自学的知识,说一说什么样的二次根式需要化简
[生]被开方数中能分解因数.且有些因数能开出来.这时就需要对其进行化简.[生]被开方数中含有分母,需要化简,化简后被开方数中没有了分母.如:
[师]如果被开方数中含有分母,要把分子分母同时乘以某一个数,使得分母变成一个能开出来的数,然后把分母开出来,使被开方数中没有了分母.(鼓励学生讲解教师提供的例题)如:
巩固练习:
化简:(1);(2);(3);(4);(5);(6).
(四)最简二次根式
[师生共析]最简二次根式所满足的条件:
条件一,即为被开方数不含分母;条件二,即为被开方数的每一个因子或因式的指数都小于根指数.要判断一个根式是否为最简二次根式,两个条件缺一不可.
(五)引导学生小结:
1.化二次根式为最简二次根式的方法:(1)如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简.(2)如果被开方数是整数或整式,先将它分解因子或因式,然后把能开得尽方的因子或因式开出来,从而将式子化简.2.二次根式的化简应注意以下问题:
(1)被开方数含有带分数,通常化成假分数.(2)被开方数是和、差的形式,应把它分解因式,化成积的形式.(3)根号内的分子或分母移到根号外时,应保留其对应的位置(即原来是分母的移到根号外后还是分母).
(4)在整个化简过程中应注意符号问题,特别是注意被开方数是非负数这个隐含条件.练习:1下列各式中哪些是最简二次根式?哪些不是?并说明理由.(1);(2);(3);(4);
(5);(6)(x≤0);(7)
本题考查最简二次根式的定义,解题思路是根据二次根式的定义逐个判断.1.解
只有(3)、(5)、(6)是最简二次根式.理由:
(1)中的0.3不是整数,所以不是最简二次根式;
(2)中的27x=32·3x,因数含有能开得尽方的因数,所以不是最简二次根式.(3)的8a2b=(2a)2·2b,因式含有能开得尽方的因数,所以不是最简二次根式;(4)中的a2+a4=a2(1+a2),因式含有能开得尽方的因数,所以不是最简二次根式;总结
本题的易错点是误认为,不是最简二次根式,误认为是最简二次根式.
三、补充练习作业:P114习题〖巩固练习〗
1.下列各式:,,,,,,(a),中是二次根式的有
.2.x为何值时,下列各式在实数范围内有意义.(1);
(2);
(3).
3.计算下列各式:(1)()2;
(2);
(3)(2)2.
〖答案提示〗
1.分析:本题考查二次根式的定义,解题思路是根据二次根式的定义去判断.解
∵
,,的根指数不是2,∴
它们不是二次根式.∵
在中,被开方数-40,∴
不是二次根式.∵
在中的被开方数2a-1有可能小于0,∴
不是二次根式.∵
在中,被开方数40,∴
是二次根式.∵
在=中被开方数(a+1)2≥0,∴
是二次根式.∵
在中被开方数a2+20,∴
是二次根式.总结
本题的易错点是忽视二次根式中被开方数是非负数的隐含条件,注意这个隐含条件是本题的解题关键.2.解
(1)2x+3≥0,即x≥-.∴
当x≥-时,有意义.(2)1-3x≥0,即x≤.∴
当x≤时,有意义.(3)∵
x不论取何实数,总有(x-5)2≥0,∴
x为任意实数,有意义.3.分析:(1)由()2=a(a≥0)直接可得,(2)要注意应先计算,然后再求算术平方根,(3)根据积的乘方法则,这里2也要平方.解
(1)()2=15;(2)==;
(3)(2)2=22×()2=4x.总结
本题的易错点是第(3)小题的2不平方,错成(2)2=2x.
八、板书设计
课题实数的运算二次根式
利用性质化简
例2二次根式性质
例1
最简二次根式
课堂练习
学习目标:
1.了解算术平方根的概念,会用根号表示数的算术平方根;
2. 会用平方运算求某些非负数的算术平方根;
3.能运用算术平方根解决一些简单的实际问题.
学习重点:
会用平方运算求某些非负数的算术平方根,能运用算术平方根解决一些简单的实际问题.
学习难点:
区别平方根与算术平方根
掌握本章基本概念与运算,能用本章知识解决实际问题.
【知识与技能】
【过程与方法】
通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中.
【情感态度】
领悟分类讨论思想,学会类比学习的方法.
【教学重点】
本章知识梳理及掌握基本知识点.
【教学难点】
应用本章知识解决实际与综合问题.
一、知识框图,整体把握
【教学说明】
1.通过构建框图,帮助学生回忆本节所有基本概念和基本方法.
2.帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等.
二、释疑解惑,加深理解
1.利用平方根的概念解题
在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数.
例1已知某数的平方根是a+3及2a-12,求这个数.
分析:由题意可知,a+3与2a-12互为相反数,则它们的和为0.解:根据题意可得,a+3+2a-12=0.
解得a=3.
∴a+3=6,2a-12=-6.
∴这个数是36.
【教学说明】
负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例.
2.比较实数的大小
除常用的法则比较实数大小外,有时要根据题目特点选择特别方法.
教学目标:
知识与能力
1、了解无理数和实数的意义,能对实数按要求进行分类。
2、了解实数和数轴上的点一一对应,会用数轴上的点表示实数。
3、了解有理数范围内的运算法则、运算律、运算公式和运算顺序在实数范围内同样适用。
4、会进行实数的大小比较,会进行实数的简单运算。过程与方法
1、通过计算器与计算机的应用,形成自觉应用的意识,从而能应用与实数有关的运算。
2、经历作图和观察的过程,掌握实数与数轴一一对应的关系。情感与态度
1、感受数系的扩充,通过自主探究,感受实数与数轴上点的一一对应的关系,体验数形结合的优越性,发展学生的类比与归纳能力。
2、学生经历数系扩展的过程,体会到数系的扩展源于社会实际,又为社会实际服务的辩证关系。教学重难点及突破重点
1、了解实数的意义,能对实数进行分类;
2、了解数轴上的点与实数一一对应,并能用数轴上的点来表示无理数。难点
1、用数轴上的点来表示无理数;
2、能准确无误地进行实数运算。教学突破
通过让学生对比有理数和无理数的特点,总结无理数的概念,以加深对无理数的概念的记忆。同时,让学生动手作图,直观展现实数和数轴的一一对应关系。教学中通过回忆有理数的运算规则过渡到实数的运算,学生容易接受和掌握。教学准备:直尺,圆规。教学过程
一、创设情境,导入新课
1、小学学习阶段,我们学习了整数、分数和小数,均为整数,进入初一阶段,引入负数,从而把数的范围扩充到了有理数。下面使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3、1/42/51/3学生计算后举手回答,教师将答案书写出来。3=3.00.250.4
2、问题:你发现了什么?
学生回答:有理数都可以写成有限小数或者无限循环小数的形式(或任何有限小数或无限循环小数也都是无理数)。
问题:那我们前面所学的许多平方根和立方根都是无限不循环小数,那这些小数是不是有理数?
学生很自然的回答不是,从而引入新的数——无理数,把数扩充到实数范围也就顺利成章。
二、自主探索,领悟内涵
由前面我们知道,任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数。无限不循环小数又叫无理数;有理数和无理数统称为实数。分类如下:整数实数
有限小数或无限循环小数
有理数分为正有理数和负有理数,那么无理数呢?是无理数吗?
学生回答:可化为无限不循环小数,所以也只能化为无限不循环小数,可见与均是无理数。可知,无理数也有正、负之分,因此把正有理数、正无理数和在一起形成正实数,同样,负有理数、负无理数合在一起称为负实数,而0既不是正数也不是负数。从而得到实数的另一种分类方法:正有理数负有理数0
三、拓展延伸,操作感知
探究1如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?O1学生之间互相交流、讨论,一段时间后请学生回答:点01的坐标是π。肯定学生的回答,说明:无理数π可以用数轴上的点表示出来。探索2你能在数轴上找到表示的点,这说明一个什么问题?学生讨论交流,并举手回答。教师肯定学生的表现,并总结:
每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点,有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
四、练习巩固,应用提高
例1整数有:{}无理数有:{}有理数有:{}学生认真完成,并举手回答。根据学生的回答,适当讲解。
五、课堂总结,作业布置
1、什么叫做无理数?什么叫做有理数?
2、有理数和数轴上的点一一对应吗?无理数和数轴上的点一一对应吗?实数和数轴上的点一一对应吗?
P86-87习题14.3第
1、
2、3题;板书设计:实数
1、有理数和无理数统称为实数。
2、实数分类结构图(略)
3、实数与数轴上的点一一对应。课后反思
本节课,结合前面的有理数,能使学生在给出的一些数中判断出哪些是有理数,哪些是无理数是本节难点,再通过多的举例练习,让他们找到判断的关键,达到了设计的目标。
1教学目标
1、了解无理数和实数的概念,掌握实数的分类,能够判断一个数是有理数还是无理数;
2、知道实数与数轴上的点具有一一对应的关系,初步体会“数形结合”的数学思想。
2学情分析
1、大部分学生智力正常,具备进一步学习实数的条件。
2、在上学期已完成有理数学的认识,为学习实数奠定了基础。
3、通过平方根和立方根的训练,为学生全面理解和掌握实数提供了可能。
3重点难点
教学重点:学生了解无理数和实数的意义。
教学难点:对无理数的认识。
4教学过程
4.1第一课时
教学活动
活动1【导入】
(一)复习提问:什么叫有理数?有理数如何分类?由学生回答,教师帮助纠正。
1.整数和分数统称为有理数.
2.有理数的分类有两种方法:
第一种:按定义分类: 第二种:按大小分类:
活动2【讲授】
(二)引入新课
同学们,有理数由整数和分数组成,下面我们用小数的观点来看。请将下面的分数化成小数的形式,你有什么发现?(有限小数或无限循环小数)
整数可以看做是小数点后面是0的小数,如3可写做3.0、3.00;而分数,我们可以将分数化为有限小数或无限循环小数。由此我们可以看到:有理数总是可以用有限小数或无限循环小数表示,反过来,任何有限小数或无限循环小数也都是有理数。
是不是所有的数都可以写成有限小数或无限循环小数形式呢?
答案是否定的,我们来看这样一组数:
我们会发现这些数的小数位数是无限的,而且是不循环的,这样的小数叫做无限不循环小数,显然它不属于有理数的范围.这就是我们今天要学习的一个新的概念:无理数.
1、定义:无限不循环小数叫做无理数。如:π,2.1010010001……,带根号但开不尽方的数无理数也有正负之分。
请同学们判断以下说法是否正确?
(1)无限小数都是无理数.(2)无理数都是无限小数.(3)带根号的数都是无理数.
答:(1)错,无限不循环小数都是无理数.(2)错,无理数是无限不循环小数.
现在我们不仅学过了有理数,而且又定义了无理数,显然我们所学的数的范围又扩大了,我们把有理数和无理数统称为实数,这是我们今天学习的又一新的概念.
2、实数的定义:有理数和无理数统称为实数。
3、实数的分类:按定义分类如下:
由上述分类,我们发现有理数和无理数都有正负之分,所以对实数我们还可以按正负之分如下:
对于这两种分类的方法,同学们应牢固地掌握。
例1、下列实数中,哪些是有理数,哪些是无理数?
5,3.14,0,0.57,0.1010010001……。
2、请每个同学至少填入三个适当的实数:
有理数集合( )无理数集合( )
我们知道每个有理数都可以用数轴上的点来表示,那么无理数是否可以用数轴上的点来表示呢?
活动1:在数轴上表示π和-π。
活动2:在数轴上表示 和- 。
事实上,每一个无理数都可以用数轴上的一个点来表示。这就是说,数轴上的点有些表示有理数,有些表示无理数。有理数和无理数统称为实数,因此,每一个实数都可以用数轴上的一个点表示,数轴上的每一个点都表示一个实数。所以说,数轴上的点和实数是一一对应的。
活动3【练习】
4、课堂训练:(1)、教材P57页1、2 (2)同步练习册P27 基础训练1至4题。
活动4【作业】小结
5、课堂小结:
(1)、无理数、实数的概念及分类。
(2)、实数和数轴上的点一一对应的。
学习目标:
1、能借助数轴理解相反数和绝对值得意义,会求一个数的相反数与绝对值。
2、 理解实数的意义,能用数轴上的点表示数。
3、 了解平方根算数平方根、立方根的概念。
重点:实数的分类。
难点:绝对值的意义和运用。
过程:
一、复习回顾实数的分类,方式:师生共同回顾后,师展示
二、自学:
(一)知识类:
1、相反数。a的相反数是,相反数等子本身的数量,若a、b互为相反数,则。
2、倒数。a(a≠0)的倒数是。用负指数表示为没有倒数。倒数等子本身的数是a、b互为倒数,则
3、绝对值。绝对值等于本身的数是,即
lal=
4、数轴。数轴的三要素为一一对应。
5、实数大小的比较。
(1)在数轴上表示两个数的点,左边的点表示的数表示的数。
(2)正数大于零;两个正数绝对值大的较。两个负数绝对值小的较
(3)设a.b是任意两实数。
若a-b>0,则b;若a-b=0,则b;若a-b<0,则b。
6、非负数的表现形式有
7、常见的几个实数:最小的自然数是,最大
的负整数是,绝对值最小的整数是
(二)运用类:
1、某水井水位最低时低于水平面5米,记做-5米,最高时低于水平面1米,则水井位h米中h的取值范围是
2、若x的相反数是3,lyl=5,则-l-2l的倒数是
教学目标
1.知道有效数字的概念;
2.会按要求进行近似数的运算
教学过程
一、创设情境,导入新课
1.什么叫实数?实数怎么分类?
2.在有理数范围内学过的概念、运算法则、运算定律、性质,在实数范围内还适应吗?
3.做一做
如果正方形ABCD的面积为3平方厘米,正方形EFGH的面积为5平方厘米,这两个正方形的边长的和大约是多少厘米(精确到小数点后面第一位)?
二、合作交流,探究新知
1 交流上面问题的做法
(1)估计同学们会有两种做法:
用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)
(2)用计算器直接求出的近似值,用四舍五入取到小数点后面第一位,得:
如果没有两种做法,也要想办法引出这两种做法
两种做法的答案不同,哪一种答案正确呢?
请同学们把第一种做法修改一下:将的近似值分别取到小数点后第二位,然后相加。你发现了什么?
这时两种做法的答案就一样了。
从这个例子看出,在进行实数的加减运算时,如果要求答案取到小数点后面第一位,那么参与运算的每一个实数的近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。
2、引入有效数字的概念
在上面运算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似数1.73的三个有效数字。什么叫近似数的有效数字呢?
先思考:0.010256精确到小数点后面第三位,等于多少呢?
0.0102560.0103
近似数0.0103有三个有效数字1、0、3
现在你能说说,什么叫近似数的有效数字吗?
从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。
考考你:1 近似数0.03350有几个有效数字,分别是______________________.
2 125万保留两个有效数字等于__________
3 有_______个有效数字。
3、怎样进行近似值的运算?
在近似数的加减法运算中,如果被减数与减数相差较大,那么参与运算的最大数多取一位有效数字,其余的数取到与最大数最低位相对应的那一位止。
例1 计算: 27.65+0.02856+-3.414(保留三个有效数字)提醒:最后一位数字为0,不能省略。
(2)在进行近似数的乘法和除法运算中,参与运算的每一个数应多取一位有效数字。
例2 在上面做一做问题中 ,如果分别以正方形ABCD、EFGH的边长作为宽与长,做一个长方形,那么这个长方形的面积大约是多少平方厘米(保留三个有效数字)
考考你:1.计算(精确到小数点后面第二位)(1),(2)
2.计算(保留三个有效数字)(1) (2)
三、应用迁移,巩固提高
例3(1)一个正方形的体积变为原来的27倍,它的棱长变为多少倍?表面积变为原来的多少倍?
变式:上面问题中27倍改为:8倍,其他不变
例4 已知求a+b的值。
例5 设a、b为实数,且求的值。
四、反思小结,拓展提高
这节课,你认为最重要的是什么?
1.有效数字的概念;2.实数的近似数的计算
喜欢《实数教案》一文吗?“幼儿教师教育网”希望带您更加了解幼儿园教案,同时,yjs21.com编辑还为您精选准备了实数教案专题,希望您能喜欢!
相关文章
最新文章