学生们享受丰富有趣的课堂体验,关键在于老师提前准备好的教案和课件。现在,大家可以开始编写自己的课堂教案和课件了。教学内容是教案设计的核心要点,我们应该从哪些方面考虑写教案和制作课件呢?本文的主要研究方向与“有理数课件”相关,以下建议仅供参考!
有理数大班教案
一、教学目标:
1. 理解有理数的概念;
2. 掌握有理数的比较和运算;
3. 运用有理数解决实际问题;
4. 培养学生的逻辑思维和数学推理能力。
二、教学重点:
1. 有理数的概念和性质;
2. 有理数的比较和运算;
3. 运用有理数解决实际问题。
三、教学内容:
1. 有理数的概念和性质
(1)有理数的定义;
(2)有理数的分类;
(3)有理数的性质。
2. 有理数的比较和运算
(1)有理数的大小比较;
(2)有理数的加减法;
(3)有理数的乘法;
(4)有理数的除法。
3. 运用有理数解决实际问题
(1)有理数在实际生活中的应用;
(2)通过实际问题运用有理数解决问题。
四、教学准备:
1. 多媒体教学设备;
2. 课件和教学素材;
3. 学生练习册。
五、教学过程:
第一节 有理数的概念和性质
1. 引入新课:通过多媒体展示不同的物体和数的图形,引导学生认识不同的数,并探讨它们的规律和特点。
2. 引导学生定义:“什么是有理数?”
3. 观察和讨论:由探讨引导学生在实际生活中找出有理数的例子,并进行分类。
4. 总结和归纳:根据学生的回答,总结出有理数的概念和性质。
第二节 有理数的比较和运算
1. 引导学生思考:“如何比较有理数的大小?”
2. 引导学生分析:有理数的比较和运算的规律并进行归纳总结。
3. 多媒体展示:通过多媒体教学辅助,演示有理数的比较和运算过程,引导学生掌握方法和技巧。
4. 练习和探究:通过练习和探究,巩固和拓展学生的知识,培养学生的灵活运用能力。
第三节 运用有理数解决实际问题
1. 多媒体展示和讨论:通过多媒体展示不同的实际问题,引导学生在实际生活中运用有理数解决问题。
2. 小组合作学习:将学生分成小组,通过合作学习,在小组讨论解决实际问题的方法和步骤。
3. 展示和分享:将学生的解决方法和步骤展示给全班,进行分享和讨论。
六、板书设计:
1. 有理数的定义和性质;
2. 有理数的比较和运算规律;
3. 运用有理数解决实际问题的方法和步骤。
七、学生练习册参考答案:
1. 有理数的比较:根据数的大小关系,将下列有理数从小到大排列。
答案:-2,-1,0,2,3.
2. 有理数的加减法:计算下列有理数的和或差。
答案:(1) 3+(-2)=1;(2) -4-(-5)=1;(3) -6+4=-2;(4) 3-(-8)=11.
3. 有理数的乘法:计算下列有理数的积。
答案:(1) 5*(-2)=-10;(2) (-4)*(-3)=12;(3) -2*3=-6;(4) (-5)*(-5)=25.
4. 有理数的除法:计算下列有理数的商。
答案:(1) (-12)/4=-3;(2) 15/(-3)=-5;(3) 8/(-4)=-2;(4) (-36)/(-6)=6.
八、教学反思:
本节课通过多媒体和实际问题的引导,让学生理解了有理数的概念、性质和运算法则,并能够运用有理数解决实际问题。同时,通过小组合作学习和展示分享,培养了学生的团队合作意识和解决问题的能力。但是,由于课堂时间的限制,有理数的深入研究和拓展还有待进一步加强。
对于有理数的混合运算,关键要把握两点:第一,运算问题;第二,符号问题。如果这两点弄清楚了,对于有理数的混合运算也就基本掌握了。上完这节课后,我感到有优点,也有不足。为了进一步搞好教学,特对这节课做了以下反思总结:举范例,让学生自主学习。加强了对混合运算的认识和了解。首先让学生自主学习弄清有理数的混合运算顺序:加减是第一级运算;乘除是第二级运算;乘方和开方是第三级运算;以及有括号时先算括号里面的。然后给同学们几个混合运算,并提出:你能读出这个式子吗?你能快速找出出它的运算符号吗?你能快速说出它的运算程序吗?然后让学生在组内采取你答我评的方式,使学生既掌握了运算顺序,又培养了学生的语言表达能力,最后再进行运算,比一比谁的计算更快更准确。同时培养了学生的参与意识和竞争意识,并且板演。这样,不仅能更好地激发学习兴趣和热情,更能培养学生发现问题、解决问题的能力。
不足:
1、对于学生出现的问题,老师应再次强调,讲明道理,并进行总结,最后再加强几个同种类型的训练题,效果可能会更好些。
2、对于学生的激励不足。比如在进行24点游戏中,后来陆续得出正确答案的同学也应给予赞扬和鼓励,他们锲而不舍的精神,体现了坚持就是胜利!
3、教学的安排未能更好的结合本班的实际情况,有部分学生对于有理数的混合运算还有疑虑,后期还得加强练习,分批过关。
总之,反思是教师成长的必经之路,只有不断地反思,才能使学生得以成长,教师得以发展,才能再教学上取得更大的进步。
知识与能力:
1.使学生理解有理数的加减法法可以互相转化。2.使学生熟练地进行有理数的加减混合运算。
过程与方法:
1.体会有理数的加减法法可以互相转化的思想。2.培养学生的运算能力。
情感态度与价值观:
培养学生认真、仔细的良好学习态度。
重点准确迅速地进行有理数的加减混合运算。
教材提示:
本节课是学习有理数减法的第二课时,在教学过程中,教师应该首先通过探究的方式组织学生分组讨论,借助于已有知识,体会有理数的加减法法可以互相转化的思想,如何省略加号,并且还要正确掌握省略加号后它们表示的是哪些数的和,强化混合运算的准确性。
教学过程
一、自主学习
(一)、阅读教材23-24页。
(二)、导学练习 [活动1]:学生课前自主完成。 1.减法法则: ,用字母表示为:
2.计算(1)1-5= (2)8-11= (3)6-9=
(4)9-(-9)= (5)(- )-(- )=
[活动2]:学生先课前自主,然后在课堂上一起和大家交流讨论。
1、红星队在4场足球赛中的战绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。红星队在4场比赛中总的净胜球数是多少?
2、一20十3十(十5)十(一7)(读作 , , , 的和 ) 3、 计算:(一20)十(十3)一(一5)一(十7). 注意:在进行有理数混合运算时,应该先将减法按规则统一成加法后再计算;第一个数前面的一常用括号括起来,但熟练后,第一个数带负号时,通常可以不用括号手起来。 4、 计算在做有理数运算时,易出 符号错误。
计算:(1)(一5)一(一4)一(十1)=(一5)十(一4)十(十1)
=(一9)十(十1) =一8
(2)(一7)一(十4) 十(一8)十(一3)一(一8) =一7十4一8一3一8 =一22. 以上两个小题均有错误,指出错在哪里,并改正。 [学法指导:有理数混合运算,只有将减法按规则统一成加法后,才能省略加号,而减号不能省略。在有理数加减混合运算中,当我们把减法转化为加法时,为了书写简便,常常省略加号和括号。] 5、分别指出下列两个式子的读法,表示那些数的和,并计算: (1)8一7十4一6 (2)(一8)一(十4)十(一7)一(十9)。
(三)自学疑难摘要:
自主学习小组长检查等级 等,组长签字
二、合作探究
计算:1、-5+3-2 +6+7-8-9; 2、-0.5-(-3 )+2.75-(+7 )
3、 4、
[学法指导:在完成以上计算题时,一定要注意当把 减号变为加号时,减数必须变为原数的相反数,再利用加法法则进行计算。在进行有理数的加减运算时,当减法转 化为加法后,可以用加法交换律和加法结合律,这样可以使运算简便。]
[小组活动:1.在进行小组交流时,各位组长一定要注意每一位组员,看他们是否掌握了减法法则,特别是交流一下如何把减数变为原来的相反数。2.特别小心在省略加号时是否正确。3.组长注意自己小组到黑板上交流的任务,安排好展示的人员,督促大家掌握本节课的学习任务。]
三、展示提升
1、每个同学自主完成二中的练习后先在小组内交流讨论。 2、每个组根据分配的任务把自己组的结论板 书到黑板上准备展示。 3、每个组在展示的过程中其他组的同学认真听作好补充和提问。
四、反馈与检测
1.计算:(1)(-41)-(-18)-(+39)-(-72) (2) 2.活动与探究:23. 1 ―3 +5―7 +9―11++97―99= 。 [学法指导:这个环节的处理方式是第1题在课堂上完成,第2题在课外由组长主持,进行探究活动,进而对所学知识加以巩固。]
五、课后 反思
1、创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?
学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
2、小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
a.2×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2×3=
b.-2×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2×3=
c.2×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2×(-3)=
d.(-2)×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2)×(-3)=
e.被乘数是零或乘数是零,结果是人仍在原处。
(2)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=同号得
(-)×(+)=异号得
(+)×(-)=异号得
(-)×(-)=同号得
b.积的绝对值等于 。
c.任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本P75例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做P76练习1(1)(3),教师评析。
(4)教师引导学生做P75例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ;当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。
4、讨论对比,使学生知识系统化。
有理数乘法有理数加法
同号得正取相同的符号
把绝对值相乘
(-2)×(-3)=6把绝对值相加
(-2)+(-3)=-5
异号得负取绝对值大的加数的符号
把绝对值相乘
(-2)×3=-6(-2)+3=1
用较大的绝对值减小的绝对值
任何数与零得零得任何数
5、分层作业,巩固提高。
“有理数的减法"教学案例
丹江口市红旗中学 郑华萍
一、教法、学法分析
有理数的减法是在学习了数轴、绝对值、有理数的加法之后,以有理数减法法则和减法运算为主要由容的一课。本节课的学习是小学阶段关于整数、分数的减法运算的拓展,在已学有理数的加法运算的基础上,通过对有理数减法的学习,初涉解决“较小数不能减大数”的问题。利用化归的思想将加与减两种运算统一成加法运算。渗透数形结合的思想,化繁为简、化难为易。使学生初步感受到数学的完整性和统一性。同时也为学习实数、复数的减法运算奠定了坚实的基础。同时,《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我采用了引导一发现法组织教学:
本节课我鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,以便完成本节课教学饪务。
二、教学目标
1.知识与技能:使学生理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。2.过程与方法:通过减法运算到加法运算的转化,使学生初步体会到转化、化归的数学思想,培养学生的抽象思维能力。
3.情感态度与价值观:在归纳有理数的减法法则的过程中,渗透事物间普遍联系,相互转化的数学思想,增强学生运用数学知识解决实际问题的能力,激发学生的学习兴趣。
三、教学重、难点
重点:有理数减法法则的理解和运甩。
难点:在实际问题中体会有理数减法的意义,并用有理数的减法法则解决实际问题。
四、教学工具:多媒体
五、教学过程
1.创设情景,引入新课
教师:先借助多媒体让学生阅读一则北京过去三天的天气预报。教师提问:你能发现每一天的温差是多少吗?怎么计算呢?
学生:第一天是31-19=12,第二天是31-18=13,第三天是26--2O=6 【设计意图是让学生知道温差等于最高温度减去最底温度,为下一个问题作铺垫。】
教师:同学们回答的非常好。青藏高原某一天的最高气温是4℃,最低气温是一3℃,问青藏高原这一天的温差是多少?怎么计算呢? 学生:4-(-3)教师:在这个减法算式里出现了减负数的情况,这就是我们本节课所要学习的有理数的减法。【学生的思维受到了挑战,调动了学生的学习兴趣,激发了学生的学习欲望。】 评析:教师能够准确找出知识的生长点,善于从学生身边的现实问题出发,创设问题情境,学生在形象、具体、生动的情境中积极性被充分调动。2.探究尝试,突破难点
教师:那么4-(-3)等于多少呢?借助于多媒体演示温度计中水银柱从零下3℃上升到零上4℃,温度上升了多少度?温差是多少? 学生:上升了.7℃,所以温差是7℃。教师:即4-(-3)=7,并板书到黑板上
【学生可以直观地发现温度上升了7℃,由温差等于最高温度减去最低温度,不难得出4-(-3)=7】
教师:将水银柱平放,可以抽象地看成一条数轴。在数轴上表示4的点与表示一3的点相距多少个单位长度? 学生:7 教师:非常正确。表示4的点与原点相距4个单位长度,原点与表示-3的点相距3个单位长度,所以4+(+3)=7℃,并板书到黑板上。
教师:由于减法是加法的逆运算,4-(-3)=?可以转化成加法式子是什么? 学生:?+(-3)=7 【如果学生答不出来,教师可启发:被减数等于差加减数】 教师:根据有理数的加法法则,“?’’等于多少? 学生:?=7 教师:故4-(-3)=7 评析:这部分是学生实践、探究与尝试的过程,教师给予学生充分的时间和空间,让学生进行观察、分析。学生在动手操作过程中不断积累实践经验,教师适当引导,让学生自己总结得出结论,充分体现教师是学生的组织者、引导者与合作者的理念。3.数学交流,释疑解惑。.
【有理数的减法对于刚刚接触的学生来说有一定的难度,为了面向全体,给予学生进一步观察、比较的机会,设计了以下活动】
教师:将被减数4换成0,-1,-5这些数,看看他们减-3与加+3的结果相同吗? 【学生可能有多种方法,请每一组的代表说他们的方法】 学生1:相同,0-(-3)=3,0+(+3)=3. 学生2:相同,-1-(-3)=2,-1+(+3)=2 学生3:相同,-5-(-3)=-2,-5+(+3)=-2 【教师板书三组式子】
0-(-3)=3,-1-(-3)=2,-5-(-3)=-2,4-(-3)=7 O+(+3)=3,-1+(+3)=2,-5+(+3)=-2,4+(+3)=7 教师:请学生观察、比较四组式子,看看他们有什么规律? 【在教学中充分提供足够的时间让学生探索、交流,充分体现课改所提倡的“做数学”的过程,教师及时做出纠正和补充。】
学生1:每组式子里的被减数相同。
学生2:运算结果相同。
学生3:每组式子里的被减数相同,加号变成减号,减数变成了它的相反数,结果相同。教师:同学们回答的非常好。
【同时借助于多媒体演示这些式子的规律,帮助学生理解其中的内在联系】 教师:谁能归纳出有理数的减法法则?请举手。【培养了学生语言归纳能力】
学生:减去一个数,等于加上这个数的相反数。教师:非常正确。谁又能用字母表示法则? 学生1:a-(-b)=a+(+b).
学生2::a-b=a+(-b)。
教师:在有理数的减法运算里有两点要注意:1.减法运算转化成加法运算,2.减数变成它的相反数。
【在观察、比较的过程中,让学生体会到从特殊到一般的归纳方法。采用分组讨论的形式,充分发挥学生的擘习主动性,同时也培养了学生分析问题和解决问题的能力。】 点评:给学生提供探索交流和展示自我的空间,通过交流,互相启发,学生进步理解所学知识,在交流中解决问题。经过多角度认识问题,多种形式表达问题,多种策略恩考问题等活动,锻炼学生语言表达能力、概括能力,同时发展学生创新意识和实践能力。4.解决问题,应用新知:
教师:下面进行一组抢答题,看谁答的有好又快? 将下列减法算式转化为加法算式,看谁说的又快又好。(1)2-(+39)=(2)4-(-7)=(3)(-6)-7=(4)(-1)-(-8)=(5)O-6=(6)lO-(-5)= 学生1:2+(-39)学生2:4+(+7)学生3:(-6)十(-7)学生4:(-1)+(+8:)学生5:0+(-6)学生6:O+(+5)【从正数减正数、正数减负数、负数减正数、..负数减、负数、O减正数、O减负数这6个方面进行设计,直接针对本节重难点进行训练,以抢答的方式激发学生的表现欲望,使学生妁学才更积极主动】
教师:大家回答的很好,给他们掌声。学生:很高兴地给同学们鼓掌。教师:出示例1 例1.计算下列各题:
(1)-3-(-5)(2)O-7(3)(-)(4)(-)- 学生:到黑板演板。
【教师给予纠正格式,使学生解题规范化】.
点评:在解决问题过程中,学生对所学新知识的理解不断加深,运用意识有初步的形成,加强理论联系实际,通过问题解决,形成初步的迁移能力。5.巩固提高,突出应用
教师:出示例2:
油井8O6深米.(记为-3985.3米),在它的不远处是油井807,深米(记为-4746.7米),问这两口油井的深度差是多少? 学生:到黑板演板-(-)= 教师:很好!【这与新课引入中的实际问题前后呼应,贯彻了《课程标准》中规定的“要使学生受到把实际问题抽象成数学问题的训练,逐步形成用数学的意识”的要求。】 点评:引导学生用所学知识联系生活实际,在诱导启发下,学生都能够积极参与,应用所学知识分析、解决问题,并优化解决问题的方案 6.课堂小结,反思升华
教师:(1)通过本课的探讨学习,你获得了哪些新的知识,你认为你有哪些方面的进步?(2)给你印象最深的问题是哪一个?你有何看法? 学生:畅谈体验:收获和疑惑。
教师:同学们谈的都很好,我们这节课主要是利用有理数减法法则进行有理数的减法计算。同学们在做题过程中一定要注意刚才我们说的那两点。下面我们做两组练习:,(1)世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8844米,吐鲁番盆地的海拔高度大约是一155米,两处高度相差多少米?(2)课后练习
学生:先独立解决,然后交流答案。
教师参与到学生的话动中去。及时给予纠正和辅导】 教师:思考题已知:︱a︱=2,︱b︱=5,求a-b的值。【独立思考,然后交流】
学生:a=2或-2,b=5或-5;a-b有四个值,3或-3或7或-7。
教师:肯定学生的答案,给予鼓励
点评:这里教师通过提问的方式小结本节知识,使学生回顾得到结论的过程,积累数学活动经验,逐渐养成学习总结的好习惯。
在本节课每一个教学流程,教师都设法让学生在心里留有余味,为后面的学习披上一层神秘的面纱,让学生自始至终主动参与到学习活动中来,并把探究学习延伸到课外,在课堂小结中反思,在反思中将所学知识进行深化应用。
一、创设情景,谈话导入
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律
二、精讲点拨质疑问难
根据预习内容,同学们回答以下问题:
1.有理数的乘法法则:
(1)同号两数相乘___________________________________
(2)异号两数相乘_____________________________________
(3)0与任何自然数相乘,得____
2.有理数的乘法运算律:
(1)乘法交换律:ab=_________
(2)乘法结合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理数的除法法则:
除以一个不等于0的数,等于乘这个数的__________
比较有理数的乘法,除法法则,发现_________可能转化为__________
三、课堂活动强化训练
某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?
注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结
教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力,数学教案-有理数的加减混合运算。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。
有理数大班教案
【导语】:有理数作为数学中的重要概念之一,是涉及到整数、分数、百分数等数形式的统称。在中学数学中,有理数是一个重要的基础知识点,也是培养学生数学思维能力的基础。本教案旨在通过多种教学方法,引导学生全面深入地理解和掌握有理数的相关概念和运算方法。
【教学目标】:
1. 理解有理数的概念,能够正确地区分有理数与无理数。
2. 掌握有理数的基本运算法则,包括加法、减法、乘法、除法。
3. 能够熟练应用有理数解决实际问题。
4. 培养学生善于思考、合作探讨和解决问题的能力。
【教学重点】:
1. 有理数的概念和分类。
2. 有理数的四则运算。
3. 有理数在实际问题中的应用。
【教学难点】:
1. 有理数的乘法和除法运算。
2. 实际问题的转化和解决方法。
【教学手段】:讲解、示范、练习、讨论、实践。
【教学过程】:
一、导入(10分钟)
1. 引导学生回顾和复习整数、分数、百分数等知识点,了解它们之间的联系,以及它们构成有理数的概念。
2. 提出问题:你知道有理数与无理数有什么区别吗?请用自己的话解释一下。
3. 请两名学生上台进行答题和讨论。
二、讲解与演示(20分钟)
1. 通过教师讲解和示范的方式,详细介绍有理数的分类和基本运算法则,包括加法、减法、乘法和除法。
2. 引导学生积极参与讨论,提出问题和解答问题,巩固知识点的理解。
三、练习与巩固(30分钟)
1. 分发练习册,让学生进行有理数的练习和巩固,包括有理数的加减法和乘除法运算。
2. 布置小组竞赛,让学生在小组内完成一些有理数的运算题目,比较用时和正确率,激发学生的学习兴趣。
3. 教师进行现场点评和总结,引导学生发言,分享解题思路和经验。
四、应用与拓展(30分钟)
1. 提供一些实际问题,让学生利用有理数的知识进行分析和解答,比如计算商品的折扣价、求解比例问题等。
2. 鼓励学生将所学知识应用到日常生活中,找出一些自己感兴趣的实际问题,进行解决和分享。
五、总结与反思(10分钟)
1. 让学生进行小结,总结本节课所学的有理数的相关知识点。
2. 和学生一起回顾课堂讨论和解答问题的过程,反思自己学习过程中的困惑和收获。
3. 教师进行总结发言,强调学习的重要性和坚持的力量。
【教学准备】:
1. 教师准备课件、练习册、黑板、彩色粉笔等教学用品。
2. 学生准备笔记本、练习册和思考问题的准备。
【教学评价】:
1. 观察学生在课堂上的表现和学习态度。
2. 检查学生在课后练习中的完成情况和正确率。
3. 给予学生及时的反馈和指导,鼓励学生努力克服困难,提高学习成绩。
【教后反思】:
本节课通过多种教学方法,包括讲解、示范、练习和实践等环节,让学生全面了解和掌握有理数的相关概念和运算方法。课堂上学生积极参与讨论,并能灵活运用所学知识解决实际问题。但也发现有些学生在乘除法运算中存在一些困难,需要进一步练习和巩固。下节课需要加强这方面的讲解和训练。同时,要引导学生思考和解答更具挑战性的问题,提高他们的思维能力和解决问题的能力。
有理数大班教案
一、教案概述
本节课主要围绕有理数的基本概念、比较大小、四则运算以及实际应用展开,通过实际生活中的例子引导学生建立与应用有理数的思维方式和解决问题的能力。
二、教学目标
1. 知识目标:
(1) 掌握有理数的定义及性质;
(2) 理解有理数的大小比较;
(3) 掌握有理数的加减乘除法运算;
(4) 掌握有理数的实际应用。
2. 能力目标:
(1) 能够灵活应用有理数进行问题求解;
(2) 培养学生的逻辑思维和分析问题的能力;
(3) 培养学生的合作意识和创新意识。
3. 情感目标:
(1) 培养学生对数学的兴趣和学习的主动性;
(2) 培养学生解决问题的积极性和自信心;
(3) 培养学生团队合作和分享的精神。
三、教学重点
1. 有理数的基本定义和性质;
2. 有理数的大小比较;
3. 有理数的四则运算;
4. 有理数的实际应用。
四、教学内容与教学过程
1. 导入环节:
引入有理数的概念,通过讲述实际生活中的例子,如温度变化、海拔高度等,让学生了解有理数的存在是为了方便描述和比较各种实际情况。
2. 基础知识讲解:
(1) 有理数的定义和性质:讲解有理数的定义,包括整数和分数,以及有理数的相反数、绝对值等性质。
(2) 有理数的大小比较:引导学生掌握有理数大小比较的方法,如同分母相同、同正负比较、换算法等。
(3) 有理数的加减乘除法运算:讲解有理数的加法、减法、乘法和除法的口诀和规则,并通过例题进行演示和练习。
3. 拓展应用:
(1) 实际应用中的有理数:引导学生通过实际问题,如地图上的比例尺、购物折扣、游戏得分等,将有理数与实际应用结合起来。
(2) 探索问题:设置一些有趣的问题,让学生分组探讨并总结解题思路,鼓励学生动手实践和探索,培养他们的自主学习和解决问题的能力。
4. 巩固练习:
布置一定数量的课后作业,包括选择题、填空题和计算题,以巩固学生对有理数的掌握和运用能力。
五、教学评价与总结
1. 教学评价:
(1) 师生互动的评价:通过课堂上的问题解答和讨论,教师可以及时评价学生的回答是否正确并给予指导;
(2) 作业评价:通过对学生的课后作业进行批改和评价,及时发现学生的错误和不足,并给予及时的指导和反馈。
2. 教学总结:
(1) 总结所学内容:对本节课所学的有理数的基本概念、比较大小、四则运算以及实际应用进行总结;
(2) 学生反馈:鼓励学生分享自己的学习心得和体会,对他们的合作、创新以及问题解决的能力进行表扬和鼓励。
通过本节课的教学,学生可以系统掌握有理数的基本知识和运算方法,并培养学生将有理数与实际问题相结合的思维能力和解决问题的能力,为今后的学习打下坚实的基础。
有理数大班教案
一、教学目标:
1. 理解有理数的概念和特性。
2. 掌握有理数的加减乘除运算法则。
3. 能够运用有理数进行实际问题的解答。
4. 培养学生的逻辑思维能力和问题解决能力。
二、教学重点:
1. 理解有理数的概念和特性。
2. 掌握有理数的加减乘除运算法则。
三、教学难点:
1. 运用有理数进行实际问题的解答。
2. 培养学生的逻辑思维能力和问题解决能力。
四、教学准备:
1. 教学课件、教学实物等。
2. 黑板、白板和彩色粉笔。
五、教学过程:
Step 1 引入新知识(15分钟)
1. 教师根据学生的实际情况,以集体讨论的形式引入有理数的概念和特性。通过提问方式激发学生的学习兴趣,帮助学生理解有理数在数轴上的位置和有理数的相对大小。
Step 2 学习有理数的加减法(30分钟)
1. 教师通过简单的例子,引导学生复习整数的加法和减法。
2. 教师详细讲解有理数的加法和减法运算法则,并通过具体例题进行示范。
3. 学生进行小组活动,完成一些练习题,巩固加减法的运算方法。
Step 3 学习有理数的乘除法(30分钟)
1. 教师通过简单的例子,引导学生复习整数的乘法和除法。
2. 教师详细讲解有理数的乘法和除法运算法则,并通过具体例题进行示范。
3. 学生进行小组活动,完成一些练习题,巩固乘除法的运算方法。
Step 4 运用有理数解决实际问题(30分钟)
1. 教师通过实际问题的引入,帮助学生理解有理数可以运用于日常生活中。
2. 教师通过具体例题的演示,引导学生掌握运用有理数解决实际问题的方法和步骤。
3. 学生进行个人或小组活动,完成一些实际问题的解答,培养学生的逻辑思维能力和问题解决能力。
Step 5 总结与拓展(15分钟)
1. 教师与学生一起总结本节课的重点内容,并强调重点和难点。
2. 学生自主拓展,尝试解决更复杂的有理数运算问题,提高运用数学知识解决实际问题的能力。
六、作业布置:
1. 完成课堂练习册上的相关练习题。
2. 准备下节课的知识内容。
七、板书设计:
有理数大班教案
八、教学反思:
通过本节课的教学,学生对有理数的概念和特性有了初步的了解,并能够掌握有理数的加减乘除运算法则。学生通过实际问题的解答,培养了逻辑思维能力和问题解决能力。但是教学中,有部分学生对有理数的乘除法仍存在一定的困惑,需通过更多的练习帮助他们理解和掌握。在以后的教学中,需要注重巩固和拓展学生的基础知识,提高他们的数学思维能力和问题解决能力。
2.5 有理数的减法
题 目
有理数的减法
课时1
学校教者
年级七年
学科数学
设计来源
自我设计
教学时间
教学目标
1.理解有理数减法法则, 能熟练进行减法运算.
2.会将减法转化为加法,进行加减混合运算,体会化归思想.
重点
有理数的减法法则的理解,将有理数减法运算转化为加法运算.
难点
有理数的减法法则的理解,将有理数减法运算转化为加法运算.
教学方法
讲授教学过程
一、情境引入:
1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)
2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?
探索新知:
(一) 有理数的减法法则的探索
1.我们不妨看一个简单的问题: (-8)-(-3)=?
也就是求一个数“?”,使 (?)+(-3)=-8
根据有理数加法运算,有 (-5)+(-3)= -8
所以 (-8)-(-3)= -5 ①
2.这样做减法太繁了,让我们再想一想有其他方法吗?
试一试
做一个填空:(-8)+( )= -5
容易得到 (-8)+(+3 )= -5 ②
思考: 比较 ①、②两式,我们有什么发现吗?
3.验证:
(1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?
3-(-5)=3+ ;
(2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?
(-3)-(-5)=(-3)+ ;
(2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少?
(-3)-5=(-3)+ ;
(二)有理数的减法法则归纳
1.说一说:两个有理数减法有多少种不同的情形?
2.议一议:在各种情形下,如何进行有理数的减法计算?
3.试一试:你能归纳出有理数的减法法则吗?
由此可推出如下有理数减法法则:
减去一个数,等于加上这个数的相反数。
字母表示:
由此可见,有理数的减法运算可以转化为加法运算。
【思考】:两个有理数相减,差一定比被减数小吗?
说明:(1)被减数可以小于减数。如: 1-5 ;
(2)差可以大于被减数,如:(+3)–(-2) ;
(3)有理数相减,差仍为有理数;
(4)大数减去小数,差为正数;小数减大数,差为负数;
(三 )问题:
问题1. 计算:
①15-(-7) ②(-8.5)-(-1.5) ③ 0-(-22)
④(+2)-(+8) ⑤(-4)-16 ⑥
问题2.(1)-13.75比少多少??
(2)从-1中减去-与-的和,差是多少?
(四)课堂反馈:
1.求出数轴上两点之间的距离:
(1)表示数10的点与表示数4的点;
(2)表示数2的点与表示数-4的点;
(3)表示数-1的点与表示数-6的点。
归纳总结:
1.有理数减法法则2.有理数减法运算实质是一个转化过程
达标测评
【知识巩固】
1.下列说法中正确的是( )
A减去一个数,等于加上这个数. B零减去一个数,仍得这个数.
C两个相反数相减是零. D在有理数减法中,被减数不一定比减数或差大.
2.下列说法中正确的是( )
A两数之差一定小于被减数.
B减去一个负数,差一定大于被减数.
C减去一个正数,差不一定小于被减数.
D零减去任何数,差都是负数.
3.若两个数的差不为0的是正数,则一定是( )
A被减数与减数均为正数,且被减数大于减数.
B被减数与减数均为负数,且减数的绝对值大.
C被减数为正数,减数为负数.
4.下列计算中正确的是( )
A(—3)-(—3)= —6 B 0-(—5)=5
C(—10)-(+7)= —3 D | 6-4 |= —(6-4)
5.(1)(—2)+________=5; (—5)-________=2.
(2)0-4-(—5)-(—6)=___________.
(3)月球表面的温度中午是1010C,半夜是-153oC,则中午的温度比半夜高____.
(4)已知一个数加—3.6和为—0.36,则这个数为_____________.
(5)已知b ,则a,a-b,a+b从大到小排列________________.
(6)0减去a的相反数的差为_______________.
(7)已知| a |=3,| b |=4,且a,则a-b的值为_________.
6.计算
(1) (—2)-(—5) (2)(—9.8)-(+6)
(3)4.8-(—2.7) (4)(—0.5)-(+)
(5)(—6)-(—6) (6)(3-9)-(21-3)
(7)| —1-(—2)| -(—1)
(8)(—3)-(—1)-(—1.75)-(—2)
7.已知a=8,b=-5,c=-3,求下列各式的值:
(1)a-b-c;(2)a-(c+b)
8.若a0, 则a, a+b, a-b, b中最大的是( )
有理数大班教案
一、教学目标
1. 知识与能力目标:了解有理数的定义、性质及运算规则;掌握有理数的加减乘除运算方法;能够解决实际问题中有理数运算的应用题。
2. 过程与方法目标:通过课堂教学、小组合作学习和讨论,培养学生的数学思维和解决实际问题的能力。
3. 情感与价值目标:培养学生的数学兴趣,激发他们对数学的热爱;培养学生的合作意识和团队精神。
二、教学内容
1. 有理数的定义、性质和大小比较。
2. 有理数的加法、减法、乘法和除法运算。
3. 有理数的应用问题解决。
三、教学重难点
1. 有理数的加减乘除运算规则。
2. 有理数在实际问题中的运用。
四、教学过程
1. 情境引入:教师通过实际问题引入有理数的概念,如:小明去商店买东西,买了一些东西后又退了一些,这个过程中小明所花费的金额是个什么数?
2. 概念讲解:教师向学生介绍有理数的概念,并与学生一起讨论有理数的性质和定义。
3. 实例分析:教师给学生举一些实际例子,让学生观察并找出规律,进一步理解有理数的加减乘除运算规则。
4. 练习巩固:教师出示一些有理数的运算题,并让学生在小组内互相讨论、解答,加强对运算规则的理解和熟练应用。
5. 拓展应用:教师给学生提供一些实际问题,让学生运用所学的有理数知识解决问题,并写出解决过程。
6. 小结复习:教师对本节课所学的知识进行总结,复习重点内容,并解答学生的疑惑。
五、教学评价
1. 教学评价方式:采用个人练习成绩、小组合作学习表现和课堂讨论参与度等综合评价方式。
2. 教学评价标准:根据学生的学习表现和课堂参与情况,评价学生对有理数的理解和运用能力。
六、板书设计
有理数大班教案
1. 有理数的定义、性质和大小比较。
2. 有理数的加法、减法、乘法和除法运算。
3. 有理数的应用问题解决。
七、教学反思
本节课通过引入实际问题,让学生了解有理数的应用场景,激发了学生学习有理数的兴趣。在教学过程中,充分运用了实例分析和小组合作学习的方法,培养了学生的团队合作和解决问题的能力。在教学中,要注意丰富教学过程,加强实际应用的训练,使学生能够将所学的知识运用到实际生活中。
有理数的乘方教学目标:
知识与能力:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算。
过程与方法:培养学生观察、分析、比较、归纳、概括的能力,渗透转化的思想。
情感态度与价值观:培养学生勤思,认真,勇于探索的精神,并联系实际,加强理解,体会数学给我们的生活带来的便利。
教学重点:正确理解乘方的意义,掌握乘方的运算法则,进行有理数乘方运算。
教学难点:正确理解乘方、底数、指数的概念并合理运算。
教材分析:本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,然后,结合有理数乘方的运算,讲述了乘方的运算方法。跟这部分内容有关联的是后面“科学计数法”、“有理数的混合运算”等部分内容。
教学方法:
教法:引导探索法、尝试指导法,充分体现学生主体地位;
学法:学生观察思考,自主探索,合作交流。
教学用具:电脑多媒体。
课时安排:一课时。
教学过程:教学环节、教师活动、学生活动、设计意图。
创设情境:(出示珠穆朗玛峰图片)
引语:同学们,珠穆朗玛峰高吗?对,它的海拔有8848千米,可是将一张纸连续对折30次,会有12个珠穆朗玛峰高,你们感觉神奇吗?就让我们带着这份神奇走进数学课堂。要求学生折纸试验,对折一次变成了几层?对折2次变成了几层?连续对折30次,应该列一个怎样的算式?对折100次呢?如果把这些式子写出来,太麻烦,下面咱们一起来认识一位数学新朋友,相信他能帮你解决这个难题。
板书课题:拿出课前准备好的纸,每个学生都试验一下,思考回答问题。激情导入,激发学生的求知欲。
揭示学习目标:电脑展示学习目标、学生感悟、使学生了解本节学习内容。
学生自学:请大家认真自读课本71-72页,思考下列问题。约六分钟后,同桌或前后桌同学围绕疑难问题,讨论交流,比谁的自学能力强,自学效率高。
电脑展示:
1.了解有理数乘方的概念。
2.理解幂,指数,底数。
3.一个数本身可以看作这个数本身的次方。
4. (-a)n与-an一样吗?为什么?
电脑展示:
1.把下列各式写成乘方的形式,并指出底数和指数。
(-3)×(-3)×(-3)×(-3)
-2×2× 2×2×2×2×2
2.你自己能找到同样的例子吗?
3.计算:(–2)³ (–13 )³ -26
学生积极思考,相互交流讨论,让不同层次的学生发言。此组练习具有梯度性,可调动不同层次学生的积极性。
完成下列计算:
2² 2³ 24 25
(-2)² (-2)³ (-2)4 (-2)5
观察计算结,想一想:正数幂的符号与指数有何关系?负数幂的符号与指数有何关系?
学生对计算结果进行分析相互交流得出结论,把问题再次交给学生,充分发挥学生的主观能动性,培养学生归纳、总结的能力。
学生做作业。
教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学模式。整个教学过程从思考问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、思考、交流归纳的能力。不足之处:在练习的讲评上,应给学生一个较为自由的空间,让学生相互启发,相互交流。
每个老师都需要在课前有一份完整教案课件,相信老师对要写的教案课件不会陌生。教案是教学手段的增强与创新,好的教案课件是从哪些角度来写的呢?想要更好地掌握这个话题不妨阅读一下“有理数的乘法课件”,别忘了收藏这个网页方便以后查看!
教学目的:
1、要求学生会进行有理数的加法运算;
2、使学生更多经历有关知识发生、规律发现过程。
教学分析:
重点:对乘法运算法则的运用,对积的确定。
难点:如何在该知识中注重知识体系的延续。
教学过程:
一、知识导向:
有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。
二、新课:
1、知识基础:
其一:小学所学过的乘法运算方法;
其二:有关在加法运算中结果的确定方法与步骤。
2、知识形成:
(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。
情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的东方6米处
拓展:如果规定向东为正,向西为负
情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的西方6米处
发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6
同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6
概括:把一个因数换成它的相反数,所得的积是原来的积的相反数
3、设疑:
如果我们把中的一个因数2换成它的相
反数-2时,所得的积又会有什么变化?
当然,当其中的一个因数为0时,所得的积还是等于0。
综合:有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
三、巩固训练:
P52.1、2、3
四、知识小结:
本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。
五、家庭作业:
P57.1、2,3
六、每日预题:
1、小学多学过哪些乘法的运算律?
2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?
学习目标:
1、要熟记有理数除法的法则,会进行有理数除法的运算。
2、掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。
3、能熟练地进行简单的有理数的加减乘除混合运算。
4、体会比较、转化、分类的思想方法,在探索有理数除法法则时的应有
学习重点:有理数除法的法则及应用;求一个有理数的倒数。
学习难点:在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则。
学习过程:
一 前置复习 :
1、有理数的乘法法则是:
举例说明。
2、多个有理数乘法:(1)几个不等于0的有理数相乘,积的符号由 决定,当 时积为正;当 时积为负。
(2)几个有理数相乘, ,积就为零。
二 探究新知:(教师寄语: 现实世界中的事物都是既相互联系又可以相互转化的,在数学上加与减,乘与除也是可以相互转化的.)
自学课本58页至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法。,一定要熟记:
(1) 有理数除法运算转化为乘法运算的法则:除以一个数,________________________。
____________________。
(2) 有理数的除法法则:两数相除,_____________,_____________,_____________。
0除以任何_______________________________。
(3) 与以前学过的倒数的概念一样,___________两个有理数互为倒数。
如,3与____互为倒数,-6与_____互为倒数,2.25是____的倒数,___是 的倒数。
三 新知应用:
例1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则(1),在两个_______数相除时,可选择法则(2)
学以致用 计算:
(1) (42)7 (2) ( )( )
例2、计算(1) ( )( )( ) (2) ( )( )
(温馨提示:1、 有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。2、 加减乘除混合运算的运算顺序和小学一样。)
四 课堂练习:独立完成课本P59练习2,3题。(将完整的计算过程写在下面空白处)
五 达标测试:(独立完成)
1 填空:(1)2 的倒数与 的相反数的积是_______。
(2)(1)(3)( )=______。
(3)两个数的商为正数,那么这两个数一定是_________。
(4)一个数的倒数是它本身,则这个数是____________。
2、计算:(1) (2)
(3)、 (4) ( + )
六 总结反思:
1、说一说:
本节课我学会了 ;
使我感触最深的是 ;
我感到最困难的是 ;
我想进一步探究的问题是 。
2、:评一评
自我评价 小组评价 教师评价
七 布置作业
1(必做题) 课本60页习题A组3,4题。(要求:做在作业本上)
2(选做题) 课本60页习题B组1,2题。(要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流)
一、知识与能力
掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力
二、过程与方法
经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算
三、情感、态度、价值观
培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性
四、教学重难点
一、重点:熟练进行有理数的乘除运算
二、难点:正确进行有理数的乘除运算
预习导学
通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律
五、教学过程
一、创设情景,谈话导入
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律
二、精讲点拨质疑问难
根据预习内容,同学们回答以下问题:
1.有理数的乘法法则:
(1)同号两数相乘___________________________________
(2)异号两数相乘_____________________________________
(3)0与任何自然数相乘,得____
2.有理数的乘法运算律:
(1)乘法交换律:ab=_________
(2)乘法结合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理数的除法法则:
除以一个不等于0的数,等于乘这个数的__________
比较有理数的乘法,除法法则,发现_________可能转化为__________
三、课堂活动强化训练
某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?
注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结
四、延伸拓展,巩固内化
例2.(1)若ab=1,则a、b的关系为()
(2)下列说法中正确的个数为( )
0除以任何数都得0
②如果=-
1,那么a是非负数若若⑤(c≠0)⑥()⑦1的倒数等于本身
A 1个B 2个C 3个D 4个
(3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变( )
A两数相等B两数互为相反数
C两数互为倒数D两数相等或互为相反数
教学目标
1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
各位专家,各位同仁:;大家好!;我说课的课题是北师大版《数学》七年级上册教材中的;
一。教材分析;
(一)教材的地位与作用;本课时既是有理数加减混合运算的自然延续,又是后面;
(二)教学目标分析;
1、知识与技能目标:借助实际情境,使学生理解有理;
2、方法与过程目标:让学生经历有理数乘法法则的探;
3、情感﹑态度与价值观目标:通过学习
2.8. 有理数的乘法(第一课时)
各位专家,各位同仁 :
大家好!
我说课的课题是北师大版《数学》七年级上册教材中的第二章第8节"有理数的乘法".第一课时。我将从以下四个方面谈一谈这节课的教学设计。
一。教材分析
(一)教材的地位与作用
本课时既是有理数加减混合运算的自然延续,又是后面学习有理数除法、乘方运算的基础,还是今后学习代数式运算﹑方程﹑函数等内容的必要知识储备。因此本节课的学习有着承上启下﹑铺路架桥的作用。学好这部分内容,对于学生理解"类比和化归"这些重要数学思想,应用"不完全归纳法",发展学生数学探究能力,增强学生学习数学的信心都具有十分现实的意义。
(二)教学目标分析
1、知识与技能目标:借助实际情境,使学生理解有理数乘法的意义,掌握有理数的乘法法则,并运用法则解决实际问题。
2、方法与过程目标:让学生经历有理数乘法法则的探索过程,发展学生观察、猜想、归纳、验证、运算的能力,让学生领会类比、数学建模,以及从特殊到一般的数学思想方法。
3、情感﹑态度与价值观目标:通过学习,激发学生的学习动机和好奇心理,锻炼学生的思维意志品质,张扬学生个性,培养学生科学严谨的学习态度,使学生树立正确的价值观、人生观。
(三)教学重、难点及成因分析
教学重点定为:掌握有理数的乘法法则,会进行有理数的乘法运算。
教学难点定为:有理数的乘法法则的探索和对法则的理解。
为了突破教学重难点,教学的关键是运用猜想验证的方式,利用水位变化的直观性,帮助学生掌握有理数乘法运算法则。
二、教法、学法分析
(一)、学情分析
1、学生在小学已经明确正数乘法的意义和正数之间、正数与零之间的乘法运算法则。
2、通过对有理数加法运算的学习,学生对负数参与运算有了一定的认识,已经明确计算时要先确定和的符号,再确定和的绝对值的基本方法。
(二)、教法分析
《课程标准》中明确指出:学生是学习的主人,教师是学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我主要采用"引导——探究法"组织教学。
(三)、学法指导
本节课我鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养。
三、教学过程分析
我根据数学课程"倡导积极主动,勇于探索的学习方式"的基本理念,将本节课的基调定为对于创设情境,引入课题,我考虑了两种方式:
1.直接提出问题:你能给出下列各式的结果吗?
(1)2×3=____;(2)(-2)×(-3)=____;(3)2×(-3)=____;(4)0×(-4)=____. 这种引入由学生所熟悉的正数乘法运算引入未知的负数参与的乘法运算,能做好中学与小学知识的衔接,激起学生认知上的冲突。但它较难让学生快速进入学习情境。
2、通过演示实际生活中甲,乙两水库的水位上升或下降的情景,得到乘法算式,以次引入课题。这种引入符合七年级学生形象思维能力强的认知特点,易激发学生的学习兴趣,在复习乘法意义的同时,也为后面利用水位变化研究课题打下基础。因此我选择第二种方式引出课题。
(二)自主探究,归纳结论
根据学生思维活跃,善于交流的特点,本着由浅入深,由易到难,由形象思维过渡到抽象思维的原则,我设计了:出示问题,建立模型;独立思考,探索规律; 归纳总结,得出法则 这样三个层次,来逐步展开对课题的探究。以便更好的展示知识的形成过程,突出重点,突破难点;减轻学生对法则的理解难度。
1.出示问题 ,建立模型
问题1. 议一议
(-3)×4= -12
(-3)×3=
(-3)×2=
(-3)×1=
在出示问题,建立模型这一环节,先提出问题1. 议一议,我要求学生按6人一组,进行探究活动,在充分合作并取得一致意见的基础上,然后由学生主动进行展示。学生可能会从以下两个方面进行回答。1.把乘法转化成加法(链接);2.利用乙水库水位的变化来说明。点评时,教师通过动画演示验证学生结论的正确性。
问题2:①你知道(-3)×0的结果吗?
②如何用水位的变化来解释(-3)×0= 0 ?
通过演示,学生很容易就能看出当时间没有变化时,水位不会发生变化。
问题3.认真观察上述5个算式,其中包含什么规律?
此处是本节课的一个难点,学生要得到答案,比较困难。我将从以下几个方面对学生进行引导。1.观察算式的左边,找出变化的因数和不变的因数;2.观察算式的右边,找出积的变化规律;3.要求学生在独立思考之后,将两边的变化规律总结成一个结论。即:一个因数不变,另一个因数每次减小1.算式右边的积每次增加-3.
上述三个问题的解决,渗透了高效课堂教学的理念,让学生通过自主交流,自我展示,达到理解知识、培养能力、张扬个性的效果。学生通过独立思考,自己发现规律,也能提高学习数学的兴趣,同时也为解决下面的问题4打下坚实的基础。
2. 独立思考,探索规律
问题4.猜一猜
(-3)×(-1)=
(-3)×(-2)=
(-3)×(-3)=
(-3)×(-4)=
由于有了上面的铺垫,学生很容易猜出这4个算式的结果,但是为什么是这四个结果,学生却并不明白,为突破这一关键点,我给出了教科书上的一个规定: 水位上升为正,水位下降为负 ; 为区分时间,我们规定:"现在前"为负,"现在后"为正 .根据上述规定,我先让学生说一说这4个算式的实际意义,如(-3)×(-1)表示乙水库一天前的水位等。接着让学生看动画演示,然后再让他们充分发表自己的意见,在争辩讨论中弄清楚此时各种情况下水位的总变化量,最后达成共识。
这样做的目的为了让学生知其然更知其所以然,感受数学结论的合理性。
问题5.你能猜出 3×(-2)的结果,并解释理由吗?
通过与第四个问题进行类比,学生很容易得出此题答案。这里补充正数与负数相乘,是为后面学生归纳有理数的乘法法则打下伏笔。
本环节我以学生的发展为本,让学生经历探索的过程,培养学生自主学习的能力。通过文字的叙述和算式的有机结合,使得乘法结果的得出自然合理,更有助于一般结论的归纳。课件动画效果可以使情境更生动,有助于学生思考问题得出结论,使学生由感性认识上升到理性思维。
接着我引导学生进入第三步:归纳总结,得出法则。
3、归纳总结,得出法则
完成问题6后,学生对有理数的乘法法则已经到了呼之欲出的地步,于是我提出了问题7:
由于学生对负数的意义理解不深,()计算时很容易算对绝对值的乘积而忽视了符号问题,或者,注意了符号而又忘记了把绝对值相乘,于是我设置了做一做及问题8,让学生清楚运算时的几个步骤。并引导学生进行归纳:有理数相乘,先确定积的符号,再决定积的绝对值。
通过层层设置的问题,我引导学生讨论发现,归纳结论。这些环节展示了知识的形成过程,培养了学生探究能力,锻炼了学生概括表述能力。在探究归纳的过程中,也渗透了类比和分类讨论、从特殊到一般、数学建模的思想方法。
(三)知识运用,加深理解
1、运用法则进行计算
在这一环节,为了提高学生计算的准确度,培养学生的运算能力,并为多个有理数的乘法及乘除法混合运算奠基,在选题时,例1安排了分数、小数、带分数及整数参与运算。在(2)中设计了整数与小数相乘、(4)设计了小数与带分数相乘,(5)设计了有理数的连乘,在学生解题的基础上,都分别总结了两种计算方法;并由学生总结解题的方法和技巧:当因数是小数时,一般可化为分数再相乘;当因数是带分数时,一般要化为假分数再相乘,有理数的连乘
可以两两相乘,也可以先确定积的符号,再确定积的绝对值。同时通过(1)的计算要让学生明白:乘积是1的两个数互为倒数。
2、运用法则解决实际问题
有理数的乘法运算法则只是计算工具,更主要的还是运用它来解决生活中的实际问题,因此我设计了例2,这个问题的解决对学生来说,难度不大,因此我打算让学生上黑板演板。通过这个问题的解决,
让学生体验到数学来源于生活又服务于生活的数学理念,培养学生的应用意识。
两个例题的解决采取了师生互动方式,评价采取生生评价的方式,提高了学生学习兴趣,培养了学生严谨的数学思维习惯。
(四)变式训练,拓展思维。
通过变式训练,可加深学生对法则的理解,使学生的学习巩固过程成为再深化、再创造的过程。开放性的试题,让不同学生的思维潜能得到展示,体现了"不同的人在数学上得到不同的发展"的理念。
(五)回顾反思,感悟提升。
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价,让学生对所学知识有比较清晰的轮廓体系,也让学生形成善于反思、总结的学习习惯。
(六)布置作业,延伸知识。
数学课程提出:人人学有价值的数学,人人获得必须的数学,不同的人在数学上得到不同的发展。因此我设计了A、B两组作业:
分层设置作业,兼顾了不同学生的学习水平,关注了学生的个体差异。设置开放性的作业,充分挖掘了学生的学习潜力,锻炼了学生的思维意志品质,同时也让学生的学习延伸到课外,使他们学会时刻"用数学的眼光"来观察生活。
四、教学反思
最后,对这节课我做了如下的反思:
在教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照学生为主体,教师为主导,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,让全体学生参与教学的全过程,从而更好的促进学生全面、持续、和谐的发展。
我的说课到此结束,恳请各位专家批评,指正。谢谢大家!
积的符号 ;
积的符号 。
2完成下面填空:
(2)(-10)×(- )×(-0.1)× 6 =________
(3)(-10)×(- )×(-0.1)×(-6)=________
(4)(-5)×(- )× 3 ×(-2)× 2=________
(5)(-5)×(-8.1)× 3.14 × 0=________
(1)8+(-0.5)×(-8)× (2)(-3)× ×(- )×(- )
(3)(- )× 5 × 0 ×(- ) (5) (-6)×(+37) × (- )×(- )
4.计算:(1)(-4)×(-7)×(-25) (2)(- )×8×(- )
(3)(-0.5)×(-1)× ×(-8) (4)(-5)-(-5)× ×(-4).
(5)(-3)×(7)×-3 ×(-6) (6)(-1)×(-7)+6×(-1)×
目标:
1、知识与技能
使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。
2、过程与方法
经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。
重点、难点:
1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
过程:
一、创设情景,导入新
1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?
乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:
(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。
3、在一条由西向东的笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?
二、合作交流,解读探究
1、小学学过的乘法的意义是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果两个数的和为0,那么这两个数 互为相反数 。
2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)
3、学生活动:计算3×(-5)+3×5,注意运用简便运算
通过计算表明3×(-5)与3×5互为相反数,从而有
3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?
鼓励学生自己归纳,并用自己的语舞衫歌扇,并与同伴交流。
在学生猜测、归纳、交流的过程中及时引导、肯定
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘,积仍为0
(板书)有理数乘法法则:
三、应用迁移,巩固提高
1、计算
(-5)×(-4) 2×(-3.5) × (-0.75)×0
(1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。
(2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。
2、计算下列各题
① (-4)×5×(-0.25) ② ×( )×(-2)
③ ×( )×0×( )
指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。
教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?
学生小结后,教师归纳:
几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0
练习:本P31练习
四、总结反思(学生先小结)
1、有理数乘法法则
2、有理数乘法的一般步骤是:
(1)确定积的符号; (2)把绝对值相乘。
五、作业:P39习题1.5 A组 1、2
我们常说,机会是留给有准备的人。当幼儿园教师的工作遇到难题时,我们经常会用提前准备好的资料进行参考。资料的定义范围较大,可指代生产资料。资料可以帮助我们更高效地完成各项工作。你知不知道我们常见的幼师资料有哪些呢?根据你的需要,小编精心整理了有理数的加法课件系列,希望对你的工作和生活有所帮助。
今天我说课的课题是有理数的加法。本节课选自湖南教育出版社出版的数学七年级(上)第一章第四节第一课时的内容。下面我就从教材分析、教法学法、教学程序和教学反思四个方面向大家介绍我对本节课的理解与设计。
有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。
就本章而言,有理数的加法是本章的重点。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键在于这一节的学习。
1、知识与能力目标:
(1)了解有理数加法的意义。
(2)理解并掌握的有理数加法的法则,并会运用法则进行准确运算,提高学生的运算能力。
2、过程与方法目标:
(1)经历法则探索的过程,培养学生归纳总结知识的能力。
(3)在探索过程中感受数形结合和分类讨论的数学思想。
(4)渗透由特殊到一般的唯物辩证法思想。
3、情感与态度目标:
(1)让学生体会到数学知识来源于生活,服务于生活,培养学生对数学的热爱。
(2)培养学生协作意识,体验成功,树立学习自信心。
我在本节课主要采用“引导——发现教学法”,并借助多媒体课件来展开教学。学生主要采用“合作探究学习法”来学习本节内容。
教学程序:
我采用的教学模式分为“引——探——结——用”四个环节。
例如,足球比赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。
如果,红队进4个球,失2个球;蓝队进1个球,失1个球。则红队的净胜球数为4+(-2)。
蓝队的净胜球数为1+(-1)。
这里用到正数和负数的加法。
那么,怎样计算4+(-2)呢?
此环节大约2分钟。
现规定正能量为正,负能量为负。
(1)若两个好人携带正能量分别为+20、+30。
则相加的结果是( )。
(2)若两个坏人携带负能量分别为—20、—30。
则相加的结果是。
这两个算式,运算有什么特点呢?
负数+负数,负能量增大。
最后概括为①定符号;②把绝对值相加。
(3)若一个好人携带正能量+30一个坏人携带负能量—10。
则两人较量的结果是( )赢,还剩( )能量。
(4)若一个好人携带正能量+20一个坏人携带负能量—40。
则两人较量的结果是( )赢,还剩( )能量。
这组算式,运算有什么特点呢?
异号两数相加,好比两人在打仗,谁的力量强大,谁就赢。如果正能量大,符号就定为正;如果负能量大,符号就定为负,又让学生理解两人打仗,彼此力量会彼此抵消,彼此消损。那么赢的一方还剩多少能量呢?故而把绝对值做减法。强调用大的绝对值减去小的绝对值。
最后概括为①定符号;②把绝对值相减。
再看两种特殊情形:
(5)若一个好人携带正能量+30,一个坏人携带负能量—30。则两人较量的结果是( ),还剩()能量。
新课程倡导让学生从“要我学”向“我会学”转变,而教师是学生学习的组织者、引导者和合作者。由于教材上利用数轴和绝对值来探究法则过于抽象,不易引起学生的兴趣。借鉴之下,我选用了学生感兴趣的卡通动画人物,激发学生的学习兴趣,营造一种轻松愉快的学习氛围;我让学生来当裁判,学生必须把6次的情况都完成后,才能得到结果,这样每个学生的注意力一直会很集中。若学生有困难,则小组内探讨交流、补充,让学生能逐步引导概括出有理数的加法法则。上述过程,大约20分钟的时间,将突出重点,突破难点。
1、同号两数相加:
取加数的符号,并把绝对值相加。
2、异号两数相加:
取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得0。
此题的设计是为了学生更好地理解、掌握有理数加法法则。同时,让学生知道,凡是有理数运算都要首先确定结果的符号。学生独立完成表格后,我将解题步骤,分步板书在黑板上,让学生对解题格式引起重视。
数学家皮亚杰认为:“不断的训练才能够逐渐的发展出一个合理的数学模型”。练习和科学的重复练习始终是数学学习的有效办法。为了让学生熟练应用法则准确计算,我设计了2个例题。例1是同号两数相加;例2是异号两数相加。这两种最典型的类型,以起到巩固法则和规范格式的作用。我让学生尝试独立完成,让基础组的学生板演后,并让别的学生找错误,这样充分调动了学生的积极性,活跃了课堂气氛。同时,通过学生纠错的过程,让学生对错误加深记忆,将知识转化为技能。
在新课程下,教学的本质是学习活动,学生是否有效的学习,教学目标是否落实到位,检测目标成为一节课的一个重要环节。
我设计了两个闯关小游戏。一个是学生口答抢答,另一个是男生出题女生抢答,反之女生出题男生抢答,通过男女同学竞争中巩固、应用法则。
我用卡通动画人物来引入问题情境,使学生能够形象的理解有理数加法法则。在思考问题时,首先应让学生对好人、坏人在一起有几种情况有一个明确的认识,培养学生考虑问题的完整性。然后再逐一的进行探索,通过学生谈论交流,最后得到有理数的四条加法法则。
我安排了同号两数相加和异号两数相加两种最典型的类型,以起到巩固法则和规范格式的作用。
为了培养学生的数学语言的表达能力,在课堂中我尽可能的让学生用自己的话来表达。这样可以及时纠正学生错误,引导学生规范的表达。
1.某次数学考试成绩以80分为标准,王老师将某4名同学的成绩简记为+10,0,-8,+18,则这4名同学的最高成绩实际是(D)
A.(+20)+(-30)=10B.(-31)+(-11)=20
4.计算:
(1)5+(-3)=__2__;
(2)(-4)+(-5)=-9;
(3)(-2)+6=__4__;
(4)0+(-9.7)=-9.7.
5.不计算,比较下列各式的大小,并用“>”“
(1)(-8)+(+8)__=__0;
(2)(-8)+(-8)__(3)-25++52__>__0;(4)0+(-4)__6.一只海豚从水面先潜入水下40m,然后又上升了23m,此时海豚离水面17_m.7.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为__-1__℃.(2)58+-47.【解】 (1)原式=-316-213=-56.(2)原式=+58-47=356.9.数轴上有一只蚂蚁,从原点出发,先向右爬行5个单位,再向左爬行12个单位,最后这只蚂蚁在数轴上所在的位置表示的数是多少?并用算式表示出来.【解】 记向右为正,则(+5)+(-12)=-7.最后这只蚂蚁在数轴上所在的'位置表示的数是-7.10.某地区气温不稳定,开始是6℃,2h后升高了4℃,再过2h又下降了11℃,求此时该地的气温.【解】 6+(+4)+(-11)=-1(℃).11.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是__-4__.【解】 由图可知,左边盖住的整数数值是-2,-3,-4,-5;右边盖住的整数数值是1,2,3,4.∴它们的和是-4.12.已知a,b,c的位置如图,化简:|a-b|+|b+c|+|c-a|=__-2a__.【解】 由数轴可知a0,则|a-b|+|b+c|+|c-a|=-(a-b)+(-b-c)+(c-a)=-2a.(2)(+51)+-2757.【解】 (1)原式=-227+349=-21863+32863=-54663.(2)原式=+51-2757=2327.14.若|a|=3,|b|=2,求a+b的值.【解】 ∵|a|=3,|b|=2,∴a=±3,b=±2.①当a=3,b=2时,a+b=5;②当a=3,b=-2时,a+b=3+(-2)=1;③当a=-3,b=2时,a+b=-3+2=-1;④当a=-3,b=-2时,a+b=-3+(-2)=-5.综上所述,a+b=±1或±5.
教学目标:
1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.
2.已知一个数,会求出它的正整数指数幂,渗透转化思想.
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.
提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?
a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)
(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?
1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.
一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.
(4)乘方是一种运算,幂是乘方运算的结果.
【例1】(1)(-4)3;(2)(-2)4;(3)-24.
点拨:(1)计算时仍然是要先确定符号,再确定绝对值.
(2)注意(-2)4与-24的区别.
根据有理数的乘法法则得出有理数乘方的符号规律:
负数的奇次幂是负数,负数的偶次幂是正数;
正数的任何次幂都是正数,0的任何正整数次幂都是0.
【例2】计算:
(1)3; (2)(-)3;
(3)(-)4; (4)-;
(5)-22×(-3)2; (6)-22+(-3)2.
1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.
2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.
乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.
乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an及()n与的区别和联系.
(1)在(-2)6中,指数为 ,底数为 .?
(2)在-26中,指数为 ,底数为 .?
(3)若a2=16,则a= .?
(4)平方等于本身的数是 ,立方等于本身的数是 .?
C.(-2)3与-23 D.|2|3与|-23|
C.-(-a) D.||
教学目标:
1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.
2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.
教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算.
1.先乘方,再乘除,最后加减.
2.同级运算,从左到右进行.
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
【例1】计算:
(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);
(2)1-×[3×(-)2-(-1)4]+÷(-)3.
强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.
【例2】观察下面三行数:
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和.
【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.
1.计算:
(1)|-|2+(-1)101-×(0.5-)÷;
(2)1÷(1)×(-)÷(-12);
(3)(-2)3+3×(-1)2-(-1)4;
(4)[2-(-)3]-(-)+(-)×(-1)2;
(5)5÷[-(2-2)]×6.
2.若|x+2|+(y-3)2=0,求的值.
3.已知A=a+a2+a3+…+a,若a=1,则A等于多少?若a=-1,则A等于多少?
1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.
1、通过数学活动使学生共同探索有理数加法、减法法则,从而理解并掌握有理数的加法、减法的法则以及有理数的加减混合运算;
2、能熟练进行有理数的加减混合运算。
【教学重点】在有理数的范围内加法交换律、结合律的应用与简化计算。
【教学难点】应用有理数的加法、减法及运算律解决实际问题。
『问题情境』
先看一个例子:
这是一道有理数的加减混合运算题,你会做吗?请同学们思考练习。
(1)上题可以按照运算顺序,从左到右逐一加以计算;
(2)上题通常也可以用有理数减法法则,把它改写:
统一为只有加法运算的和式.把加减法统一写成加法的式子,有时也叫做代数和。
(3)在一个和式里,通常把各个加数的括号和它前面的加号,省略不写.如上式可写成省略加号的和的形式:-8+10-6-4
(象这样的式子仍看作和式,读作“负8、正10、负6、负4的和”,按运算意义也可读作“负8加10减6减4”,在这里把除第一个数外的数字前面的符号都可看作为运算符号,又可看作性质符号,这样,性质符号与运算符号既有区别,又有联系,有时可以互相转化。)
『例题讲评』
例1、计算:
(1)2+5-8; (2) 14-(-12)+(-25)-17
(3)-3-5+4; (4) -26+43-24+13-46
例2、巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了7km,休息之后,继续向东维护了3km;然后折返向西巡视了11.5 km,此时他在住地的什么方向?与驻地的距离是多少?
1.把下列各式写成省略加号的和的形式,并说出它们的两种读法。
(1)(-12)-(+8)+(-6)-(-5);
2.把6-(-9)+(-15)-(-3)写成省略加号的和的形式,并计算。
3.计算:
(1)7-(-4)+(-5) (2)-5-(+3)+(-9)-(-7)+
(3)(-10)-(+12)-(-36)+(-23) (4)
(5)(+16)+(-8)-|-3|+|+8|-|-12|-(+5) (6)-21-12+33+12-67
(7)5.4-2.3+1.5-4.2 (8)
知识与技能:
掌握有理数加法法则,并能运用法则进行有理数加法的运算。
过程与方法:
1.经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的认知规律;
2.动手、发现、分类、比较等方法的学习,培养归纳能力。
情感态度与价值观:
1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;
2.体会数学来源于生活,服务于生活,培养热爱数学的情感,体会数学的应用价值;
3. 培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。
6月11日至7月11日,第19届世界杯足球赛在南非举行。来自世界各国的32支球队为全世界的球迷送上了一场完美的足球盛宴。(出示PPT2)
(出示PPT3)小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的两支队伍进入十六强。积分相同时,净胜球多者为胜(把进球数记为正数,失球数记为负数,进球数与失球数的和叫做净胜球数)。
以B组为例,进入十六强的是阿根廷和韩国。
国家赛胜平负得分阿根廷33009韩国31114希腊31023尼日利亚30121国家赛胜平负得分进球失球净胜球乌拉圭32107+40墨西哥31114+3-2南非31114+3-5法国30121+1-4师:从A组积分榜可以看出墨西哥和南非的积分相同,那么究竟应该确定哪个队进入十六强呢?此时则需要计算各队的净胜球数。你能列出计算各队净胜球数的算式吗?
学生看图表,思考问题。
学生列出计算净胜球数的算式。
利用世界杯的例子,体现数学来源于生活,让学生体会学习有理数加法的必要性,更能激发学生的兴趣
师:净胜球数的计算实际上涉及到有理数的加法。今天我们就来研究有理数的加法运算(板书1:1.4 有理数的加减----一、有理数的加法)。
师: 我们已经知道两个非负有理数相加的方法,现在数的范围扩大了,两个有理数相加,还有哪些情形呢?请举例说明。
根据学生的回答,归纳为以下三种:
师:如何进行有理数的加法呢?我们先来看下面这个问题:
(出示PPT5)一间0℃冷藏室连续两次改变温度:
(1)第一次上升5℃,接着再上升3℃;
(2)第一次下降5℃,接着再下降3℃;
(3)第一次下降5℃,接着再上升3℃;
(4)第一次下降3℃,接着再上升5℃。
师:每一种情形下,两次变化使温度共上升了多少摄氏度?
(这里要结合前面有理数的学习,引导学生注意两次变化的结果“共”与“上升”等词语的含义,其中“共”表示求和,最终温度的升、降要通过和的正、负来体现,从而问题是求两个有理数的和。)
师:我们规定,温度上升记作正,温度下降记作负,请同学们在数轴上表示连续两次温度的变化结果,写出算式。
(引导学生将温度的变化过程在数轴上表示出来,观察得出变化结果,进而列出加法算式)
学生讨论,相互补充。
学生思考、回答问题。
学生模仿已有的算式填表。
向学生渗透分类思想,体现数学的简洁美!
从学生的生活经验出发,从学生已有的认知出发,将对新知的探索设置在学生的最近发展区,能有效激发学生兴趣.
利用数轴直观演示,数形结合,让学生参与探索的过程,直观感受有理数的加法法则。
知
(出示PPT6)师:第一个算式是小学已学习过的,第二个算的两个加数都是负数, 你能说说看是怎样计算的吗?(引导学生从和的符号以及和的绝对值两个方面分别说明自己的算法)
待学生说明自己的算法理由后,可得出:
1.同号两数相加,取与加数相同的符号,并把绝对值相加。(板书3)
(出示PPT7)师:第三和第四个算式是负数与正数相加,也可称为异号两数相加,你又是怎样计算的?
待学生说明自己的算法理由后,可得出:
2.异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。(板书4)
学生阐述自己计算的方法。
渗透由特殊到一般的辩证唯物主义思想;鼓励学生用自己的语言描述法则,提高学生的概括能力和语言表达能力
师:同学们现在会计算这堂课刚开始时我们列出的算式了吗?哪两只队伍能进入十六强呢?(展示PPT8)
师:现在请同学们两人为一组,互相出题考察对方,看谁出的题型多,看谁算得又快又好。
(要求学生说明算理,记录学生互相出的题目与答案,针对学生回答进行讲评,适时鼓励)
学生解题。
学生之间互相出题,利用法则计算。
旨在调动学生的学习热情,以竞赛的形式激发学生的学习热情,同时巩固已学习是的法则。
知
(出示PPT9)探究二(如学生在互相出题时已有类似算式,则因势引入)
师:以下算式你会计算吗?你能仿照探究一中“温度的变化”说明各式的实际意义吗?
(-5)+(+5)= ――――,(-5)+ 0 = ――――。
由计算结果你能得出什么结论?
(学生回答,教师板书5)异号两数相加,绝对值相等时和为0(即互为相反数两数之和为0)。(可接在2的后面写,见板书设计!)
(让学生观察结论2是否有需要完善的地方,待学生回答后教师在板书的基础上添加“当绝对值不等时”)
3.一个数与零相加,仍得这个数。
师:以上三条结论就构成了有理数的加法法则:(板书已有,只需再带领学生复习一下即可!)
1.同号两数相加,取与加数相同的符号,并把绝对值相加;
2.异号两数相加,绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时和为0(即互为相反数两数之和为0)。
3.一个数与零相加,仍得这个数。
学生观察、思考、讨论。
学生观察、思考、讨论,用自己的语言描述加法法则。
(出示PPT10)例1.计算:
(1)(+7)+(+6); (2)(-5)+(-7);
(3)( )+ ; (4)(-10.5)+(+21.5);
(5)(-7.5)+(+7.5);(6)(-3.5)+ 0 。
= -
教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,再根据两个加数符号的具体情况,选用相应的加法法则,确定和的符号以及和的绝对值。
学生观察教师的解题步骤,并按规范解题。
(出示PPT11)练习1.比比谁的眼睛亮:下列各计算结果是对还是错?如果错误请指出错在哪里,并改正错误。
学生集体口答。
采用示错式教学,展示学生在运算中容易出现的错误,减少学生解题时出错。
(1)(+ 3.5)+(+ 4.5); (2)+();
(3)()+(); (4)()+();
学生完成练习,同伴之间相互订正,教师对学生的板演进行评价。
学生做练习,两位学生板演(2)、(4)两题,全班同学口答其余四题。
(出示PPT13)练习3.下面的说法是否正确?如果不正确,请举例说明。(若课堂时间不够,可作为课后思考题)
(1)两个数的和一定比两个数中任何一个都大;
(2)两个数的和是正数,这两个数一定是正数。
要求学生不仅能指出说法的正误,并能举出实例证明自己的结论。
学生思考判断并举反例说明。
开放性的题目让学生在探索的过程中进一步理解法则,体会有理数的加法与小学时加法的区别。
有理数的加法法则:
1.同号两数相加,取与加数相同的符号,并把绝对值相加;
2.异号两数相加,当绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时和为0(即互为相反数两数之和为0)。
3.一个数与零相加,仍得这个数。
学生回答。
使学生对所学的知识有一个总体而深刻的认识。
2.你能将-4,-3,-2,-1,0,1,2,3,4这9个数分别填入下图幻方的9个空格中,使得处于同一横行,同一竖列,同一斜对角线上的3个数相加都得0吗?(选做题)
学生回家完成。
作业分层布置,照顾到全体学生;第二题是九宫格问题,数的范围扩大到有理数范围后就有一定的难度,激发学生挑战的意识。
1.同号两数相加,取原来的符号,并把绝对值相加。
2.异号两数相加,绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时和为0(即互为相反数之和为0)。
3.一个数与零相加,仍得这个数。
(板书6)例1.
初中数学-有理数的加法教学设计
一、教学目标
1、知识与技能
(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.
2、数学思考
通过观察,比较,归纳等得出有理数加法法则。
3、解决问题
能运用有理数加法法则解决实际问题。
4、情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
5、重点
会用有理数加法法则进行运算.
6、难点
异号两数相加的法则.
二、教材分析
“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实 例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
三、学校与学生情况分析
冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。
四、教学过程
(一)问题与情境
我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为
4+(-2),
黄队的净胜球为
1+(-1)。
这里用到正数与负数的加法。
(二)师生共同探究有理数加法法则
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.
两个有理数相加,有多少种不同的情形?
为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是
(+3)+(+1)=+4.
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是
(-2)+(-1)=-3.
现在,请同学们说出其他可能的情形.
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(-2)=+1;
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)+(+2)=-1;
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(+3)+0=+3;
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是
(-2)+0=-2;
上半场打平,下半场也打平,全场仍是平局,也就是
0+0=0.
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3、一个数同0相加,仍得这个数.
(三)应用举例 变式练习
例1 口答下列算式的结果
(1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);
(5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.
学生逐题口答后,师生共同得出
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
例2(教科书的例1)
解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)
=-(3+9) (和取负号,把绝对值相加)
=-12.
(2)(-)+ (两个加数异号,用加法法则的第2条计算)
=-() (和取负号,把大的绝对值减去小的绝对值)
=-
例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数
下面请同学们计算下列各题以及教科书第23页练习第1与第2题
(1)(-)+(+)(2)(+)+(-3) (3)(-)+(-);
学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。
(四)小结
1、本节课你学到了什么?
2、本节课你有什么感受?(由学生自己小结)
(五)练习设计
1、计算:
(1)(-10)+(+6)
(2)(+12)+(-4)
(3)(-5)+(-7) (4)(+6)+(+9) (5)67+(-73) (6)(-84)+(-59) (7)(-33)+48 (8)(-56)+37
2、计算:
(1)(-)+(-) (2)+(-) (3)(-)+3 (4)(-)+ (5)7+(-) (6)(-)+(-) (7)(-)+ (8)+(-) (9)(-)+
3、用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
教学反思:
作为一名教师,又面对的是新教材,对于自己的教学工作,我认为主要要从以下及点进行反思:
一、对教材的反思。这是我进入初中的第一年,对新教材的认识比较肤浅,面对新课程,教师首先要转变角色,确认自己新的教学身份,如今的教材更注重的是学生个人能力的培养,并不是一味的老师为主体,专门讲解的那种模式,新课程要求老师由传统的知识传授者转变为学生学习的引导者、组织者。经过这么长时间的教学工作,我一个最大的认识就是给学生自主交流的时间多了,学生渐渐成了教室、课堂的主体,老师只是引导学生、辅助学生的一个个体。如初一数学第一章《数学与我们同行》里,老师讲授的内容可谓微乎其微,基本都是学生自主发挥,这就是新课程的特点,让学生讨论、动脑、学会总结。老师只是引导学生思考,最后判断、汇总学生结论正确与否的人。所以作为教师的我,在如何正确引导学生学习方面还需改进。
二、对学生的反思。从学生到老师的转变我用了不到半年时间,也许是有点快了,所以看到那些学生仿佛就看到自己过去的影子,所以通过这些日子与学生的交流,发现自己并不能很快适应老师这个角色,自己仿佛是个大孩子,对同学板不下脸,威性不够,现在的孩子本生就是从父母的溺爱中成长起来的,所以越是脾气好的老师就越是不象话,这就 是我这么些月来的最大感受。年轻就得付出代价,所以对学生得反思对于年轻教师来说就更关键了,掌握好学生得心理,对学生管理得尺度掌握的好坏就影响着学生的成绩。而且,现在的学生对于感兴趣的事物才会花更多心思,数学课本就乏味,所以如何让学生提起兴趣,这对于教学质量的好坏还是有很大的影响的。
三、教学中要尊重学生已有的知识与经验。教学活动必须建立在学生的认识发展水平和已有的知识经验基础之上,体现学生学习的过程是在教师的引导下自我建构、自我生成的过程。学生不是简单被动地接受信息,而是对外部信息进行主动地选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,这种生成是他人无法取代的,是由内向外的生长,而不是由外向内的灌输,其基础是学生原有的知识和经验。美国著名的教育心理学家奥苏伯尔有一段经典的论述"假如让我把全部教育心理学仅仅归纳为一条原理的话,我将一言以蔽之:影响学习的惟一最重要的因素就是学生已经知道了什么,要探明这一点,并应就此进行教学。这段话道出了“学生原有的知识和经验是教学活动的起点”。掌握了这个标准以后,我在教学中始终注意从学生已有的知识和经验出发,了解他们已知的,分析他们未知的,有针对性地设计教学目的、教学方法。
四、教学中注重学生的全面发展,科学的评价每一个学 生。新课程评价关注学生的全面发展,不仅仅关注学生的知识和技能的获得情况,更关注学生学习的过程、方法以及相应的情感态度和价值观等方面的发展。只有这样,才能培养出适合时代发展需要的身心健康,有知识、有能力、有纪律的创新型人才。
1、评价不是为了证明,而是为了发展。淡化考试的功能,淡化分数的概念,使“考、考、考,老师的法宝,分、分、分学生的命根”这句流行了多少年的话成为历史。
2、评价学生应该多几把尺子。尺子是什么呢?就是评价的标准,评价的工具。如果用一把尺子来量,肯定会把一部分有个性发展的学生评下去。
3、评价中应遵循“没有最好,只有更好”。学生在这种只有更好的评价激励下,会不断的追求,不断的探索和攀登。这才是评价的真正目的。
以上几点是我在新教材的教学实践和学习时的心得。新课程改革已全面展开,我们应该尽快成长起来,不要怕摔跤,不要怕挫折和困难,要不断学习、反思,不断充实自己,积累经验,在实践中去感悟新课程理念,让实践之树常青。
了解有理数加法的意义;理解有理数加法的法则;能根据有理数加法法则熟练地进行有理数加法运算.能运用加法运算律简化加法运算.
有理数加法法则的导出及运用过程,训练学生独立分析问题的能力及口头表达的能力.
理解加法运算律在加法运算中的作用,适当进行推理训练.
渗透数形结合地思想,培养学生运用数形结合地方法解决问题能力;
让学生感知数学知识来源于生活,培养学生用联系发展的观点、看待事物,逐步树立辨证唯物主义观点.
有理数加法法则的理解和运用,如何运用加法运算律简化运算.
异号两数相加的加法法则,灵活运用运算率.
问题1:“我从学校出发沿某条路向东走 米,再继续向东走 米,那么两次我一共向东走了多少米?”
学生活动设计:这里 都表示有理数,这显然是求两数 之和的问题,于是引出要研究的有理数的加法问题.
问题2:既然 均是有理数,它们可能是正数,也可能是负数或者零.同学思考一下: 的符号可能有几种情况?
学生活动设计:学生根据所学过的数的情况,容易想到有以下几种情况:同为正数、同为负数、一个正数一个负数、加数中有一个是0;
教师活动设计:下面我们就来研究这几种情况下有理数的加法问题.在研究之前,首先提醒同学注意正确理解“向东走 米”的含义.(用课件演示)为了研究的方便起见,用数轴来帮助我们,并设向东为正.
问题3:请你分别把a、b赋予不同情况的有理数,然后进行加法运算,你会有什么样的结论?你能发现有理数的加法法则吗?
学生活动设计:
同桌小组合作,主体探究,自主归纳;学生经过思考,可能会有以下结果(若没有讨论完整教师作适当提示).
情况1.若 同为正数:不妨设 ,用数轴表示如图:(有同学可能会说,这么简单不用数轴也能算出来.这时要告诉它,这里用数轴的目的并不是要结果,而是要体会过程,以便在其他的情况下为用数轴解决问题)显然一共走了35米,写出算式就是:
情况2.若 同为负数:不妨设 ,这时应怎样用数轴表示?(学生画数轴)这时问题的实际意义是:我向西走了20米后,再向西走了15米,我实际向东走了-35米.即:
情况3.若 一正一负:不妨设 .请同学们用数轴表示出来,并解说这时问题的实际意义.(如图)(实际意义就是我向东走了20米以后,接着我又向西走了15米.我实际是向东走了5米)即:
情况4.若 呢?这时问题的实际意义是什么?怎样用数轴来表示?(同学操作)结果:
情况5.若 时,这时问题的实际意义是什么?
结果:
情况6.若 时,这时问题的实际意义又是什么?
结果:
情况7.若 时,这时问题的实际意义是什么?
结果:
情况8.若 时,这时问题的实际意义是什么?
结果:
综合以上几种情况,得到8个式子,我们将这8个式子分成同号、异号、有零的三种情况统计如下:
同学归纳有理数的加法法则,若归纳不完整,则有其他同学进行补充,直到法则完善化,必要时教师进行点拨:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、异号两数相加时:
(1)若绝对值不相等,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
(2)若绝对值相等,和为0.也就是相反数的和为0;
3、一个数与0的和仍得这个数.
巩固练习:
计算:(先口述运用法则的过程,然后说出计算结果)从计算的过程看,你有什么发现?
(1) ;(2) ; (3) ;(4) ;
(5) ; (6) ; (7) ; (8) .
归纳:进行加法运算时首先判断关系、其次确定符号、最后计算绝对值.
(1) ; (2) ; (3) ;
(4) ; (5) .
学生活动设计:学生独立完成,在完成的过程中可以让学生进行板演,然后再共同分析过程的正确性,在分析过程的正确性时要充分发挥学生的主体性,让学生充分发表自己的看法,最后得到统一的正确的结论.
体验1:请你任意取两个有理数(至少有一个是负数),填入下列□和○中,比较它们的运算结果,你能发现什么?
□+○ ○+□
学生活动设计:
学生独立完成这项任务,自己寻找自己认为合适的有理数,经过运算,可以发现:对任意的两个有理数都有□+○=○+□,即:小学里学的加法交换律在有理数范围内仍成立
体验2:请你任意取三个有理数(至少有一个是负数),填入下列□、○和◇中,比较它们的运算结果,你能发现什么?
学生活动设计:
学生独立完成这项任务,自己寻找自己认为合适的有理数,经过运算,可以发现:对任意的两个有理数都有(□+○)+◇=□+(○+◇),即:小学里学的加法结合律在有理数范围内仍成立,即:a+b=b+a,(a+b)+c=a+(b+c).
1.计算下列各式.
(1) ;
(2) ;
(3) ;
(4)1+(-2)+3+(-4)+……++(-).
学生活动设计:学生独立思考,完成对上述问题的解决,在解决的过程中可能有不同的方法,出现时可以让学生比较各种方法间的异同、优劣,以找到最佳方法,体会运算律的作用.
(1)中运用运算律可以先把正数相加,再把负数相加,然后再把结果相加即可;(2)中运用运算律可以先把第一项和第三项相加、第二项与第四项相加;(3)运用运算律先把前三项相加、后两项相加;(4)运用结合律把2006个加数分成1003组,分别相加.
〔解答〕(1)-17; (2)-1; (3)-5 ; (4)-1003.
已知每袋的额定重量为200千克,这批水泥总重量的误差总量是多少千克?
注意观察误差值有无互为相反数?所以实际误差总值是袋号7、12、19、20的误差值的和:
=
于是误差总量是不足25千克.
〔解答〕略.
3.一只乌龟沿南北方向的河岸来回爬行,假定向北爬行的路程记为正数,向南爬行的路程记为负数,它爬行的过程记录如下(单位m):-8,7,-3,9,-6,-4,10.
(1)乌龟最后距离出发点多远,在出发点的南边还是北边;
(2) 求乌龟在整个过程中一共爬行了多远的距离.
学生活动设计:
学生思考,这个问题可以运用什么知识,由于(1)求的是乌龟最后距离改为的位置与出发点的距离改为关系,因此可以把上述过程记录加起来,看运算结果即可,而(2)求的是一共爬行的路程,因此把上述过程记录取绝对值后再加起来就行了.
〔解答〕
(1)-8+7-3+9-6-4+10=5,所以在出发点的北边;
(2)|-8|+7+|-3|+|9|+|-6|+|-4|+10=47;
所以乌龟在整个过程中一共爬行了47米.
小结:
1.加法法则(主要是异号两数相加);
2.加法运算律.
作业:习题1.3 第1、2题,第7、8、9、10题.
[人教版有理数的加法优秀教案及教学设计]
相关文章
最新文章