解比例课件通用十一篇

11-30

对于刚刚开始工作的教师来说,编写教案和制作课件是非常重要的。在编写教案和制作课件时,教师不能草草了事,必须认真对待。教师需要按照教案和课件来进行授课。如果你对这方面感兴趣,建议你可以阅读一下“解比例课件”,说不定会对你有帮助!

解比例课件 篇1

教学目标:

1、理解正比例的意义,能够根据正比例的意义判断两个量是否成正比例。

2、了解表示成正比例的量的图像特征,能根据图像解决有关正比例的简单问题。

3、通过观察、实验、计算等方法,逐步理解正比例的意义。

4、在小组合作学习中,发展学生的观察分析、判断推理和抽象概括的能力,初步渗透函数思想。

5、培养学生动手操作、实验、观察等良好的学习态度和习惯。

6、感受数学的魅力,体会数学知识间的联系,感受数学知识在生活中的广泛应用。

教学重点:理解正比例的意义。

教学难点:掌握正比例的量的变化规律及其特征。

教学过程:

一、复习导入

商店里有两种包装的手套,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元,哪种手套更便宜?

学生独立完成后,老师提问:你们是怎么比较的?(求出手套的单价再进行比较)根据哪个数量关系式进行计算的?(单价=总价÷数量)如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。老师板书课题。

二、新授

1、教学例1,学习正比例的意义。

⑴出示例1表格,让学生观察表中的数据,思考表中有哪两种量?总价是怎样随着数量的变化而变化的?(表中有数量和总价两种量,数量增加,总价增加;数量减少,总价减少。数量扩大到原来的几倍,总价也扩大到原来的几倍;数量缩小到原来的几分之几,总价也随着缩小到原来的几分之几。)

⑵认识相关联的量。

像这样,一种量变化,另一种量也随着变化,这两种量叫做“相关联的量”。

2、计算表中的数据,理解正比例的意义。

⑴计算相应的总价与数量的比值,看看有什么规律。

0.5/1=1.0/2=1.5/3=2.0/4=2.5/5=3.0/6=3.5/7=4.0/8,比值相等。

⑵说一说,每一组数据的比值表示什么?(圆珠笔的单价)

⑶让学生用公式把圆珠笔的总价、数量、单价之间的关系表示出来。

总价/数量=单价(一定)

⑷明确成正比例的量及正比例关系的意义。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系。

如果用字母y和x表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:y/x=k(一定)(老师板书)

3、列举并讨论成正比例的量。

⑴生活中还有哪些成正比例的量?让学生说一说。(速度一定,路程和时间成正比例;长方形的宽一定,面积和长成正比例)

⑵小结:成正比例的量必须具备哪些条件?哪个条件是关键?(两种量是相关联的量;一种量变化,另一种量也随着变化;它们的比值不变,这是关键。)

4、认识正比例图像。

⑴课件出示例1表格及正比例图像,让学生观察统计表和图像,你发现了什么?(每一个数量和相对应的总价组成的一组数在图像上都体现为一个点,这些点连起来是一条直线;正比例图像是一条直线。)

⑵把数对(10,5.0)和(12,6.0)所在的点描出来,再和上面的图像连起来并延长,你还能发现什么?让学生操作后发表自己的见解。(这两个点与上面的图像仍能连成一条直线。无论怎样延长,得到的都是直线。)

⑶从正比例图像中,你知道了什么?(可以由一个量直接找到对应的另一个量;可以直观地看到成正比例的量的变化情况)

⑷利用正比例图像解决问题。

买7只圆珠笔总价是多少元?20元能买多少只圆珠笔?(3.5元;40只)

小明买的圆珠笔的数量是小丽的2倍,他花的钱是小丽的几倍?(在单价一定的情况下,数量和总价成正比例关系,小明买的圆珠笔的数量是小丽的2倍,他花的钱也应是小丽的2倍。)

三、巩固应用

1、P46 做一做,引导学生独立完成并汇报交流。

2、P49 2、师生共同完成。

3、P49 4、学生独立完成后,汇报并集体订正。

四、小结:通过本节课的学习,你有什么收获?

解比例课件 篇2

教学目标

1.结合丰富的实例,认识反比例。

2.能根据反比例的意义,判断两个相关联的量是不是成反比例。

3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

教学重点

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学难点

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程

一、复习

1.什么是正比例的量?

2.判断下面各题中的两种量是否成正比例?为什么?

(1)工作效率一定,工作时间和工作总量。

(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

(3)正方形的边长和它的面积。

二、导入新课

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

三、进行新课

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

同桌交流,用自己的语言表达。

写出关系式:速度×时间=路程(一定)

观察思考并用自己的语言描述变化关系乘积(路程)一定。

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。

写出关系式:每杯果汁量×杯数=果汗总量(一定)

以上两个情境中有什么共同点?

4.反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

教学内容:

苏教版义务教育课程标准实验教科书第60-61页

教材分析:

在本节课之前,学生们已经基本掌握了“用方向和距离描述、画出相关物体位置和描述简单的行走路线”方法。“实际测量”是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。

“实际测量”的主要内容包括:用工具测量两点间的距离,步测和目测。

在“用工具测量两点间的距离”的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;“步测和目测”的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。

教学目标:

⑴使学生会用工具测量两点间的距离、步测和目测的方法。

⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。

⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。

教学重点:

掌握“用工具测量两点间的距离、步测和目测”的方法。

教学难点:

掌握“用工具测量两点间的距离、步测和目测”的方法。

教学具准备:

卷尺、标杆、50米跑道。

教学流程:

一、揭示课题,明确学习内容。

⑴揭示课题。

板书课题——实际测量。让学生说说对课题的理解。

⑵了解测量工具。

让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。

⑶明确学习内容。

测量地面上相隔较远的两点间的距离;步测和目测。

二、了解测量知识,为实践活动作准备。

⑴测量相隔较远的两点间的距离。

理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。

理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;

观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)

掌握测定直线的步骤:测定直线;分段量出;记录计算。

⑵学习步测的方法。

理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。

掌握步测的`方法:用步数×每一步的距离。

理解步测的关键:确定平均步长。

掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。

理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。

⑶学习目测的方法。

观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。

目测较短距离:人书本的长和宽;课桌的长和宽等等;

理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。

三、实践活动。

⑴测定直线。

⑵确定平均步长。

⑶步测篮球场的长和宽。

⑷目测教学楼的长度。

第三单元分数除法

第10课时按比例分配的实际问题

教学内容:

课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。

教学目标:

1、使学生理解按比例分配实际问题的意义。

2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。

教学重难点:

理解按比例分配实际问题的意义,掌握解题的关键。

课前准备:

课件

教学过程:

一、创设情境、引入新知

根据信息填空:

(1)男生有31人,女生有21人,男生人数是女生人数的。

(2)红花的朵数与黄花朵数的比是3:2。你能联想到什么?

师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。

二、探究新知

1、出示例11中的实物图及例题。

(1)让学生阅读题目后说说你知道哪些信息?

(2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:

①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;

②红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。

③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。

师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。

学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?

说说你是怎样做的?

方法一:3+2=530÷5×330÷5×2

方法二:30×3/530×2/5

2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?

说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)

如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)

3、完成练一练第1题。

4、完成试一试。

出示试一试。

提问:“按各小组人数的比分配”是什么意思?你想到了什么?

5、归纳(讨论)。

(1)比较例题与试一试题目在解答方法上有什么共同特点?

(2)怎么解答?

求总份数,各部分量占总数量的几分之几,最后求各部分量。

(3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)

三、应用比的知识解决实际问题

1、练一练第2题。

独立完成后进行交流

指出:把180块巧克力按照三个班的人数来分配,就是按怎样的比进行分配?

2、练一练第3题。

独立填表,完成后集体核对。

3、练习十第1题。

四、课堂总结

这节课学过以后,你有什么收获?

五、布置作业:

练习十第2、3题。

教学反思:

教学过程:

(一)导引探究,由表及里

教学例1,认识成正比例的量。

1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。

时间(时)123456……路程(千米)80160240320400480……

在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)

2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。

3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。

4.让学生根据板书完整地说一说表中路程和时间成什么关系。

[数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]

(二)自主探究,尝试归纳

出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?

速度(千米/时)406080100120……时间(时)3020151210……

1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?

2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。

3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。

[从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的形成过程。]

(三)对比探究,把握本质规律

1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。

多媒体呈现:

例1路程/时间=速度(一定)

路程和时间成正比例

例2速度×时间;路程(一定)

速度和时间成反比例

2.探究活动。

(1)让学生仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。

(2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。

[例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定”还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]

(3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。

启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?

根据学生的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。

[概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]

3.组织对比性练习。

(1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:

表1

数量/本2030405060……总价/元3045607590……

表2

单价/元1。52456……数量/本4030151210……

在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!

在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。

[将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]

(2)成比例与不成比例的对比练习。

下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?

①圆的直径和周长。

②小麦每公顷产量一定,小麦的公顷数和总产量。

③书的总页数一定,已经看的页数和未看的页数。

[这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解,才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]

(3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。

[举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系。

解比例课件 篇3

教学内容:人教版六年级下册认识比例尺(课本第48、49页)

教材分析:

本节内容是在比的基础上教学的,教材首先说明为什么要确定图上距离与实际距离的比,明确它的意义,并给出比例尺的概念,再结合两幅地图比例尺,介绍数值比例尺和线段比例尺,又通过一个机器的放大图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺写成前项或后项为1的比。例1教学线段比例尺改写成数值比例尺,为后面比例尺的计算作铺垫。

教学目标:

1、知识与技能:使学生认识比例尺的含义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。

2、过程与方法:通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。

3、情感态度价值观:体验数学与生活的联系,培养用数学眼光观察生活的习惯。

教学重点:理解比例尺的意义。

教学难点:能熟练解答比例尺的有关问题。

教学准备:多媒体课件、直尺、地图

教学过程:

一、情景引入,激发兴趣

师:北京是我国的首都,同学们,2008年北京奥运会取得了巨大成功,中国的悠久历史,灿烂文化,众多的名胜古迹,感受一下我们祖国的美丽!

师:今天老师把我们的祖国和首都北京搬进了课堂。(课件出示:数值比例尺为1:100000000的中国地图和线段比例尺为 的北京地图)你们知道我们的大中国和北京是如何画在这么小的地图上吗?

生:把它缩小。

师:老师可以利用地图和手中的一把直尺很快地告诉大家任意两地之间的实际距离,你想知道哪两地之间的距离呢?请出题考考老师。

生1:我想知道北京到上海之间的实际距离

生2:我想知道我们合肥到北京的实际距离

(师用地图量出地图中北京到上海、合肥到北京的图上距离,很快回答学生的问题)

师:同学们可能有这样的疑问,老师凭借这把直尺是如何知道两地之间的实际距离的呢?你们想知道其中的奥秘吗?

(设计意图:数学应该来源于生活,我在创设情景时把中国和北京搬进课堂,激发了学生的好奇心,又调动了学生探究新知的积极性)

二、揭示课题,提出疑问

师:其实老师仅靠手中的直尺是量不出两地之间的实际距离的,还需要用地图上的比例尺来帮忙。

今天这节课我们就来认识比例尺。(板书:认识比例尺)

师:关于比例尺,你想了解什么呢?

生1:什么叫比例尺?

生2:怎样求比例尺?

生3:比例尺是尺吗?

生4:比例尺有几种形式?

(设计意图:揭示本节课题,让处于对新知好奇的学生提出自己的疑问,带着问题有目的性地学习)

三、 实验对比,得出概念

师:为了解决同学们提出的疑问,我们来做一个实验。

师:我这有一条3米长的线段,你能把它画到自己的练习本上吗?你准备用图上几厘米来表示实际3米?请画在纸上。

展示学生的画图结果。

小组的同学互相讨论自己是怎么画的。

生1:我用1厘米表示实际3米。

生2:我用3厘米表示实际3米。

师:图上画的1厘米,3厘米叫“图上距离”,3米叫“实际距离”。

(设计意图:把3米长的线段画在本子上,让学生在动手实践过程中初步感受到比例尺的意义,为后面理解与把握“比例尺”的意义奠定基础)

师:为了看出图上距离和实际距离的关系,我们可以用比的形式来表示。(由于图上距离和实际距离的单位不同,要把不同单位化成相同单位)下面请各小组求出图上距离与实际距离的比。

展示学生求的比。

师:这些比的前项代表什么?后项又代表什么呢?

生:前项代表图上距离,后项代表实际距离。

师:谁能说说1:300 和 1:100表示什么意思?

生答

师:像这样的比叫做比例尺,课件出示比例尺的定义。

师:根据比例尺的定义,你能得出求比例尺的方法吗?(讨论)

生:图上距离:实际距离=比例尺或图上距离/实际距离=比例尺

师:各小组设计的比例尺不一样,为什么?按哪一个比例尺画出的线段长,哪个比例尺画出的线段短?为什么?

小组的同学互相讨论。

用1:300 或1/300 和 1:100或1/100 等比的形式表示的比例尺叫数值比例尺。它们也可以表示成 和

课件出示:中国地图上“比例尺1:100000000”表示的意义是什么?

师:你们发现1:100 1:300 1:100000000这些比例尺都是把实际距

离怎么样?

生:缩小

师:老师这儿有一个机器上的小零件,你们觉得它怎么样?

生:很小

师:这么小的零件如何把它画在图纸上。

生:把它放大

师:很好!课件出示机器零件的放大图纸。

师:你知道图中2:1表示什么吗?

生:图中2厘米表示实际的1厘米。

师:你们发现这些数值比例尺有什么相同和不同的地方吗?

相同点:

生1:前项表示图上距离,后项表示实际距离。

生2:比的前项或后项为1

不同点:

生:1:100 1:300 1:100000000是把实际距离缩小,2:1是把实际距离放大

师:为了计算方便,通常把比例尺写成前项或后项为1的比。

出示课本第49页的“做一做”,指名板演,集体订正。

(设计意图:学生通过独立思考、讨论与交流得出比例尺的意义,并学会了怎样求比例尺,从中体会探索的乐趣)

四、 探讨数值比例尺和线段比例尺的互化

呈现北京市地图让生找出“比例尺 ”

师:这种表示方法叫线段比例尺,表示图上距离1厘米相当于地面上50千米的实际距离。

师:如何把这幅地图的线段比例尺改成数值比例尺?

小组的同学互相讨论尝试改写。师板书例1.

师:谁能说说改写时要注意什么?

师生共同小结。课件出示:(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0(2)比例尺是一个比,不带单位名称(3)比的前项为1

师:怎样把数值比例尺改写成线段比例尺呢?

呈现课本第53页的第1题。学生独立做,集体订正。师强调实际距离的单位要改写成所要求的单位。

(设计意图:将数值比例尺与线段比例尺的互化安排在一起教学,便于学生比较,让学生在尝试性地改写、练习中理解并掌握。)

五、巩固练习,深化概念

1、我会判断

(1)比例尺是一种测量长度的尺子 ( )

(2)一副图的比例尺是80:1,表示把实际距离扩大80倍 ( )

(3)比例尺的后项一定比前项大 ( )

(4)把线段比例尺 改写成数值比例尺是1:8000000 ( )

2、教师黑板的长为3米,在图纸上的长为3厘米,求这幅图纸的比例尺。

3、精密仪表上的一个零件4毫米,量得在设计图纸上的长度是8厘米,求这幅图纸的比例尺。

(设计意图:这些练习,既巩固新知,又让学生体验思维的乐趣,既沟通数学与生活的联系,又培养了学生应用数学知识的能力,充分调动了学生学习的积极性)

六、课堂小结

通过这节课的学习,你有什么收获?你认为自己的表现如何?给自己打打分。

七、布置学生填质疑卡

八、作业

课本练习八的第2、3题

解比例课件 篇4

教学目标:

1、理解成反比例量的含义,能够正确判断两种量之间是否具有反比例关系。

2、认识事物间的相互关系和发展变化规律。

3、感受数学与生活的联系,培养学生热爱数学的情感。 教学重点:理解成比例的量的含义。

教学难点:

有条理地分析两种量之间的关系是否具有反比例关系。

教学过程:

一、 创设情境,引入新课 。

1、昨天,咱们学习了成正比例的量,谁能说说什么叫做成正比例的量?

2、相关联、相对应、比值一定是什么意思?谁来帮我解释一下!

3、判断两种量是不是成正比例,关键抓什么?你能举出生活中成正比例的量的例子吗?

4、这节课,我们来学习与成正比例的量相反的,在数学上称———— 成反比例的量。﹙板书:成反比例的量﹚

二、 活动体验,感悟新知。

① 换零钱。

① 出示100元面值的人民币,找同学换成同样面值的整元零钱,你们会怎么给我换呢?

a) 随着学生回答填好下表:

b) 在换的过程中,你发现了什么?引导说出什么变了?怎样变的?什么没变?

c)小结:面值变化,换的张数也随着变化,面值扩大,换的张数反而缩小了,面值缩小,换的张数反而扩大了,但是总钱数不变。

d) 你能用式子表示它们之间的关系吗?〔板书:面值×张数=总钱数﹙一定﹚〕

② 出示例题。

把相同体积的水倒入底面积不同的圆柱形杯子。

1、

1、你能把上面的表格填完整吗?

2、请学生汇报,并说说自己的填表思路。

3、观察一下,从中你发现了什么?

4、小结:底面积增加,高度反而降低,底面积减少,高度反而升高,且相对应的高度和底面积的乘积一定。

5、怎样用式子表示它们的关系呢?

﹙随着学生回答板书:底面积×高=体积﹙一定﹚﹚

3、概括总结。

①比较这两张表,说一说它们有什么共同的地方?

﹙生:表中的两种量都是一种量变化,另一种量也随着变化,它们的变化规律是:两种量中相对应的两个数的乘积总是一定的。﹚ ②师:像这样的两种量就叫做成反比例的量,谁来说说什么叫做成反比例的量?

③比较一下,反比例的意义与正比例的意义有什么相同点和不同点?

④和同学交流一下,成反比例的量需要具备哪些条件?

⑤想一想,生活中还有哪些成反比例的量?

6、你们能用一个式子表示出所有的反比例关系吗?

7、师小结:数学上为了统一,规定用x和 y表示两种相关联的量,用k表示它们的乘积﹙一定﹚,反比例关系可以用下面的式子表示:

X×y=k﹙一定 ﹚

三、体验内化,应用践行。

1、运一批货物,每天运的吨数和需要的天数如下表。

①表①表中有哪两种量?它们是不是相关联的量?

②写出几组这两种量中相对应的两个数的积,并比较积的大小。 ③说明这个积表示什么。

④表中相关联的两种量成反比例吗?为什么?

2、判断下面的每题中的两种量是否成反比例,并说明理由。 ①学校食堂新进一批煤,每天的用煤量与使用的天数。 ②全班的人数一定,每组的人数和组数。

③圆柱体积一定,圆柱的底面积和高。

④《小学生作文》的单价一定,总价和订阅的数量。 ⑤书的总页数一定,已经看的页数和未看的页数。

⑥差一定,被减数和减数。

⑦铺地面积一定,方砖边长与所需块数。

⑧如果10÷x=y﹙x≠0﹚y和x成反比例。

解比例课件 篇5

教学内容:人教版六年制小学数学第十二册P95-99页内容。

教学目标:

1、情感目标:在复习活动中让同学体验数学与生活实际的密切联系,培养同学的数学应用意识,激发同学胜利学习数学和自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。

2、能力目标:通过小组合作整理知识框架,提高学习的系统性,培养同学归纳、总结等自我复习能力和团队合作精神,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。

3、知识目标:(1)使同学进一步掌握比和比例的意义、性质,能正确迅速地解比例、化简比和求比值。(2)进一步理解比例尺的意义,能应用比例尺的知识求出平面图的比例尺以和根据比例尺求图上距离和实际距离。

教学重点:理解比和比例的意义、性质,掌握关于比和比例的一些实际运用和计算。

教学难点:能理清知识间的联系,建构起知识网络。

设计思路:

担任了几年毕业班的数学教学,到六年级的下学期,将有一半以上的课程是在复习和整理,保守的复习课让习题一道道出现,让同学仅仅停滞在"会"的目标上,这复习课究竟应该如何去上好,应该如何让同学感受学习的快乐和数学的魅力一直是我们思索的问题。在一次班会课上,同学自身组织了班会活动,他们采用了电视上娱乐节目的形式,玩得非常高兴,一瞬间,我就想,这样的形式是否可以植入我的数学课堂?这样是不是数学课上的我也可以和班会课一样成为同学的组织者,引导者和合作者,而不是课堂上的"权威"?本着"体现新理念,用活教材,练活习题,激活课堂"的思想,针对本节课的教学目标,我采用让同学分组竞赛的方法,把复习活动贯穿到课前、课中、课后,让同学在合作与竞争中理解本课重点,疏通知识脉络,建构知识网络,掌握复习方法。

课前准备:

1、把同学分成四大组,让同学给自身组取名(如精灵队、快乐队等),把比和比例分成"比和比例的意义"、"比和比例的性质"、"求比例和化简比"、"比例尺"四大块,让每一组抽签确定本组的一个研究主题,然后分组研究本局部的知识包括哪些我们需要掌握的内容,有哪些重点和难点,最后拟定五个问题。要求这五个问题反映本组全体同学的水平,它们要能基本概括你们所研究主题的全部内容以和重点难点,而且为了本组能取得好成果,提出的问题要有价值,要有一定的考虑性。然后依次向其它小组提问,请他们作答。

2、教师准备地图一张、投影片、小黑板若干。

3、每一小组有一信封,信封内装有比和比例各局部知识名称和一张白纸。

解比例课件 篇6

教学目标

1.经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2.在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3.进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点

正确理解正比例的意义,并能准确判断成正比例的量。

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,概括出正比例关系的概念。

教学资源

学生已学过一些常见的数量关系和计算公式,掌握比和比例的知识。

预习菜单。

预习作业设计

1.填空

①已知路程和时间,怎样求速度?()Ο()=速度

②已知总价和数量,怎样求单价?()Ο()=速度

③已知工作总量和工作时间,怎样求工作效率?()Ο()=速度

2.预习例1观察下表,思考下列问题:

一辆汽车行驶的时间和路程如下:

时间(时)

1

2

3

4

5

6

……

路程

(千米)

80

160

240

320

4000

480

……

①表中有哪两种量?

②这两种量的数值分别是怎样变化的?

③你发现这两种量变化有什么规律吗?如果看不出规律的话,可以先写出几组相对应的路程和时间的比,求出比值,想想有什么规律。

学程设计导航策略调整反思

一、揭示题课,认定目标(预设2分钟)我们学过一些常见的数量关系,这节课我们进一步来研究这些数量关系中的一些特征。通过学习我们要弄清什么样的两个量成正比例,怎样判断两种量是否成正比例。

二、交流合作,提炼建模(预设7分钟)

1.出示例1小组交流预习情况。

2.全班交流汇报,探究新知:

①理解“相关联的量”。

②用式子表示路程和时间的变化规律。

③学生看书、质疑。揭示路程和时间是成正比例的量。

3.根据板书完整地说一说表中路程和时间成什么关系。组织全班交流

1.引导学生认识:时间变化,路程也随着变化,这样的两种量,就叫做两种相关联的量。(板书:两种相关联的量)实际生活中,还有哪些相关联的量呢?跟你的同桌说一说。结合举例,抓住“随着”一词说明:一种量的变化,是因为由另一种量的变化引起的,这样的两种量才是相关联的量。

2.引导学生用式子表示路程和时间的变化规律,教师相机板书:路程/时间=速度(一定)

3.象这样的两种量,它们的关系叫什么?请同学们打开课本,自己获取有关概念。组织汇报:通过看书,你知道了些什么?还有什么疑问?(老师适时板书)

4.教师指导学生完整地说一说表中路程和时间的正比例关系。

三、抽象分析,掌握方法(预设10分钟)1.围绕学习菜单完成“试一试”。

①独立思考。

②小组交流。

2.全班交流汇报。完整地说说表中总价和数量成什么关系。

3.比较例1与试一试,思考并讨论,这两个题有什么共同点?

4.如果用字母χ和У分别表示两种相关联的量,用κ表示它们的比值,用式子怎样表示正比例关系?

5.成正比例的量具备哪两个条件?1.引导学生完整地说说表中总价和数量成什么关系。

2.教师相机板书正比例的关系式。

3.引导学生提炼出成正比例的两个条件。

四、分层练习,内化提升(预设11分钟)

1.完成第63页“练一练”。学生先独立思考并作出判断,再说出判断理由。

2.做练习十三第1—3题。第1、2题,学生先算一算,想一想,再交流汇报。第3题学生先画出放大后的图形,计算它们的周长和面积,再思考题中的两个问题。

3.学生举例并说明理由。

先小组交流,然后全班交流。

4.判断并说理。“小张跳高的高度和他的身高”成正比例。

1.引导学生有条理地说明判断的思考过程。

2.通过讨论使学生进一步明白:只有当相关联的量中每一组对应数的比值一定时,这两种量才成正比例。

3.生活中哪些量之间存在比例关系?我们学过的数量关系中,哪些是正比例关系?下面进行一个举例和说理比赛,各小组至少举一个正比例关系的例子,并说明理由。组织学生“举例及说理”交流。

4.老师也举了一个正比例的例子,请大家和我作一辩论。

小张跳高的高度和他的身高。让学生应用正比例的意义,尝试着判断数量之间的关系,是对正比例意义学习的强化,还培养了学生的应用意识。

1.学生独立作业,教师巡视,个别辅导差生。

2.学生完成作业后,反馈矫正。

3.引导学生自我评价课堂学习表现。

教学反思

我是这样预设的,以例1为导路线,通过说、想、听等环节刺激学生的感觉器官,“试一试”完全尊重学生的自主权,根据学习菜单让学生独立完成,讲练结合,尽量做到老师少讲、精讲,时间控制在(15分钟)左右,学生主栽着整个课堂。苏霍姆林斯基曾说过:“在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中这种需要特别强烈。”上完这节课,我更加深刻的体会到这一点:学习活动的主体是学生,开放型的数学教师不仅关注学生的智慧生命,还关注学生的情感价值生命。我深信本节课的后半部分,通过学生自己探索、研究、发现、人人练习的过程,体验到成功的喜悦。

解比例课件 篇7

设计说明

本节课教学的正比例是数学中比较重要的两个量的关系,它比较抽象、难理解,是今后学习反比例及初中学习函数知识的基础。结合本节课的教学内容及学情实际,本节课在教学设计上主要体现以下几个方面:

1.有效利用教材图表,增强对相关联的量的形象感受。

教学伊始,在复习铺垫的基础上,引导学生仔细观察图表。在观察中,使学生发现正方形的周长和面积随着边长的变化而变化及变化规律,充分体会到什么是相关联的量,为进一步学习正比例知识打下基础。

2.科学调动多种感官,增强对知识形成过程的体验。

在数学教学过程中,教师如果能够有效地调动学生的多种感官参与学习活动,让学生利用更多的大脑通路来处理学习信息,建立起对知识与技能的深刻记忆,成为学习的主人,就能促进学生提高学习效率。本设计努力为学生创设动眼、动手、动脑、动口的机会,使学生在观察、操作、分析、比较、讨论、交流中,不断探究相关联的两个量之间的关系,逐渐发现其中的规律,体会正比例的意义。

3.体会数学与生活的密切联系,关注对正比例意义的理解。

因为正比例表示的是两个相关联的量之间的关系,是学生接下来学习反比例及今后进一步学习函数知识的重要基础。所以,本设计十分重视学生对知识的理解。通过创设具体情境,激发学生的学习兴趣,使学生积极主动地思考并结合熟悉的情境及数量关系理解正比例的意义。

课前准备

教师准备 多媒体课件

教学过程

第1课时 正比例的认识

⊙复习导入

1.引导回顾。

师:什么是相关联的量?请举例说明。

(学生汇报)

2.导入新课。

师:两个相关联的量之间肯定存在着某种关系,我们今天要学习的正比例就是表示两个相关联的量之间的关系的,这种关系是怎样的呢?让我们一起进入今天的学习。

设计意图:通过回顾旧知,进一步理解相关联的量,为在新情境中探究两个相关联的量之间的变化规律作铺垫。

⊙探究新知

1.借助图表,进一步感知相关联的量。

面积/cm2

小组合作探究,交流下面的问题:

(1)上面是正方形周长与边长、面积与边长之间的变化情况,把表格填写完整,并说说你分别发现了什么。

(2)同桌合作填表。

(3)仔细观察表格,讨论:正方形的周长是怎样随着边长的变化而变化的?正方形的面积是怎样随着边长的变化而变化的?

预设

生1:我从表中发现正方形的边长增加,周长也增加。

生2:我从表中发现正方形的边长扩大到原来的几倍,周长就随着扩大到原来的几倍。

生3:我从表中发现正方形的周长总是边长的4倍。

生4:我从表中发现正方形的边长增加,面积也增加。

……

(4)比较:正方形的周长与边长的变化规律和正方形的面积与边长的变化规律有什么异同?

预设

生1:相同点是都随着边长的增加而增加。

生2:不同点是周长随边长变化的规律与面积随边长变化的规律不同。

生3:在变化过程中,正方形的周长与边长的比值一定,都是4。

生4:在变化过程中,正方形的面积与边长的比值是一个不确定的值。

解比例课件 篇8

教学建议

知识结构

重难点分析

本节的重点是线段的比和比例线段的概念以及比例的性质。以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系――相似三角形,这些内容的研究都离不开线段的比和比例性质的应用。

本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的。

教法建议

1。生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

2。小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

3。这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

4。黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

5。比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

教学设计示例1

(第1课时)

一、教学目标

1。理解线段的比的概念。

2。通过与小学知识到比较,初步培养学生类比的数学思想。

3。通过线段的比的有关计算,培养学习的计算能力。

4。通过引言及例1的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育。

二、教学设计

先学后做,启发引导

三、重点及难点

1。教学重点 两条线段比的概念。

2。教学难点 正确理解两条线段的比及应用。

四、课时安排

1课时

五、教具学具准备

股影仪、胶片、常用画图工具

六、教学步骤

【复习提问】

找学生回答小学学过的比、比的前项和后项的概念。

(两个数相除又叫做两数的比,记作 或a:b,其中a叫比的前项,b叫比的后项)

【讲解新课】

把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b)。再求出长与宽的比。然后找三名同学把结果写在黑板上。如:

等。

可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比。

一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是 ,或写成 ,和数的比一样,a叫比的前项,b叫比的后项。

关于两条线段比的概念,教学中要揭示它的实质,即 表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致。另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度。

就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

(l)两条线段的比就是它们的长度的比。

(2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致。

(3)两条线段的比值总是正数。(并不都是正数)

(4)除了a=b之外, 。 与 互为倒数。

例1 见教材P202。

讲解完例1后:

(l)提问学生AB是 的多少倍, 是AB的多少倍,以加深学生对线段比的逾义的理解。

(2)给出:比例尺= ,就例1的图上,若图距是8cm的两地,实际距离是多少?

另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣。

例2 见教材P202。

讲解完例2后:

(l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关。

(2)常识1:有一锐角是30的直角三角形中,三边(从小到大)的比为 。

常识2:等腰直角三角形三边(从小到大)的比为1:1: 。

学生掌握了这些常识可有两点好处:

①知道例2中 以及习题5。l第2题(1)中边长为4。(2)中的对角线AC=a这些条件实际上都是多余的。

②这些题目若改成填空题,可避免一些不必要的计算。从而提高做题速度。这样不仅培养了能力,而且在考试中也受益匪浅。

因此,今后如遇到和此常识有关的知识要反复渗透,反复给学生强调,让它扎根于学生的下意识中。

【小结】

1。两条线段比的概念以及应注意的问题。

2。会求两条线段的比。

七、布置作业

教材P210中2、3。

八、板书设计

解比例课件 篇9

教学内容:

教材第84页例1---3题,练习十七第1、3题。

教学目标:

1、进一步理解比和比例的意义与基本性质,掌握比和分数、除法的关系。能够正确、迅速地求出比值和化简比。

2、应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。

3、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学重点:

掌握比和比例的意义与基本性质。

教学难点:

根据比例尺求图上距离和实际距离。

教具准备:

多媒体课件

教学过程:

一、 导言引入课题

比和比例(一)

二、教学例1

先在下表中写比和比例的一些知识,再举例说明。

比 比例

意义

各部分名称

基本性质

三、教学例2

比和分数、除法有什么联系?先填写下来,说一说它们的区别。

联系 例子

各部分名称

分数 分子 分数线 分母 分数值

除法

做一做:5:6=( )( )

四、教学例3

比的基本性质、分数的基本性质、商不变规律之间有什么联系?

1、学生交流

2、化简比。

3、化简比与求比值有什么不同之处?

一般方法 结果

求比值

化简比

五、解比例

X= :2【说一说思路和方法】

六、比例尺

1、什么叫做比例尺?

2、说出下面各比例尺的具体意义。

①比例尺1:3000000表示_____________

②比例尺20:1表示 _____________

3、求比例尺: 一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图的比例尺是多少?

4、求实际距离:在比例尺是 的地图上,量得A到B的距离是5厘米。求AB两地的实际距离?

5、求图上距离:甲乙两地相距200千米,在比例尺是 的地图上,甲乙两地用多少厘米表示?

七、知识应用

练习十七第1、3题。

八、总结梳理

回顾本节课的学习,说一说你有哪些收获?

板书设计:

比和比例(一)

比和比例的意义与性质。

比和分数、除法的关系。 比和比例(一)

比、比例的基本性质的用途。

比例尺。

比例尺的应用。

教学反思:

在教学中,让学生重温小学阶段比和比例的有关知识并进行系统整理。先让学生回忆,配合相关的练习题,让学生进行训练,加深学生的理解。进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上举例和实际距离培养学生用数学眼光观察生活的习惯。

解比例课件 篇10

教学目标

知识与技能:

1、知道什么叫做解比例,会根据比例的性质正确地解比例。

2、培养学生认真书写和计算的习惯。

过程与方法:

经历解比例的过程,体验知识之间的内容在联系和广泛应用。

情感与价值观:

感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

教学重难点

教学重点:

解比例

教学难点:

解比例的方法。

教学工具

ppt课件

教学过程

一、复习准备

1、提问

师:同学们,前面我们学习了比例,

出示:1、什么叫做比例?2、比例的基本性质是什么?

(分别指名学生回答)

2、想一想

出示比例:3:2=( ):10

师:你能利用比例的知识说一说括号里应填几?为什么?

生:可以根据比例的意义3:2 =1.5,想( ):10=1.5(15比10等于1.5);还可以根据比例的基本性质,两个外项的积等于30,想( )×2=30(15乘以2等于30)。

师:你能快速地说出这个括号里应填几吗?

出示比例:( ):0.5=8 : 2

师:仔细观察这两个比例,其中几项是已知的?(三项)另一个项是未知的,我们把它叫做(未知项),一般用x表示。根据什么就可以求出这个未知项?(比例的基本性质)

像这样,求比例中的未知项,叫做解比例。(课件出示)。

今天这节课我们就来学习解比例。(板书课题,学生齐读)

二、探索新知

1、出示埃菲尔铁塔情境图。

师:解比例在我们生活中的应用是十分广泛的,同学们,请看:

这是法国巴黎最有名的塔叫埃菲尔铁塔,高度约320米。我国北京世界公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。

2、出示例题,教学例2。

指名学生读题。

师:从这道题中你能得到哪些数学信息?(指名学生回答)

问:1:10是谁与谁的比?你又能写出怎样的数量关系式?

学生回答后,课件出示:模型的高度:铁塔的高度=1:10。

师:在这个关系式中,谁还是已知的?

(埃菲尔铁塔的高度是320米。)

师:在这个关系式中,我们知道其中的(三项),另一个项不知道,可以设为x,(课件出示)这样就可以写出一个比例,谁来说说看?

课件出示:X:320=1:10

师:怎样解这个比例呢?

引导学生讨论后回答:应用比例的基本性质,把比例写成方程。

师:同学们会解方程吗?试着把这个方程解出来。

学生投影展示解比例过程,师适时讲解强调。

师:我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是否相等.)或用比例的基本性质(看看两个外项的积和两个内项的积是否相等来检验。

师:解比例在生活中的应用十分广泛,我们来总结一下解决这类问题的一般步骤:(先根据问题设X——再根据数量关系列出比例式——然后根据比例的基本性质把比例转化为方程——解方程)最后别忘了检验噢!(课件出示)。

师:现在同学们会用解比例的方法来解决问题了吗?

3、教学例3

师:这个比例你会解吗?出示例3

师:它与例2有什么不同?(这个比例是分数形式)应该怎样解呢?同桌先说一说,然后指名学生说一说你是怎样解这个比例的。(可以根据比例的基本性质---交叉相乘的积相等把比例转化成方程,然后解方程求出未知数X)

师:想一想括号里应填什么?

师:回顾一下我们是怎样解比例的?

学生说完课件出示,强调最后别忘了检验。

三、巩固练习

1、课件出示4道解比例,学生独立完成,投影展示。

2、解决问题:教材“做一做”第2题。(学生分析后指名学生板演,其他练习本上独立完成,然后集体订正)

3.你知道吗?

侦探柯南之神秘脚印

四、布置作业

课下,和小组成员想办法测量出我们学校旗杆的高度!

五、课堂总结

通过这节课的学习,你有那些新的收获?

学生畅所欲言。(什么叫解比例?怎样解比例?)

板书

解比例

求比例中的未知项,叫做解比例。

解比例课件 篇11

课题

比例尺

教材分析

本节内容是在比的基础上教学的,教材首先说明为什么要确定图上距离与实际距离的比,明确它的意义,并给出比例尺的概念,再结合两幅地图比例尺,介绍数值比例尺和线段比例尺,又通过一个机器的放大图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺写成前项或后项为1的比。例1教学线段比例尺改写成数值比例尺,为后面比例尺的计算作铺垫。

学情分析

教学时我们从学生已有的生活经验出发。先是引导学生去寻找生活中的比例尺。六年级学生正处于具体形象思维向抽象逻辑思维的过度的阶段,因此结合学生的年龄和心理特点我设计了需要统一作图的标准这一环节让学生感受到比例尺在生活中的重要性。在本节课中我充分发挥信息技术辅助教学的优势引导学生在生动形象的情境中探究新知。创设富有挑战性的问题情境生动有趣的练习情境使学生积极主动地参与到数学活动中去。

教学目标

(体现多维目标;体现学生思维能力培养)

1、知识与技能:使学生认识比例尺的含义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。

2、过程与方法:通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。

3、情感态度价值观:体验数学与生活的联系,培养用数学眼光观察生活的习惯。

重点、难点

教学重点:理解比例尺的意义。

教学难点:能熟练解答比例尺的有关问题。

教法、学法

学生独立思考,小组合作,教师引导

教 学 流 程

媒体运用

任务导学

明确

任务

出示:数值比例尺为1:100000000的中国地图和线段比例尺为1:500000的北京地图)你们知道我们的大中国和北京是如何画在这么小的地图上吗?

老师可以利用地图和手中的一把直尺很快地告诉大家任意两地之间的实际距离,你想知道哪两地之间的距离呢?

同学们可能有这样的疑问,老师凭借这把直尺是如何知道两地之间的实际距离的呢?你们想知道其中的奥秘吗?

课堂探究

自主

学习

师:其实老师仅靠手中的直尺是量不出两地之间的实际距离的,还需要用地图上的比例尺来帮忙。

今天这节课我们就来认识比例尺。(板书:认识比例尺)

师:关于比例尺,你想了解什么呢?

师:为了解决同学们提出的疑问,我们来做一个实验。

师:我这有一条3米长的线段,你能把它画到自己的练习本上吗?你准备用图上几厘米来表示实际3米?请画在纸上。

合作

探究

1、小组的同学互相讨论自己是怎么画的。

师:为了看出图上距离和实际距离的关系,我们可以用比的形式来表示。(由于图上距离和实际距离的单位不同,要把不同单位化成相同单位)下面请各小组求出图上距离与实际距离的比。

展示学生求的比。

师:这些比的前项代表什么?后项又代表什么呢?

师:像这样的比叫做比例尺,出示比例尺的定义。

师:根据比例尺的定义,你能得出求比例尺的方法吗?(讨论)

生:图上距离:实际距离=比例尺或图上距离/实际距离=比例尺

师:各小组设计的比例尺不一样,为什么?按哪一个比例尺画出的线段长,哪个比例尺画出的线段短?为什么?

2、探讨数值比例尺和线段比例尺的互化

呈现北京市地图让生找出“比例尺 ”

师:这种表示方法叫线段比例尺,表示图上距离1厘米相当于地面上50千米的实际距离。

师:如何把这幅地图的线段比例尺改成数值比例尺?

小组的同学互相讨论尝试改写。

交流

展示

师生共同小结改写时要注意什么?

反馈拓展

拓展

提升

(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0(2)比例尺是一个比,不带单位名称(3)比的前项为1

评价

检测

1、我会判断

(1)比例尺是一种测量长度的尺子

(2)一副图的比例尺是80:1,表示把实际距离扩大80倍

(3)比例尺的后项一定比前项大

2、教师黑板的长为3米,在图纸上的长为3厘米,求这幅图纸的比例尺。

3、精密仪表上的一个零件4毫米,量得在设计图纸上的长度是8厘米,求这幅图纸的比例尺。

幼师资料《解比例课件通用十一篇》一文希望您能收藏!“幼儿教师教育网”是专门为给您提供幼师资料而创建的网站。同时,yjs21.com还为您精选准备了比例课件专题,希望您能喜欢!

相关文章

最新文章