栏目小编为大家整理的“整式加减课件”或许能够帮助您解决一些疑问。教案和课件是老师们日常工作中不可或缺的一部分,相信老师们对于编写教案和课件并不陌生。结合教学实践,编写紧密相关的教案和课件可以实现高效的教学效果。希望这些材料能对您有所帮助,可供您参考和使用!
教学内容:
课本第66页至第68页.
教学目标
1.知识与技能
能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
2.过程与方法
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
3.情感态度与价值观
培养学生主动探究、合作交流的意识,严谨治学的学习态度.
重、难点与关键
1.重点:去括号法则,准确应用法则将整式化简.
2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.
3.关键:准确理解去括号法则.
教学过程
一、新授
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为
100t+120(t-0.5)千米①
冻土地段与非冻土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都带有括号,它们应如何化简?
思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:
利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.
上面两式去括号部分变形分别为:
+120(t-0.5)=+120t-60③-120(t-0.5)=-120+60④
比较③、④两式,你能发现去括号时符号变化的规律吗?
思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).
利用分配律,可以将式子中的括号去掉,得:
+(x-3)=x-3(括号没了,括号内的每一项都没有变号)
-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)
去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.
二、范例学习
例1.化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.
解答过程按课本,可由学生口述,教师板书.
例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.
思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.
解答过程按课本.
去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.
三、巩固练习
1.课本第68页练习1、2题.
2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路点拨:一般地,先去小括号,再去中括号.
四、课堂小结
去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.
学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。
五、作业布置
1.课本第71页习题2.2第2、3、5、8题.
教学后记:
①通过回顾已经学过的知识,通过观察、比较,得到了整式的去括号法则。这样的通过实例,设计起点低,学生学起来更自然,对新知识更容易接受。
②在总结出去括号法则后,又给出了一个顺口溜,这是考虑到学生年龄小,顺口溜更便于记忆,而且也增加了学习的情趣。
③安排了例1到例5的一个组题,进行由浅入深、循序渐进的训练,以使学生更好地全方位地掌握去括号法则?另外,还安排了某些变式训练,既能让学生进一步熟悉去括号法则,又训练了他们的逆向思维。
教学目标:
知识与技能:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
过程与方法:
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
分层次教学,讲授、练习相结合。
情感、态度、价值观:
培养学生观察、归纳、概括及运算能力
教学重点:
掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
教学难点:单项式概念的建立。
教学过程:
一、复习引入:
1、列代数式
(1)若正方形的边长为a,则正方形的面积是;
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;
(3)若x表示正方形棱长,则正方形的体积是
(4)若m表示一个有理数,则它的相反数是;
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。
(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)
2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式? (1)x?12; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们31的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
4.例题:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1; ②1
x; ③πr2; ④-3a2b。 2
答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2;④是,它的系数是-32,次数是3。
例2:下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2; ④-a3的系数是-1;⑤-32x2y3的次数是7; ⑥1πr2h的系数是1。 33
通过其中的反例练习及例题,强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等; ③单项式次数只与字母指数有关。
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
6.课堂练习:课本p56:1,2。
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。
四、作业设计
课本p59:1,2。
1.使学生熟练地确定单项式的.系数、次数,多项式的项数、次数及项;
2.理解单项式、多项式、整式的概念,会把某一多项式按某一字母进行升幂或降幂排列;
3.理解同类项的概念,掌握合并同类项的法则,能够熟练地合并同类项;
4.会去括号和添括号;
5.熟练进行整式加减运算;教学重点:结合知识要点进行基础训练,整式的加减复习教案 韩龙华。教学难点:立足基础训练,拓展思维空间。教学过程:
(1)整式的分类:单项式、多项式、整式
(2)单项式的系数、次数:单项式中的数字因数叫做这个单项式的系数;单项式中所有字母的指数的和叫做这个单项式的次数。注意:单独一个数或字母也是单项式;单项式的系数不能写成带分数,要写成假分数;字母的书写次序要按英文次序
(3)多项式的项数和次数:多项式里,次数最高的项的次数就是这个多项式的次数,教案《整式的加减复习教案 韩龙华》。
(4)同类项:所含字母相同,相同字母的指数也相同,符合这两个条件的项称为同类项。注意两相同两无关;
(5)合并同类项的法则:把系数相加,字母和字母的指数不变。
(6)去括号法则:括号前面是“+”号,把括号和它前面的“+”去掉,括号里各项都不变符号。括号前面是“—”号,把括号和它前面的“—”去掉,括号里各项都改变符号。括号前面带系数的,按乘法分配律计算。
(7)添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“—”号,括到括号里的各项都改变符号。
(8)整式的加减步骤:如果有括号,就先去括号,再合并同类项。注意:用多项式进行列式时,要用括号把它括起来,作为一个整体来使用。
(9)求代数式的值:如果能化简,就先化简,再代入求值;代入数字求值时,分数、负数的乘方要加括号;切记要先代入后计算。
(10)升幂与降幂的排列:2课堂训练1.单项式-x2a+1y3与2x3yb+1合并后结果为x3y3,则a+b=.2.单项式5x2y、3y2x、-4xy2、yx2的和为。3.3b3-(2ab2+4a2b-a3)=3b3+a3-。4.若x2+xy=3,-xy+y2=5,则x2+y2=, x2+2xy-y2=,5.如果m是三次多项式,n是三次多项式,则m+n的次数是()A. 六次B. 不高于三次C. 三次D. 不低于三次6.化简求值:(1)(x-2y)-2(2y-x)(2)(4a+3a2-3-3a3)-(-a+4a3)其中a=-2(3)若A=4a3b-5b2,B= -3a2b2+2b2且A+B+C=0,求C。
一、教学目标
知识与技能
1、掌握合并同类项的法则,能进行同类项的合并。
2、会利用合并同类项将整式化简。
过程与方法
通过类比数的运算律得出合并同类项的法则,在教学中渗透“类比”的数学思想。
情感态度与价值观
1、通过参与合并同类项法则的探究活动,提高学习数学的兴趣。
2、培养学生合作交流的意识和探索精神。
二、重点难点
重点
合并同类项法则。
难点
合并同类项法则的应用。
三、学情分析
学生在上一节学习了同类项的概念,这为本节学习奠定了一定的基础,但合并同类项牵扯到抽象的字母,学生难于把握,因此一定要搞清楚字母与数的关系。
四、教学过程设计
问题设计师生活动备注
情景创设
问题1:青藏铁路上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度可以达到100千米/时,在非冻土地段的行驶速度可以达到120米/时,请根据这些数据回答下列问题:
学生思考并回答:
100+252
在具体情境中用整式表示问题中的数量关系,利用实际问题吸引学生的注意力。
在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所用时间的倍,如果通过冻土地段需要小时,你能用含的式子表示这段铁路的全长吗?
问题2:式子100+252能化简吗?依据是什么?
提出问题2,让学生带着这个问题来解决探究1、
[学生]独立完成探究1中的(1),并对(2)进行分组讨论、
[师]巡视,对能化简出结果的小组,请他们说出化简的理由及依据、对不能化简出的小组应加以引导,参与到他们的讨论中、
在探究1的基础上,以原有的关于数的运算律的知识,开展探究2、
观察多项式中各项的特点,得出合并同类项的概念、
合并同类项:把多项式中的同类项合并成一项、
类比数的运算,探究得出合并同类项的法则、
法则:所得项的系数是合并前各同类项系数的和,字母部分不变、合并同类项以及整式的加减是建立在单项式、多项式的相关概念的基础上,因此在学习新知识之前对前面的知识有必要进行简单的回顾、
通过对探究1和探究2的探讨,引出同类项的概念、合并同类项概念、
问题2是本节内容的核心,让学生在探究的过程中体会用字母表示数的意义,培养学生的抽象概括能力,在小组合作中体会交流的重要性和必要性。
注意:
1、学生在活动中是否参与到讨论中
2、学生对概念的理解和掌握情况以及对合并同类项法则的总结情况
3、学生表述情况是否有条理,是否清晰请点击下载Word版完整试题:新人教版七年级数学上册《2.2整式的加减(第2课时)》
优秀的人总是会提前做好准备,平常的学习工作中,幼儿园教师会提前准备一些资料。资料一般指可供参考作为根据的材料。参考资料会让未来的学习或者工作做得更好!那么,关于幼师资料你了解哪些内容呢?下面,我们为你推荐了整式的课件,如果对这个话题感兴趣的话,请关注本站。
教学目标:
教学内容分析:
本节课的教学内容是《整式的加减》(第1课时),是在学习了整式的有关概念之后的一节课。整式的加减是整式的运算、因式分解、解一元二次方程及函数的基础,是“数”向“式”的正式过渡,它具有十分重要的地位,而整式加减的知识基础则是同类项的概念及同类项的合并,整式的加减主要是通过合并同类项从而把整式化简,所以本节课在中学数学中的地位不言而喻。
教学重点和难点:
同类项的概念及合并同类项的方法
教学设计思路:
长期以来,学生主动学习的意识淡薄,对教师的依赖性很大,学生长期处于被动接受的学习状态,使学生变得内向、被动、缺少自信、恭顺……窒息了学生的创造性。新课程要求“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流合作的能力”。为此要求我们教师努力变“知识给予”为“教育交往”,变“教程”为“学程”,在课堂上向学生提供从事数学活动的机会,帮助学生改变旧的学习模式,引导学生在学习活动中自主探究问题和解决问题,使每一个学生在数学课堂中各有所得。为了突出教学的重点、突破教学的难点,本节课拟采用探究式教学法:通过观察生活实例,从学生已有的生活经验出发,采取合作探究的学习方式,通过小组合作讨论等方式开展学习活动,让学生独立自主地发现问题、分析问题并独立地解决问题,在探究的过程中,获得成功的体验,增强学习数学的信心,发展学生学习数学的积极性,并通过探究活动,使学生体验探究的过程,培养思维的变通性和严密性,培养学生的探索精神和创新能力。
教学主要过程设计:
教后反思:
这节课的教学设计是基于以学生探究为主的学习方式,目的是让学生在自主探索、亲身实践、合作交流的氛围中认识数学、理解和掌握基本数学知识、基本数学技能和基本数学方法,充分体现了新课程的理念。
一、成功之处
本节课突出了三个“注重”:
(一)注重创设问题情境。上课伊始即以实物进行分类,激发学生的学习兴趣,把学生注意力和思维活动迅速调节到积极状态,接着,让学生通过观察把认为同类型的单项式进行分类,从而引出同类项概念,又通过“游戏”等方式对同类项概念进行辨析,这样可充分揭示同类项概念的内涵,同时为学生提供了充分从事数学活动的机会。特别是[活动8]先是提出“3个人再加5个人得多少个人?”这一通俗易懂的问题,而后进一步提出“3个人再加5张桌子得8个人?还是8张桌子?”这一看似有些荒唐的问题,实际上却突破了合并同类项这一重点难点即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;合并同类项时,只能把同类项合并成一项,不是同类项不能合并。
(二)注重学生之间的合作交流。学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程,动手实践、自主探索与合作交流是学生学习数学的重要方法。本节课设计过程中非常注重这方面的活动设计,从实物分类、引出概念到概念辨析以及课堂小结无处不体现学生是学习的主人这一新课程理念。
(三)注重能力的培养。本节课教学设计中注重让学生动手、动口、动脑,发展了学生学习的积极性,既训练了学生的语言表达能力,又培养了学生自主探索、自主学习、合作交流、协作学习和归纳概括的能力,发展了学生发散性思维,培养了学生思维的变通性和严密性,培养了学生的探索精神和创新个性,提高了学生对信息的处理能力,锻炼了学生的实践能力。
二、需要完善之处
视学生实际情况,如能再给学生练习课本165页例1,然后教师再点评的话,那么就是锦上添花了。因为学生在掌握同类项的概念和合并同类项的方法后,再通过解决像例1这样生活中的实际问题,就更能使学生理解“数学来源于生活,而又服务于生活”,体现了“学数学、用数学”、“学有所用”的基本理念,使学生体会到数学是解决实际问题的有力武器,增强应用数学的意识。
第一课时
教学目标:
1、经历探索整式的乘法运算法则的过程,会进行简单的整式的乘法运算。
2、理解整式的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。
教学重点:
整式的乘法运算。
教学难点:
推测整式乘法的'运算法则。
教学过程:
一、探索练习:展示图画,让学生观察图画用不同的形式表示图画的面积。并做比较。由此得到单项式与多项式的乘法法则。观察式子左右两边的特点,找出单项式与多项式的乘法法则。
跟着用乘法分配律来验证。
单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加。
二、例题讲解:
例2:计算(1)2ab(5ab2+3a2b);
(2)解略。
三、巩固练习:
1、判断题:(1)3a3·5a3=15a3( )
(2)( )
(3)( )
(4)—x2(2y2—xy)=—2xy2—x3y( )
2、计算题:
(1);(2);(3);(4)—3x(—y—xyz);(5)3x2(—y—xy2+x2);(6)2ab(a2b—c);(7)(a+b2+c3)·(—2a);(8)[—(a2)3+(ab)2+3]·(ab3);(9);(10);(11)(。
四、应用题:
1。有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?
五、提高题:
1。计算:(1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2—3xn—1+1)。
2。已知有理数a、b、c满足|a―b―3|+(b+1)2+|c—1|=0,求(—3ab)·(a2c—6b2c)的值。
3。已知:2x·(xn+2)=2xn+1—4,求x的值。
4。若a3(3an—2am+4ak)=3a9—2a6+4a4,求—3k2(n3mk+2km2)的值。
小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。作业:课本P11习题1。3教学后记:
第二课时
教学目标:
1、经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算。
2、进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力。
教学重点:
多项式乘法的运算。
教学难点:
探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题
教学过程:
一、探索练习:如图,计算此长方形的面积有几种方法?如何计算?小组讨论。你从计算中发现了什么?多项式与多项式相乘,_____________________________。
二、巩固练习:1。计算下列各题:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11)。
三、提高练习:
1、若;则m=_____,n=________
2、若,则k的值为( )(A)a+b(B)—a—b(C)a—b(D)b—a
3、已知,则a=______,b=______。
4、若成立,则X为__________。
5、计算:+2。
6、某零件如图示,求图中阴影部分的面积S。
7、在与的积中不含与项,求P、q的值。
一、小结:
本节课学习了多项式乘法的运算,要特别注意多项式乘法的运算中不要“漏项”、和“符号”的正确处理。
六、作业:第28页习题 1、2
根据我校学生的情况,本节学习了整式的加减,以及化简求值的简单应用。
我认识到了在学生已经学过了合并同类项的基础上,让学生学会分析实际问题中的数量关系,并列出整式表示。 从而求代数式的值。在教学中要注意引导学生与旧知识的联系,教师教学中应注意以下几点:
1、要对合并同类项,去括号进行复习,让学生熟练的掌握去括号的法则。
2、先让学生自主独立列出整式,然后教师再给出“先列式,然后化简,再带代入”的方法,进而比较以前学习的“先化简,再代入”,让学生在感情上接受比“化简求值”有一个更新的要求。
3、提供“先列式子,再化简求值”在实际生活中的应用,尤其是分析问题中的数量关系,为下一章学习一元一次方程,在列方程做必要的准备。
1、学生要从已有的知识分析问题中的.数量关系,列出整式。
2、学生应该积极主动地在列出式子后就用已学知识化进行化简求值。
3、可适当加强练习,是学生再一次熟练掌握整式加减的运算法则,为今后的学习打下基础。
4、通过在实际生活中的应用,激发学生的学习兴趣, 让学生体验学习“会列出整式”的有用性。
三维目标
一、知识与技能
使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数。
二、过程与方法
通过实例列整式,培养学生分析问题、解决问题的能力。
三、情感态度与价值观
培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义。
教学重、难点与关键
1.重点:多项式以及有关概念。
2.难点:准确确定多项式的次数和项。
3.关键:掌握单项式和多项式次数之间的区别和联系。
教具准备投影仪。
四、课堂引入
一、复习提问1.什么叫单项式?举例说明。
2.怎样确定一个单项式的系数和次数?-的系数、次数分别是多少?
3.列式表示下列问题:
(1)一个数比数x的2倍小3,则这个数为________.
(2)买一个篮球需要x(元),买一个排球需要y(元),买一个足球需要z(元),买3个篮球,5个排球,2个足球共需________元。
(3)如图1,三角尺的面积为________.
(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米。
《整式》这节课作为本章起始课显得尤其很重要,核心概念是单项式与多项式的概念,及由此归纳出的整式的的概念.这也是本节课教学重点.通过数与式之间的联系,教材中蕴含的主要数学思想方法有“类比”,及“转化”的思想方法,由单项式与多项式间的关系,体现了数学知识间具体与抽象的内在联系及数学的内在统一性.
在教学中我注意发挥本节内容整式承前启后的作用,在小学,学生们已经学习了用字母代替数,列代数式表示现实世界中简单的数量关系、根据数量关系列方程和解方程,有了这些基本知识,学生已经对整式具有了一定的感性认识.但在学习本课重点----单项式的概念,系数和次数,理解多项式的概念和正确确定多项式的次数和项数这些新出现的概念与名词时特别要处理好本课教学难点:①系数是负数或分数时的情形.系数为圆周率②多项式的次数和项的次数混淆.
我在本节课堂教学采用“情境—问题—探究—反思—提高”课堂结构,使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程.通过观察课件的演示,让学生分组讨论、交流、总结,由学生自主发表意见.
本课主要的教法为:学生在“可探索”的教学情境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、主动发展.
本课学生学法为:主动探究——自学议论----自主总结——主动提高.
①计算机辅助教学②小组合作讨论式等教学两种方式.
整式的教学反思4篇教学反思设计的问题,激发学生学习兴趣,引导学生开展积极主动的数学思维;如何根据学生实际提供适度的学习指导;如何安排变式训练和知识应用,巩固知识,加深对数学本质的理解;如何安排反思活动,引导学生归纳、总结并概括本堂课的学习内容.本节课容量偏大,给学生思考时间应适当。
整式及整式的加减法在本学期并不是难点,但是也是很重要的一个单元。《整式》这节课作为本章起始课显得尤其很重要,核心概念是单项式与多项式的概念,及由此归纳出的整式的的概念。这也是本节课教学重点。通过数与式之间的联系,教材中蕴含的主要数学思想方法有“类比”,及“转化”的思想方法,由单项式与多项式间的关系,体现了数学知识间具体与抽象的内在联系及数学的内在统一性。
在教学中我注意发挥本节内容整式承前启后的作用,在前面的学习中,学生们已经学习了用字母代替数,列代数式来表示简单的数量关系,有了这些基本知识,学生已经对整式具有了一定的感性认识。因此,在引入情境中设置两个用代数式表示的问题,这两个问题的结论中包含数与字母、字母与字母的乘法运算以及乘方运算,还特别使它们的系数有正有负也有分数。然后让同学们去找它们的共同特征,通过自主探究的方式让学生发现单项式的主要特点,然后总结归纳出单项式的概念。然后重点落实单项式的系数和次数,通过一组练习加以巩固,并及时总结判断的方法及注意事项。
教学目标:
1.学生经过观察、合作交流、讨论总结出去括号的法则,并能正确且熟练地运用去括号法则化简代数式。
2.让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。
问题1:周三下午,校图书馆起初有a名同学,后来某年级组织同学来阅读,第一批来了b位同学,c,则馆内一共有多少位同学?
提问: 上述问题中得到的等式你熟悉吗?从左至右有什么变化?
法则1:括号前面是“+”号,去掉括号及其前面的“+”号,括号内各项不变号。
问题2:若图书馆内原有a位同学,后来有些同不因上课要离开,第一批走了b位同学,第二批又走了c位同学。请用两种方式表示图书馆内还剩下多少位同学?
提问: 上述问题中得到的等式你熟悉吗?从左至右有什么变化?
法则2:括号前面是“―”号,去掉括号及其前面的“―”号,括号内各项都变号。
①a+(b+c) ②a-(b-c) ③a-(-b+c) ④a-(-b-c)
例2:两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时。
(1) 2小时后两船相距多远?
(2) 2小时后甲船比乙船多航行多少千米?
1. 本节课你学习了什么?你有哪些收获?
2. 主要用到的思想方法是什么?
3. 要注意的问题有哪些?
1.能说出单项式与多项式相乘的法则,并且知道单项式乘以多项式的结果仍然是多项式。
2.会进行单项式乘以多项式的计算以及含有单项式乘以多项式的混合运算。
3.通过例题教学,培养学生灵活运用所学知识分析问题、解决问题的能力。
重点:本节课的教学重点是掌握单项式乘以多项式的`法则。
问题:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一 个月内的销售量(单位:瓶)分别是a,b、c.你能用不同的方法计算它们在这个月内销售这种商品总收入吗?
让学生分析题意,得出两种解法:
解法(一):先求三家连锁店的总销量,再求总收入,即总收入(单位:元)为:m(a+b+c)①
解法(二):先分别求三家连锁店的收入,再求它们的和,即总收入(单位:元)为:ma+mb+mc ② 请学生探究①和②是否表示的结果一致?
得出结论后再由乘法分配律公式(a+b)c=ac+bc从另一个角度推出结论m(a+b+c)=ma+mb+mc?
想一想:你能由此总结出单项式与多项式相乘的乘法法则吗?教师总结如下:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. ?例题分析:分部讲解课本100页例5 的两道例题 (在学习过程中重点提醒学生注意 符号问题,多项式的每一项都包括它前面的符号)
(一)根据例题分析,启发学生总结单项式与多项式相乘的实质和一般步骤:
1.单项式与多项式相乘的实质是利用分配律把单项式乘以多项式转化为单项式乘法 。
2.单项式与多项式相乘时,分三个阶段:①按分配律把乘积写成单项式与单项式乘积的代数和的形式;②按照单项式的乘法法则运算 ③再把所得的积相加.
(二)强调计算时的注意事项:
1.计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负
4.对于混合运算,注意最后应合并同类项。
练一练:课本101页的练习1和2 。给学生足够的时间进行基础练习,安排2-3个同学在黑板上演示解题过程,及时观察学生知识的掌握状况,及时纠错以便加深印象,使学生深刻理解单项式与多项式相乘的解题思路及基本方法。(注:学生在计算过程中,容易出现符号问题,要特别提醒学生注意.)
计算:(1)3a(5c-2b)?(2)(x-3y)·(-6z) 让学生在练习本上计算,然后老师通过课件对照答案,这样使学生更加熟练地掌握单项式与多项式相乘的解题思路及基本方法。
1、这节课你学到了哪些知识?
这节课,实际内容不多,也很简单,重要的是用法则来进行计算,但是在讲课时我通过实际问题,和学生一起推导出了法则,然后让学生学解题。我感觉如果让学生自己通过小组探究法则,然后学解题,这样效果会更好。
教学目标
1.会进行含有括号的整式加减运算。
2.会先进行整式的加减,再求值。
复习旧知识,引入新知识
复习“去括号法则”,请同学们先完成题目1:
教师根据情况分析错误原因,并提醒学生注意括号前面的“—”号。分析:在去括号的运算中,当()前是“-”号时,容易犯的错误是只将第一项变号,而其他项不变。
通过练习题1的分析后,再让学生继续完成练习题2,进行知识强化。(让4个学生出黑板板示,允许其他同学出来修改)
师:前面我们学习了合并同类项、去括号,本节课我们学习整式的加减。进行整式的加减运算,实际上就是做两件事,第一件事是去括号,第二件事是合并同类项。请看例6.
(按去括号、合并同类项两步先让生尝试)
师:通过上面的学习,你能说出整式加减的基本运算步骤吗?
每一步应注意什么?
让学生观察例题的过程,找出解题的路径。
试探练习,回授调节
师:请学生4人出黑板板示,其他同学在自己座位上迅速完成,作好改错准备。
生:在自己座位上独立完成?
板示学生返回座位后,发现有错误的学生可出黑板改正。
师:提问学生,要求说出错误在什么地方,并加以改正。
生:?
学生练习,老师巡查并指导。
学生多数会漏写括号。
师:在这几个整式相加或相减时,为什么要加上括号
生:思考回答?
师:观察本例,并说出本例与之前练习有什么区别?
生:此例最后给出x、y的值,要求多项式的值。
师:请用两种方法做一做,并比较哪一种方法简单些?
学生通过比较,都会认为先化简,后求值较为简单些。
教师再板书规范的书写过程。
通过本题的解答,让学生进一步熟练整式加减法的一般解题步骤,让学生先化简再求值,并培养学生规范的解题格式。
学生练习,教师巡查指导,及时提醒出现差错的学生改正。注意不同层次学生的积极性的调动,使每个学生都参与到训练中来,积极动脑、动手,同时教师对差生进行指导和鼓励。
尊敬的各位专家评委、各位同仁:
大家好!我是,很高兴有这样一个机会与大家一起学习、交流,希望大家多多指教。我今天的教学设计课题是《整式的加减》。
以下我就六个方面来介绍这堂课的教学设计内容:
本节课选自华东师范大学出版社初一数学第三章第四节。根据大纲要求,合并同类项是本章节的一个重点,其法则的应用是整式加减的基础,也是今后学习解方程、解不等式的基础。
另一方面,这节课与前面所学知识有着千丝万缕的关系,在合并同类项过程中,要不断的运用有理数的运算,以及去括号,可以说合并同类项是有理数运算的延伸与拓展。因此这是一节承上启下的课。
根据教材结构特点与教学重、难点,特制定如下教学目标:
(1)、掌握什么样的项是同类项,通过具体情境探究得出同类项可以合并,并形成合并同类项的法则。
(2)、能运用合并同类项的法则进行合并同类项。
(1)、通过观察、思考、类比、探索等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。
(2)、会利用合并同类项的知识解决一些实际问题。
(3)、通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力。
(1)、通过由数的加减推广到同类项的合并,可以培养学生由特殊到一般的思维认知规律。
(2)、通过具体情境的探索、交流等数学活动培养学生的团结合作精神和积极参与、勤于思考意识。
利用引导发现法、讨论法,引导学生从具体生活情境及已有的知识和生活经验出发,提出问题与学生共同探索,以调动学生求知欲望,培养探索能力和创新意识。
利用多媒体创设教学情境,引导学生观察、探索、发现、归纳来激发学生学习兴趣、激活学生思维,以利于突破教学重点和难点,提高课堂教学效益。
自主合作探究法:主动观察→分析→思考→比较→探索→联想→猜测→类比→归纳→例题探索→练习挑战、巩固提高→总结
学生合作完成探究1以后,再小组合作探究2:
让学生学会用眼睛去观察,用大脑去思考,从而引导学生自己总结出同类项的概念。 象10a和5a这种所含字母相同并相同字母的次数也相同的项叫做同类项。
为了更好的让学生掌握同类项的概念,我设计了五道抢答题,让学生快速识别同类项,很大程度上提高了学生的积极性,让他们享受到了学习的快乐。
下列各组中的两个项是不是同类项?
加深学生对概念的理解,教师在此过程中注意学生表述情况是否有条理,是否清晰。 之后类比数的运算,学生合作探究得出合并同类项的法则.
合并同类项法则:所得项的系数是合并前各同类项系数的.和,字母部分不变.
之后设计了一个这样的练习,进一步熟悉法则及应用。
(2)?3x2y?2x2y?3y2x?2xy2;
(3)4a2?3b2?2ab?4a2?4b2.
学生接受同类项的定义不是很难,但是做到判断无误却很困难,需要通过练习,反复强调同类项判断标准,使学生通过分析、比较,逐步提高准确度和熟练度.
学生先独立完成,之后教师详细讲解,并示范.
教师巡视过程中;要注意规范做题格式,以培养学生良好的书写习惯。再要注意了解学生的困难点,以便在讲解过程中加以重视.
(1)求多项式2x2?5x?x2?4x?3x2?2的值,其中x?;
学生独立完成,教师巡视.引导学生应用两种方法进行比较:直接代入求值,先化简再求值,看哪种方法简便.
(2)求多项式3a?abc?c2?3a?c2的值,其中a??,b?2,c??3
比一比:规定时间内完成下面的练习,看谁做得既快又对.
(1)12x?20x; (2)x?7x?5x;
(4)y?y?2y;
综合结论:去括号和合并同类项是整式加减的基础,整式加减的一般步骤:先去括号,在合并同类项。
本节课我的设计理念是一切为了学生,让每个学生都得到不同的发展是我最大的心愿!
以上就是我对整节课的理解,望各位老师批评指正,谢谢!
下面是编辑为您整理的关于“加减法课件”的相关资料,这些资料仅供参考具体情况请以实际情况为准。老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是完整课堂教学的前提。
我通过看了视频学习之后在《有理数的加法》的教学中,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.
现在,试比较这两类教学设计的得失利弊.
第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.
第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。
总之,课堂教学千变万化,总会有一些让教师所意想不到的“节外生枝”,比如学生突然提出一个问题,课堂秩序突出失控,学生注意力不集中等等,出现这些问题教师该怎么应付呢?教师如果还按原先设计的方案去教学,那是行不通的,这时考验的就是教师的智慧,它需要教师临时生成适合于当时情境的教学设计,要围绕目标及时调整教学内容、方法,使教学过程能顺利地进行下去,调控课堂的有效方法就是提问。
看过“ 初一数学有理数的加减法教学反思”的还看了:
尊敬的各位评委老师:
大家好!我今天说课的内容是《同分母分数的加减法》。这是小学数学课程中的一项重要内容,对于培养学生的数学运算能力和逻辑思维具有重要意义。
首先,我们来看一下本节课的教学目标。我设定了三个主要目标:一是让学生掌握同分母分数加减法的运算规则;二是能够熟练进行同分母分数的加减运算;三是培养学生的逻辑思维能力和解决实际问题的能力。
在教学内容方面,我将从同分母分数的概念入手,通过生动的实例让学生理解同分母分数的意义。接着,我会引导学生探索同分母分数加减法的运算规则,通过观察和总结,让学生自主发现规律。最后,我会通过大量的练习,让学生巩固所学内容,提高运算能力。
在教学过程中,我将采用启发式教学法,通过提问、引导、讨论等方式,激发学生的学习兴趣和主动性。同时,我也会注重培养学生的合作精神和探究能力,让他们在互动中学习和成长。
对于学生的学习评价,我将采用多种方式相结合。除了课堂上的即时评价外,我还会布置课后作业和单元测试,以全面了解学生的学习情况。同时,我也会鼓励学生自我评价和相互评价,培养他们的.自我反思和合作能力。
本节课的教学重点和难点在于同分母分数加减法的运算规则的理解和掌握。为了突破这一难点,我会通过实例演示、归纳总结等方式,让学生深入理解运算规则的本质。同时,我也会注重培养学生的运算技巧,让他们能够熟练进行同分母分数的加减运算。
总之,本节课的教学设计旨在让学生在轻松愉快的氛围中掌握同分母分数的加减法,提高他们的数学运算能力和逻辑思维能力。我相信,通过我们的共同努力,学生们一定能够取得优异的成绩。
谢谢大家!
小数加减法教学设计
教学内容:
西师版四年级下册教科书第106页例
1、例2及相关练习题
教学目标:
1、能结合具体情境分析解决问题,能进一步体会小数进位加法、退位减法的意义;
2、理解小数加减法的计算原理,总结出小数进位加法、退位减法的计算方法;
3、培养学生良好的计算习惯,提高计算能力。
教学重点和难点:
1、理解小数加减法的算理,掌握其计算法则是教学重点;
2、位数不同的小数加减法计算是学习的难点。
教学过程:
一、复习旧知,引入新课
小黑板展示:
1、下面各数不改变大小,变成三位小数。
2、你会算吗?
+
—
+
-
让学生回忆以前学过的小数加减法的计算方法,迅速完成上面的题目。
引出课题:当进行多位小数加法运算时,相同数位上的数相加满十该怎么办?当进行多位小数减法运算时,某小数位上的数不够减又该怎么办? 板书课题:多位小数的加法和减法
二、共同探究,获取新知
1、小黑板展示教科书第106页例1的情境图。
教师:同学们仔细观察这幅图,说说从这幅图中获得了哪些信息?你能提出哪些问题?准备怎样解决提出的问题?(学生观察情境图,先独立思考,再与同桌讨论,在此基础上全班交流。)
学生:要知道李伯伯家应付水费和天然气费共多少元,就需要把他家这个月所交的两项费用合并起来:+
教师:同学们尝试估算这道题,完成后交流,说说自己估算的方法。(学生回答、交流。)教师:这个算式应该怎样列竖式计算?同学们经过探讨这个算式与我们以前学过的小数加法有什么不同之处?(两位小数加一位小数的进位加法)学生尝试独立列竖式计算,巡视观察。哪种是正确的?为什么?
根据讨论结果,教师板书:
+ ﹦
+
答:李伯伯家应付水费和天然气费共元。
课堂练习:出示练习题
教师总结:只要小数点对齐了,相同数位也就对齐了。板书:小数加法计算方法
2、自主学习例2 教师:下面我们看看同学们提出的第二个问题怎样解决?同学们尝试估算这道题,完成后交流,说说自己估算的方法。(学生回答、交流。)
教师:(1)笔算减法时,应注意什么?(2)怎样才能把数位对齐?(3)百分位上怎样减?
师生共同笔算该题,教师板书:
- ﹦
-
答:李伯伯家这个月水费比天然气费少付元。
学生完成算一算。交流计算结果。
教师总结:板书:小数减法计算方法
3、课堂小结
师生共同总结小数加减法的计算方法
教师:板书进行小数进位加法、退位减法时的注意事项。
三、课堂活动:
1、完成数学医院。独立完成后集体评讲
2、作业:教科书P109页1-4题
四、课堂总结
让学生说一说本堂课的收获和感受
教学目标:
整千的加减法的口算。
主动探索的精神和与同学积极合作的意识。
3。体验数学与生活的密切联系,形成良好的思维习惯。
重点与难点:
整百、整千数加减法的口算方法。
教学准备:
多媒体课件。
教学过程:
一、复习导入
1。口算:
40+20=6+29=83—30=56—8=
2。口答:
(,。
(个千。
(个十。
(个百。
今天我们来学习整百、整千数的加减法。(板书课题:整百、整千数加减法)
二、探究新知
1、创设情境,教学教材第95页例11。
(1)“五一”假期里,很多商场的家电都推出特价优惠活动了,爷爷去买了一台电视和一台冰箱。
同学们看到这条信息,能提出什么数学问题呢?
预设:电视和冰箱一共要多少元?
冰箱比电视贵多少元?
(2)你能解决问题吗?
(3)学生尝试解决第一个问题:1000+2000=
(4)怎样计算1000+2000等于多少呢?
学生独立计算,同桌交流算法,反馈。几种可能性如下:
1个千加2个千是3个千,3个千是3000。
从1+2=3想出1000+2000=3000。
(5)方法优化。
有的同学也用数的组成规律的方法,还有的同学也由1+2=3想出了1000+2000=3000。这两种方法在计算时有什么不同之处?你喜欢哪种方法?
学生独立思考,小组交流,指名汇报。
(6)另外一个问题你能解决吗?
列式计算。
同桌交流算法,说说各自怎样想的。
2、教学教材第95页例12。
(1)组织口算活动。
出示130这一组数,让学生分别想一个加+法算式和一个减法算式,将算式写在自己的练习本上。
(2)出示:80+50=130—50=
学生交流算法。
80+50=
8个十加5个十等于13个十,是130。
先算8+5=13,再在13后面补一个0,就是130。
130—50=
13个十减去5个十是8个十,8个十是80。
由13-5=8,再在8后面补一个0,就是80。
整千数怎样进行加减计算?
小结:整百、整千数的加减计算,最常用的是把它们看成几个百、几个千来加或减。
三、课堂作业
1。教材第95页“做一做”。
2。教材第97页练习十九第1题。
四、课堂小结
篇一
教学内容:
义务教育课程标准实验教科书人教版四年级下册第95—97页的例1和例2。
教学目标:
1、让学生自主探索小数加减法的计算方法,解决相关的实际问题。
2、合作交流,总结小数加减法笔算的一般方法,理解小数点对齐的道理。
3、感受新知识源于生活,又服务于生活的思想。
教学重点:
小数加减法的笔算方法。
教学难点:
理解小数点对齐的道理。
教学过程:
一、谈话引入、导入新课。
师:孩子们,你们陪爸爸妈妈一起逛过商场吗?(逛过)你们在逛商场的时候遇到过什么问题没有?
师:老师在逛商场时可遇到一大堆的问题呢,你们愿意和老师一起解决吗?
二、探索新课。
1、老师第一次逛商场买了两件商品,一件:534元,另一件:498元,请同学们帮老师算算一共要多少钱?这两件商品相差多少元?请大家用竖式计算。
学生在练习本上计算。让先做完的两个孩子去黑板上板演。 集体订正。
师:这是我们以前学过的整数加减法,请孩子们回忆一下刚才的计算过程,整数加减法竖式计算时要注意什么?
让学生说出整数加减法的计算方法是:相同数位对齐。(板书)
还是请同学们帮老师算算一共要多少钱?这两件商品相差多少元?
学生在练习本上计算。让先做完的同学去黑板上板演。
集体订正。
师:这是我们以前学过的简单的小数加减法。那么小数加减法竖式计算时要注意什么呢?
师:那么整数加减法和小数加减法在计算时有哪些相同的地方呢?
生:都是相同数位对齐。
师:整数加减法和小数加减法在计算时也有不相同的地方,哪些地方不同呢?今天我们就来继续研究小数加减法。(板书课题:小数加减法)
3、老师第三次逛商场又买了两件商品,一件:53.4元,另一件:
4.98元,孩子们能根据老师给的两条信息自己提问并解决它呢?请孩子们自己提出问题并解决。
学生操作,教师巡视。让一个孩子上去板演。如果正确了,师就问:有不同的方法吗?
(如果没有,教师故意把两个数的末位对齐写成竖式)问:这样的竖式行不行?
生:不行。他没有相同数位对齐。
师:和前面的题比较,它们有相同的地方吗?
生:它们都是末位对齐了。
师:为什么前面的计算可以末位(最低位)对齐,这道题就不可以呢?
让学生明白:前面的末位数位相同,这里的末位数位不相同。
师:为什么相同数位没有对齐就不能计算呢?
生:因为它们的计算单位不一样,所以,要相同数位对齐了才可以计算。
师:那么在小数计算中,什么情况下可以末位对齐?什么情况下不可以呢?
生:在小数计算中,末位数位相同就可以末位对齐,末位数位不相同就不能对齐。
9.8+6.28= 21.56+6.7= 50+3.75= 111.60—99=
5.64-1.7= 7.2-6.45= 100-9.78=
集体评价。
评价时,请孩子說說:你给大家提个醒,在写竖式时,哪一步最容易出错?
师:请同学们观察,在这些对齐的竖式里,小数点有什么规律? 生:小数点都是对齐了的。
师:说明一个什么问题呢?
生:说明小数点对齐了,相同数位就对齐了。
师:说得好。(在相同数位对齐的板书下面写上小数点对齐) 师:你能说说为什么小数点对齐了,相同数位就对齐了呢? 生回答略。
师:现在我们再来看看,小数加减法和整数加减法比较有哪些相同点和不同点呢?
相同点:都是相同数位对齐。
不同点:整数的末位对齐了,而小数的末位不一定对齐。追问:为什么呢?
让学生明白:整数的末位就是
师:对齐了竖式,你们会计算吗?先说说,你准备怎么计算? 生:按照整数的加减法的方法进行计算。
师:请同学们用最快的速度把刚才的几道题给计算出来。 学生练习,集体订正。
(二)教学例二:
出示例二:
小数加减法要注意什么?
师:孩子们都会做小数加减法了,能说说小数加减法要注意什么吗?
篇二
【学情分析】:
三年级的学生已学过整数加减法,绝大多数的同学能正确熟练地计算整数加减法。 他们已经初步认识了一位小数的含义,对元角分也比较熟悉。且三级学生一般都有自己购物付钱的经历,这些生活经验和认知经历都为本节课的学习奠定了基础。
【教材分析】:
简单的小数加减法是在学生学过万以内数的加、减法和初步认识一位小数含义的基础上教学的。教材创设了学生十分熟悉的购物情境,学生能根据自己的生活经验提出问题并解决问题。在学生运用口算方法解决问题的基础上,引导学生尝试运用竖式进行计算,并结合口算方法和过去学过的整数加减法竖式计算帮助学生理解小数加减法竖式计算推理。“试一试” 和“想想做做”主要巩固一位小数的加、减法,并解决一些实际问题。
【教学目标】:
1.理解小数加减法的意义,并掌握计算方法。
减法。
3.培养学生的抽象概括能力,迁移类推能力。
【重点、难点】:
减法的计算的基本方法。
2. 能够应用小数的加减法解决实际中的问题。
【教学准备】:
课件、投影仪
【教学过程】:
一、创设情境,引入新课:
(课件演示文具店,售货员出现在学生面前)
引入:欢迎各位小顾客光临本店,本店为大家提供各式各样的文具,老板说了开业期间所有文具一律低价销售,所以每个人只能挑选两样文具,你想选购本店哪两种文具?四人小组讨论:共有多少种不同的搭配,把自己购买文具的方案在组内交流一下。
[设计意图]创设学生熟悉的购物情境,激发学生的探究欲望;结合学生学过的搭配规律,探究共有多少种不同的搭配,为学生进一步探索购买文具要花的钱留下了广阔的思维空间。
二、探究新知,合作交流
(一)、用竖式计算小数加法
1、每人尝试计算自己购买文具要花多少钱?如果计算有困难的可以请组内小伙伴一起解决。
2、小组内交流各自解决问题的方法。
估计有以下两种方法:(将文具价格中的元和元相加、角和角相加。
3、全班交流。
随机请一学生交流自己购买文具的情况,花了多少钱?自己是如何解决这个问题的?统计班内有多少学生和他购买了同样的文具?自己又是如何解决这个问题的?提倡解题策略的多样化。
[设计意图]学生有购物经验和已有知识经验(整数加减法)做依托,尝试运用口算方法解决自己所提的问题是完全可能的,在学生独立解决问题的基础上,组织学生相互交流,体验解决问题策略的多样化和探索成功的喜悦。
4、引导学生尝试用竖式计算。
(1)以刚才那位同学交流了自己购买文具的情况为例,请学生尝试用竖式计算。
估计会出现下面两个竖式: 如 80.8+ 6 + 0.6
141.4
(计算小数加法和计算整数加法有什么相同的地方?
(3)用竖式算一算自己刚才购买文具的价钱算得对不对?
[设计意图]在学生运用口算方法成功解决问题的基础上,学生主动迁移过去加法竖式计算的经验,尝试运用竖式计算小数加法已不是一件困难的事情,在学生成功运用竖式计算解决问题的基础上,教师依托情境和学生已有的竖式计算经验,帮助学生理解怎样对齐数位,以及十分位相加满十,向个位进一的道理,很好地掌握小数加法的竖式计算,让学生再次品尝探索成功的喜悦。
(二)、用竖式计算小数减法
(1) 尝试用竖式计算
刚才我们每人都购买了两种文具,哪种文具贵些?贵多少钱?你能用竖式算一算吗?做完后与组内同学交流一下自己的计算方法。
(2)集体交流
重点讨论:得数前面的0和小数点能不能不写?计算小数减法和计算整数减法有什么相同的地方和不同的地方?
[设计意图]迁移小数加法竖式计算的经验,学生独立解决小数减法的竖式计算是完全可能的,在学生解决问题的基础上,围绕重点展开讨论,加深学生对计算中用0占位的理解。
(三)小结。
让学生说一说怎样计算小数加减法,在小数加减法中,要使相同数位的数对齐,只要什么对齐就行了?
(四)综合运用知识,解决问题。
除了刚才选择的文具外,你还喜欢哪两种文具?先求出它们价格的和,再求出他们价格的差,并在小组里交流。(交流时,教师的板书要有启发性,一方面使学生进一步加深用竖式计算小数加减法的印象,另一方面使一些学生进一步体会任选两种文具是有规律的,力争找出所有的组合,体会数学的魅力。
三、巩固应用
1.完成P96页“做一做”
学生可以提出两步.三步计算的问题
3.用数学:练习二十二第2题,学生独立解决。
第(2)小题可以估算或者口算,也可以计算出结果在做比较,得出10元不够的结论。
4.练习二十二第3题,要求学生自己寻找数据再计算。
5.练习二十二第4题,提出问题在计算。
四、梳理知识,总结升华
(1)这节课学习了什么?你能告诉大家要注意些什么吗?
(计算家庭支出情况,下周向老师和同学汇报。
[设计意图]活动由课内向课外拓展,激发学生运用所学知识解决实际问题的兴趣,发展学生的学生应用意识。
【板书设计】:
简单的小数加减法
0.8+0.6=1.4 1.2-0.6=0.6
元 角
1 . 20 . 8
-0 . 6 + 0 . 6
0 . 61 . 4
元 角
本文的核心内容是探讨与“整式的乘法课件”相关的话题。为了更好地进行教学,老师需要提前准备教案和课件。教案是保证教育教学质量的重要手段。请务必收藏本页,以便日后阅读。
整式的乘法课件教案
【教学要求】
1. 探索并了解正整数幂的运算 性质(同底数幂的乘法,幂的乘方,积的乘方),并会运用它们进 行计算。
2. 探索并了解单项式与单项式、单项式与多项 式、多项式与多项式相乘的法则,会进行简单的整式的乘法运算。
3. 会由整式 的乘法推导乘法公式,并能运用公式进行简单计 算。
4. 理解因式分解的意义及其与整式的乘法之间的关系,从中体会事物之间可以相互转化的辩证思想。
5. 会用提公因式法、公式法、分组法、十字相乘法进行因式分解(指数是正整数)。
6. 让学生主动参与到一些探索过程中去逐步形成独立思考,主动探索的习惯,提高自己数学学习兴趣。
多项式乘多项式测试
17. 原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值;已知两等式利用完全平方公式化简,相减即可求出ab的值;由已知等式求出 与 的值,原式利用平方差公式化简后代入计算即可求出值.
此题考查了整式的混合运算 化简求值,熟练掌握运算法则是解本题的关键.
整式的乘法测试
5.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x-a)(3x+b),得到的结果为6x2-13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2-x-6.
(1)式子中的a、b的值各是多少?
(2)请计算出原题的正确答案.
1.光源:
能够自行发光,且正在发光的物体。
3.光的直线传播:
在同种均匀物质中,光沿直线传播。
4.光线:
为了表示光的传播情况,我们通常用一条带有箭头的直线表示光的径迹和方向,这样的直线叫做光线。不是真实存在的。
(2)影子的形成;
(3)日食和月食的形成;
(4)激光引导掘进方向;
(7)立竿见影。
6.小孔成像特点:
(1)所成的像是倒立的实像;
(2)所成的像与小孔的形状无关,只与物体的形状有关。
(3)当物体与小孔的距离不变时,光屏离小孔越远,像越大。(光屏离小孔越近,像越小);
当光屏与小孔的距离不变时,物体离小孔越远,像越小。(物体离小孔越近,像越大)
7.影子的形成:
因为光沿着直线传播,且光不能穿过不透明的物体,所以光照射到不透明物体上,在物体的另一侧会有一个光照不到的区域,这就是影子。
8.判断月食:
太阳、地球、月亮位于同一条直线上,且地球在中间。
9.判断日食:
太阳、月亮、地球位于同一条直线上,且月亮在中间。
10.光速:
光在真空中传播的速度为3.0×108m/s。
11.光年:
常用于天文学中,是一个非常大的距离单位,它等于光在一年内传播的距离,1光年=9.46×1012Km。
3.反射角:
反射光线与法线的夹角叫做反射角。
4.反射定律:
(1)在反射现象中,反射光线、入射光线和法线位于同一个平面内;
(2)反射光线、入射光线分居法线的两侧;
(3)反射角等于入射角。
5.反射的分类:
反射有两种,一是镜面反射,一是漫反射。漫反射也遵守光的反射定律。
6.光路可逆性:
在探究平面镜成像的实验中,在桌上竖立一块玻璃当做平面镜,平面镜前面放一支点燃的蜡烛,平面镜后面放一支未点燃的同样的蜡烛。移动蜡烛,直到从前面看上去也像点燃的一样,这就是烛焰的像。通过观察可知,像与烛焰的大小相等;像与烛焰的连线跟镜面垂直,像到镜面的距离等于实物到镜面的距离。
凸面镜:汽车后视镜、街头拐弯处的反光镜、手电筒的反光装置。
5.平面镜成像规律:
平面镜所成像的大小与物体的大小相等,物和像到平面镜的距离相等,像和物体的连线与镜面垂直。
平面镜所成的像是经光的反射形成的正立的虚像。
1.光的折射:
光从一种介质射入另一种介质时,传播方向发生偏折。这种想象叫做光的折射。
3.光的折射规律:
(1)光折射时,折射光线、入射光线和法线在同一个平面内;
(2)折射光线、入射光线分居法线两侧;
(3)入射角增大时,折射角也增大(入射角减小时,折射角也减小);
(4)光从速度较快的介质斜射入速度较慢的介质中时,折射光线靠近法线(折射角小于入射角);
(5)光从速度较慢的介质斜射入速度较快的介质中时,折射光线远离法线(折射角大于入射角)
特例:光从空气斜射入水、冰、玻璃或其他介质中时折射光线靠近法线。(折射角小于入射角)
特例:光从水、冰、玻璃或其他介质斜射入空气中时折射光线远离法线。(折射角大于入射角)
1.色散:
太阳光经三棱镜折射后在白屏上依次得到红、橙、黄、绿、蓝、靛、紫七色彩带
4.物体的颜色:
透明物体的颜色由通过它的色光决定。无色透明物体的颜色能让所有的光都透过。
不透明物体的颜色由它反射的色光决定。白色不透明的物体能反射所有颜色的光;黑色不透明的物体能吸收所有颜色的光。
5.光谱:
把光按红、橙、黄、绿、蓝、靛、紫的顺序排列起来就是光谱。
6.天空呈蓝色的原因:
大气对阳光中波长较短的蓝光散射较多。
7.傍晚太阳发红的原因:
傍晚的阳光要穿过厚厚的大气层,蓝光、紫光大部分被散射掉了,剩下红光、橙光射入我们的眼睛。
8.雾灯选择黄色的原因:
人眼对黄色光敏感度较高,且黄光不易被空气散射,有较强的穿透作用,能让更远的人看到。
(2)红外线遥感。
(2)防伪;
(3)有助于人体合成维生素D。
11.紫外线的危害:
过量的紫外线照射对人体十分有害,轻则使皮肤粗糙,重则引起皮肤癌。
光的传播1.光在同种均匀介质中沿直线传播;
2.光的直线传播的应用:
(1)小孔成像:像的形状与小孔的形状无关,像是倒立的实像(树阴下的光斑是太阳的像)
(2)取直线:激光准直(挖隧道定向);整队集合;射击瞄准;
(3)限制视线:坐井观天(要求会作有水、无水时青蛙视野的光路图);一叶障目;
(4)影的形成:影子;日食、月食(要求知道日食时月球在中间;月食时地球在中间)
3.光线:常用一条带有箭头的直线表示光的径迹和方向。
初二刚刚学习物理,是从头开始的好机会,拿到课本以后,像看图书一样,先翻一翻,感受一下,找一下自己感兴趣的,这里有许多生活中我们不知道的理论,首先建立兴趣。
接下来,认真看物理书,课前预习,记录不懂不会的问题,做到心中有数,对自己周边的事物多问几个为什么?不知道的都可以在书中找到答案。
上课的时候,认真听老师的讲解,这样在你预习的基础上又提高了一步,下课后要复习,把不懂的问题搞清楚,实在不行可以请教老师、同学。
课后要独立完成作业,有精力可以做些课外习题,举一反三,巩固所学知识,这样循序渐进,一定会学好物理,基础打好了,将来上高中就更上一层楼了,养成自学的好习惯。
如果自己确实没有办法跟上学校进度,可以考虑请一对一的家教(网上也行),一定针对性的补课,如果同一本书,靠讲4~5遍获得的高分,最后也会被甩在后面,许多事情不会给你几次机会,孩子越早懂得道理,知道学习为自己长本事,就会越努力,成绩就越好,家长是榜样。
想学好物理一定要养成提前预习的习惯,每次在上课之前一定要认认真真的预习,这样才可以知道哪里是自己不懂的知识点,等到课堂中老师上课的时候重点听这一部分。
课堂中一定要聚精会神的听课,可能你的稍微不留神就会错过一个重要的知识点,物理知识点是一个套着一个的,所以每个知识点都要认真听讲。
课后的复习是很重要的,在课堂上听懂是一回事,如果不及时复习会很快遗忘,最好把老师上课教的例题自己给做一遍,这样才是掌握了上课老师所教的知识点。
大量的习题是快速提高物理的一个必要的途径,可以买一两本有用的习题讲解,平时多做这些题,如果有不懂的可以参考讲解,然后自己再做一便。大量的做题会使我们碰到各种各样的知识点,认真掌握他们吧。
要养成记录错题的习惯,这是学好每门课都必须要做的,物理也不例外。错题肯定是我们没有学好的地方,常把错题拿出来看看,在错题中多总结思考,这有助于我们快速提高物理成绩。
物理的主要是自然界的现象,大家平时也可以多去想想身边的物理现象,这样会使得我们对物理更加感兴趣,兴趣才是最好的老师,所以必须要提起对这门学科的兴趣。
1.光源:
能够自行发光,且正在发光的物体。
3.光的直线传播:
在同种均匀物质中,光沿直线传播。
4.光线:
为了表示光的传播情况,我们通常用一条带有箭头的直线表示光的径迹和方向,这样的直线叫做光线。不是真实存在的。
(2)影子的形成;
(3)日食和月食的形成;
(4)激光引导掘进方向;
(7)立竿见影。
6.小孔成像特点:
(1)所成的像是倒立的实像;
(2)所成的像与小孔的形状无关,只与物体的形状有关。
(3)当物体与小孔的距离不变时,光屏离小孔越远,像越大。(光屏离小孔越近,像越小);
当光屏与小孔的距离不变时,物体离小孔越远,像越小。(物体离小孔越近,像越大)
7.影子的形成:
因为光沿着直线传播,且光不能穿过不透明的物体,所以光照射到不透明物体上,在物体的另一侧会有一个光照不到的区域,这就是影子。
8.判断月食:
太阳、地球、月亮位于同一条直线上,且地球在中间。
9.判断日食:
太阳、月亮、地球位于同一条直线上,且月亮在中间。
10.光速:
光在真空中传播的速度为3.0×108m/s。
11.光年:
常用于天文学中,是一个非常大的距离单位,它等于光在一年内传播的距离,1光年=9.46×1012Km。
3.反射角:
反射光线与法线的夹角叫做反射角。
4.反射定律:
(1)在反射现象中,反射光线、入射光线和法线位于同一个平面内;
(2)反射光线、入射光线分居法线的两侧;
(3)反射角等于入射角。
5.反射的分类:
反射有两种,一是镜面反射,一是漫反射。漫反射也遵守光的反射定律。
6.光路可逆性:
在探究平面镜成像的实验中,在桌上竖立一块玻璃当做平面镜,平面镜前面放一支点燃的蜡烛,平面镜后面放一支未点燃的同样的蜡烛。移动蜡烛,直到从前面看上去也像点燃的一样,这就是烛焰的像。通过观察可知,像与烛焰的大小相等;像与烛焰的连线跟镜面垂直,像到镜面的距离等于实物到镜面的距离。
凸面镜:汽车后视镜、街头拐弯处的反光镜、手电筒的反光装置。
5.平面镜成像规律:
平面镜所成像的大小与物体的大小相等,物和像到平面镜的距离相等,像和物体的连线与镜面垂直。
平面镜所成的像是经光的反射形成的正立的虚像。
1.光的折射:
光从一种介质射入另一种介质时,传播方向发生偏折。这种想象叫做光的折射。
3.光的折射规律:
(1)光折射时,折射光线、入射光线和法线在同一个平面内;
(2)折射光线、入射光线分居法线两侧;
(3)入射角增大时,折射角也增大(入射角减小时,折射角也减小);
(4)光从速度较快的介质斜射入速度较慢的介质中时,折射光线靠近法线(折射角小于入射角);
(5)光从速度较慢的介质斜射入速度较快的介质中时,折射光线远离法线(折射角大于入射角)
特例:光从空气斜射入水、冰、玻璃或其他介质中时折射光线靠近法线。(折射角小于入射角)
特例:光从水、冰、玻璃或其他介质斜射入空气中时折射光线远离法线。(折射角大于入射角)
1.色散:
太阳光经三棱镜折射后在白屏上依次得到红、橙、黄、绿、蓝、靛、紫七色彩带
4.物体的颜色:
透明物体的颜色由通过它的色光决定。无色透明物体的颜色能让所有的光都透过。
不透明物体的颜色由它反射的色光决定。白色不透明的物体能反射所有颜色的光;黑色不透明的物体能吸收所有颜色的光。
5.光谱:
把光按红、橙、黄、绿、蓝、靛、紫的顺序排列起来就是光谱。
6.天空呈蓝色的原因:
大气对阳光中波长较短的蓝光散射较多。
7.傍晚太阳发红的原因:
傍晚的阳光要穿过厚厚的大气层,蓝光、紫光大部分被散射掉了,剩下红光、橙光射入我们的眼睛。
8.雾灯选择黄色的原因:
人眼对黄色光敏感度较高,且黄光不易被空气散射,有较强的穿透作用,能让更远的人看到。
(2)红外线遥感。
(2)防伪;
(3)有助于人体合成维生素D。
11.紫外线的危害:
过量的紫外线照射对人体十分有害,轻则使皮肤粗糙,重则引起皮肤癌。
光的传播1.光在同种均匀介质中沿直线传播;
2.光的直线传播的应用:
(1)小孔成像:像的形状与小孔的形状无关,像是倒立的实像(树阴下的光斑是太阳的像)
(2)取直线:激光准直(挖隧道定向);整队集合;射击瞄准;
(3)限制视线:坐井观天(要求会作有水、无水时青蛙视野的光路图);一叶障目;
(4)影的形成:影子;日食、月食(要求知道日食时月球在中间;月食时地球在中间)
3.光线:常用一条带有箭头的直线表示光的径迹和方向。
初二刚刚学习物理,是从头开始的好机会,拿到课本以后,像看图书一样,先翻一翻,感受一下,找一下自己感兴趣的,这里有许多生活中我们不知道的理论,首先建立兴趣。
接下来,认真看物理书,课前预习,记录不懂不会的问题,做到心中有数,对自己周边的事物多问几个为什么?不知道的都可以在书中找到答案。
上课的时候,认真听老师的讲解,这样在你预习的基础上又提高了一步,下课后要复习,把不懂的问题搞清楚,实在不行可以请教老师、同学。
课后要独立完成作业,有精力可以做些课外习题,举一反三,巩固所学知识,这样循序渐进,一定会学好物理,基础打好了,将来上高中就更上一层楼了,养成自学的好习惯。
如果自己确实没有办法跟上学校进度,可以考虑请一对一的家教(网上也行),一定针对性的补课,如果同一本书,靠讲4~5遍获得的高分,最后也会被甩在后面,许多事情不会给你几次机会,孩子越早懂得道理,知道学习为自己长本事,就会越努力,成绩就越好,家长是榜样。
第一课时
教学目标:
1、经历探索整式的乘法运算法则的过程,会进行简单的整式的乘法运算。
2、理解整式的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。
教学重点:
整式的乘法运算。
教学难点:
推测整式乘法的'运算法则。
教学过程:
一、探索练习:展示图画,让学生观察图画用不同的形式表示图画的面积。并做比较。由此得到单项式与多项式的乘法法则。观察式子左右两边的特点,找出单项式与多项式的乘法法则。
跟着用乘法分配律来验证。
单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加。
二、例题讲解:
例2:计算(1)2ab(5ab2+3a2b);
(2)解略。
三、巩固练习:
1、判断题:(1)3a3·5a3=15a3( )
(2)( )
(3)( )
(4)—x2(2y2—xy)=—2xy2—x3y( )
2、计算题:
(1);(2);(3);(4)—3x(—y—xyz);(5)3x2(—y—xy2+x2);(6)2ab(a2b—c);(7)(a+b2+c3)·(—2a);(8)[—(a2)3+(ab)2+3]·(ab3);(9);(10);(11)(。
四、应用题:
1。有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?
五、提高题:
1。计算:(1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2—3xn—1+1)。
2。已知有理数a、b、c满足|a―b―3|+(b+1)2+|c—1|=0,求(—3ab)·(a2c—6b2c)的值。
3。已知:2x·(xn+2)=2xn+1—4,求x的值。
4。若a3(3an—2am+4ak)=3a9—2a6+4a4,求—3k2(n3mk+2km2)的值。
小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。作业:课本P11习题1。3教学后记:
第二课时
教学目标:
1、经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算。
2、进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力。
教学重点:
多项式乘法的运算。
教学难点:
探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题
教学过程:
一、探索练习:如图,计算此长方形的面积有几种方法?如何计算?小组讨论。你从计算中发现了什么?多项式与多项式相乘,_____________________________。
二、巩固练习:1。计算下列各题:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11)。
三、提高练习:
1、若;则m=_____,n=________
2、若,则k的值为( )(A)a+b(B)—a—b(C)a—b(D)b—a
3、已知,则a=______,b=______。
4、若成立,则X为__________。
5、计算:+2。
6、某零件如图示,求图中阴影部分的面积S。
7、在与的积中不含与项,求P、q的值。
一、小结:
本节课学习了多项式乘法的运算,要特别注意多项式乘法的运算中不要“漏项”、和“符号”的正确处理。
六、作业:第28页习题 1、2
1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.
2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.
进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.
分析题目中的数量关系,用式子表示数量关系.
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程.
(1)2 h行驶的路程是多少?3 h呢?t h呢?
(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?
(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?
自学教材第54至55页,完成下列问题:
1.假设列车的行驶速度是100 km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:
(1)列车2 h行驶的路程为__200__km.
(2)列车3 h行驶的路程为__300__km.
(3)列车t h行驶的路程为__100t__km.
2.在含有字母的式子中如果出现乘号,通常将乘号写作__・__或__省略不写__.
活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;
(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;
(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;
(4)用式子表示数n的相反数.
【展示点评】解答过程见教材第54页例1的解.含有字母的式子中如果出现乘号,写成“・”或省略不写.如第(3)小题,就不能写成a2・h.
【小组讨论】用字母表示数有什么意义?
【反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来.
【针对训练】见“学生用书”.
顺水行驶时,船的速度=________+________;
逆水行驶时,船的速度=________-________.
解答过程见教材第55页例2的解答过程.
【展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系.
【小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?
【反思小结】用含有字母的式子表示数量关系时,关键是找准题目中的数量关系.
注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的'乘号可以省略不写或用“・”表示;
2.字母和数字相乘时,省略乘号,并把数字放到字母前;
3.出现除式时,用分数的形式表示;
4.结果含加减运算的,需要带单位时,式子要用“”;
5.系数是带分数时,带分数要化成假分数.
【针对训练】见“学生用书”.
1.用字母表示数的意义.
2.用含有字母的式子表示数量关系的意义.
3.用含有字母的式子表示数量关系时要注意的问题.
1. 其中长方形的长为a,宽为b.
(1)阴影部分的面积是多少?
(2)你能判断它是单项式或多项式吗?它的次数是多少?
1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:
(1)不含加减运算;
(2)可以含乘、除、乘方运算,但分母中不能含有字母.
2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.
3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:
4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
7、垂线段最短。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c
10、平行线的判定:
①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:
①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________
14、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
(一)定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。
由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;
2、能由实物形状想象出几何图形,由几何图形想象出实物形状;
3、能识别一些简单几何体,正确区分平面图形与立体图形。
【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。
同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。
(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;
(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:
从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?
我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。
注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。
思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?
长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。
生活中还有哪些物体的形状类似于这些立体图形呢?
思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。
线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
思考:课本118页图4.1-5的图中包含哪些简单的平面图形?
请再举出一些平面图形的例子。
长方形、圆、正方形、三角形、……。
思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?
立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;
立体图形中某些部分是平面图形。
2、平面图形与立体图形的关系:
立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;
1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.
【学习目标】:1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看;
2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;
【学习重点】:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形新-课-标-第-一-网
【学习难点】:画出从正面、左面、上面看正方体及简单组合体的平面图形
多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境。
横看成岭侧成峰,
远近高低各不同。
不识庐山真面目,
只缘身在此山中。
1.说一说:分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)
2.画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)
3.探究活动1:从正面、左面、上面观察得到的平面图形你能画出来吗?
探究:分别从正面、左面、上面观察课本119页图4.1-8这个图形,分别画出得到的平面图形。
1. 如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是
2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
【学习目标】:1.能直观认识立体图形和展开图,了解研究立体图形方法。
2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。
【学习重点】:了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到不同的平面展开图。
【学习难点】:正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形
我们把一些像墨水瓶盒、粉笔盒这样的纸盒沿它的表面适当剪开,可以展平成平面图形。这样的平面图形叫做相应立体图形的展开图。
你知道长方体、圆柱、圆锥和三棱柱的展开图是什么样子的吗?想象一下。
1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?
思考:请你指出上面展开图各部分与几何体的哪一部分相对应?
2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会? 再将所有的展开图画出来,
以上画出了部分了展开图,除此之外还有5种,共有11种, 请你画出其余5种。
探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?
凭想象回答,回答不出来的,就把它画在纸片上,剪下来折叠。
做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?
2.我学会了什么?
A. B. C. D.
2. 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是
【学习目标】:(1)了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面;
(2)了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、
面、体经过运动变化形成的简单的几何图形;
【学习重点】:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系。
1.出示一个长方体模型,请同学们认真观察。
2.回答问题:这个长方体有几个面?面与面相交成了几条线?线与线相交成几个 点?
1.经过学生的独立思考,然后在小组中进行交流,在小组讨论中,评价并修正自己的结论。(教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价)。
(1)长方体是一个几何体,我们还学过哪些几何体?
_______________________________________________________________________;
(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?
面与面相交成线,线有___线和____线;线与线相交成_____;
教师指导学生看课本第121~122页内容,观察图片能发现什么结论?
点、线、面、体的关系:点动成_____,线动成___________,面动成________。
请你再举出生活中的一些实例:
5.点、线、面、体与几何图形关系.
指导学生阅读课本第123页内容,总结出点、线、面、体与几何图形的关系
几何图形都是由_______________________组成的,________是构成图形的基本元素。
课本第122页练习1、2;
【要点归纳】:
1.本节课我们主要学习了什么?
2. 本节课我们有哪些收获?
【拓展训练】:
1.人在雪地上走,他的脚印形成一条_______,这说明了______的数学原理;
2.体是由_______围成的,面和面相交形成_______,线和线相交形成______;
3.点动成________,线动成______,面动成_______;
【学习目标】: 1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质;
2.会用字母表示直线、射线、线段,会根据语言描述画出图形;
【重点难点】: 理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形;
1.在小学已经学过了直线、射线、线段.请你画出一条直线、一条射线、一条线段?
(1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。
答:
(2)经过一个已知点的直线,可以画多少条直线?请画图说明。
(3)经过两个已知点画直线,可以画多少条直线?请画图试试。
猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?
直线的基本性质:
经过两点有 条直线,并且 条直线;
简述为:
举例说明直线的性质在日常生活中的应用:
(2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据
(3)你还能从生活中举出应用直线的基本性质的例子吗?试试看:
2、直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示。
平面上一个点与一条直线的位置有什么关系?
①点在直线上;②点在直线外。
当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
3、射线和线段的表示方法:
如图。显然,射线和线段都是直线的一部分。
图①中的线段记作线段AB或线段a;图②中的射线记作射线OA或射线m。
注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面。
①直线MN与直线NM是同一条直线 ②射线AB与射线BA是同一条射线
④直线上一点把这条直线分成的两部分都是射线.
【要点归纳】:
通过本节课的学习你有什么收获?
【拓展训练】:
1.如图,线段AB上有两点C、D,则共有 条线段。
2.变形题:往返于甲、乙两地的客车中途要停靠三个车站,有多少种不同的票价?要准备多少种不同的车票?
2、会比较两条线段的长短;
3、理解线段中点的概念,了解“两点之间,线段最短”的性质。
【学习重点】:线段的中点概念,“两点之间,线段最短”的性质是重点;
1、过A、B、C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为 的说法是对的。
问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?
上面的实际问题可以转化为下面的数学问题:
已知线段a,画一条线段等于已知线段。
现在我们来解决这个问题。
(2)在AM上截取AB= a。
(2)在AM上顺次截取AC=a,CB= b。
则AB= a+b为所求。
两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?
我们先来回答下面的问题。
怎样比较两个同学的身高?
一是用尺子测量;二是站在一起比(脚在同一高度)。
如果把两个同学看成两条线段,那么比较两条线段就有两种方法。
(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。
( 2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。(如图)
如图(1),点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点;
记作AM=MB或AM=MB=1/2AB或2AM=2MB=AB。
如图(2),点M、N把线段AB分成相等的三段AM、MN、NB,点M、N叫做线段AB的三等分点。类似地,还有四等分点,等等。
请同学们思考课本131页的思考?
简单地说成:___________________________________
你能举出这条性质在生活中的一些应用吗?
两点间的距离的定义:___________________________________
注意:距离是用“数”来度量的,它是线段的长度,而不是线段本身。
2、在直线上顺次取A、B、C三点,使 AB=4㎝,BC=3㎝,点O是线段AC的中点,则线段OB的长是〔 〕
A、2㎝ B、1.5㎝ C、0.5㎝ D、3.5㎝
3、已知线段AB=5㎝,C是直线AB上一点,若BC=2㎝,则线段AC的长为
【要点归纳】:
1、画一条线段等于一条已知线段。
2、怎样比较两条线段的长短?
3、线段的性质是什么?
4、什么是两点间的距离?
【拓展训练】:
1、把弯曲的河道改直后,缩短了河道的长度,这是因为 ;
2、已知,如图,AB=16㎝,C是BC的中点,且AC=10㎝,D是AC的中点,E是BC的中点,求线段DE的长。
【学习目标】:1、在现实情景中,理解角的概念,掌握角的表示方法;
2、认识角的度量单位:度、分、秒,学会进行简单的换算和角度的计算。
【重点难点】:角的表示和角度的计算是重点;角的适当表示是难点。
观察课本136页图4.3.1;思考问题:
如图,时钟的时针与分针,棱锥相交的两条棱,直尺相交的两条边,给我们什么平面图形的形象?
1.角的定义1: 有__________________的两条射线组成的图形叫做角。
这个公共端点是角的________,这两条射线是角的__________。
∠AOB;
射线开始的位置OA与旋转后的位置OB组成了什么图形?
角。
3.角的定义2: 角也可以看作由一条射线绕着它的端点旋转面形成的图形。
如图(2),当射线旋转到起始位置OA与终止位置OB在一条直线上时,形成_____角;
如图(3),继续旋转,OB与OA重合时,又形成________角;
思考:平角是一条直线吗?周角是一条射线吗?为什么?
阅读课本137页;填空:
1周角=_____0 , 1平角=_____0;
10=____′, 1′=_____′′;
如∠a的度数是48度56分37秒,记作∠a=48056′37′′。
度、分、秒是常用的角的度量单位,以度、分、秒为单位的角的度量制,叫做角度制,
注意:角的度、分、秒与时间的时、分、秒一样,都是60进制,
计算时,借1当成60,满60进1。
例 计算:(1)53028′+47035′; (2)17027′+3050′;(学生自己完成)
2、怎么表示角?
3、角的度量单位是什么?它们是如何换算的?
【拓展训练】:
1、(37.145)0 = 度 分 秒;98030′18′′= 度。
2、下午2时30分,钟表中时针与分针的夹角为〔 〕
3、如图,A、B、C在一直线上,已知 1=53°, 2=37°;CD与CE垂直吗?
【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系;
2、理解角平分线的概念,会画角平分线。
【重点难点】:角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。
回顾线段大小的比较,,怎样比较图中线段AB、BC、CA的长短?
那么怎样比较∠A、∠ B、∠ C的大小呢?
(1)度量法:用量角器量出角的度数,然后比较它们的大小。
教师演示:
思考:如图,图中共有几个角?它们之间有什么关系?
图中共有3个角:∠AOB、∠AOC、∠BOC。它们的关系是:
∠AOC=∠AOB+∠BOC;
∠BOC=∠AOC-∠AOB;
一副三角板的各个角分别是多少度?___________________________________
学生尝试画角。
你还能画出哪些角?有什么规律吗?
还能画出___________________________________
在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?
角的平分线:从一个角的_____出发,把这个角分成_______的两个角的射线,叫做这个角的平分线。 类似地,还有角的三等分线等。如图(2)中的OB、OC。
OB是∠AOC的一平分线,可以记作:
∠AOC=2∠AOB=2∠BOC或∠AOB=∠BOC= 。
例1 如图,O是直线AB上一点,∠AOC=53017′,求∠ BOC的度数。
【课堂练习】:
课本140-141页1、2、3。
【要点归纳】:
1、角的大小比较的方法和角的和差关系;
2、用一副三角板画角;
3、角的平分线及表示。
【拓展训练】:
1、如图,O为直线AB上一点,射线OD、OE分别平分∠AOC、∠BOC,求∠DOE的度数。
【学习目标】在具体的现实情境中,认识一个角的余角和补角;
【重点难点】正确求出一个角的余角和补角。
思考:
(1) 在一副三角板中同一块三角板的两个锐角和等于多少度?
(2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。
(3) 如 图 2,已知点A、O、B在一直线上 ,∠COD=90°,那么∠1+∠2= 。
(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=
(2) 如图4,A、O、B在同一直线上,∠1+∠2=
问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗?
3.新知应用:
例1:若一个角的补角等于它的余角4倍,求这个角的度数。
例2:如图,∠AOC=∠COB=90°,∠DOE=90°,A、O、B三点在一直线上
(1)写出∠COE的余角,∠AOE的补角;
(2)找出图中一对相等的角,并说明理由;
【课堂练习】:
课本141页练习1、2、3;
1、一个角的余角比它的补角的 还少 ,求这个角的度数。
2、了解方位角,能确定具体物体的方位。
【重点难点】掌握余角和补角的性质;方位角的应用;
1.70°的余角是 ,补角是 ;
2.∠a(∠a
1.探究补角的性质:
例3、如图, ∠1与∠2互补,∠3与∠4互补, ∠1= ∠3,那么∠2与∠4相等吗?为什么?
分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800 - ,
∠3与∠4互补,∠4等于什么? ∠4=1800 - 。
(2)当∠1= ∠3时,∠2与∠4有什么关系?为什么?
上面的结论,用文字怎么叙述?
2.探究余角的性质:
如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?
正东、正南、正西、正北、东南、
西南、西北、东北。
(2)找方位角:
例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线。
【课堂练习】:
1、和 都是 的补角,则 ;
2、如果 ,则 的关系是 ,
理由是 ;
A 南偏东69° B 南偏西69° C 南偏东21° D 南偏西21°
4、在点O 北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是 A 100° B 70° C 180° D 140°
【拓展训练】:
1. 如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E在一条直线上,且∠2=∠4,
请说出∠1与∠3之间的关系?并试着说明理由?
【总结反思】:
【复习目标】:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;
2.掌握角的基本概念,能利用角的知识解决一些实际问题。
【复习难点】:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。
1.4整式的乘法:教案
一、学习目标:理解并掌握单项式的乘法法则,能够熟练 地进行单项 式的乘法计算
二、学习重点:单项式乘法法则及其应用
三、学习难点:理解运算法则及其 探索过程
(一)预习准备
(1)预习书p14-15
(2)思考:单项式与单项式相乘可细化为几个步骤?
(3)预习作业:
1.下列单项式各是几次单项式?它们的系数各是什么?
《1.4整式的乘法》课时练习
1.3ab·(a2b+ ab2- ab )
答案: 3a3b2+3 a2b3- 3 a2b2
解析:解答:解:3ab·(a2b+ ab2- ab )=3ab·a2b+3ab·ab2- 3ab·ab = 3a3b2+3 a2b3- 3 a2b2
分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.
2.(x-8y)·(x-y )
答案: x2-9xy +8y2
解析:解答:解:(x-8y)·(x-y )= x1+1-xy-8xy+8y1+1= x2-9xy +8y2
分析:先由多项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.
《整式的乘法》习题
1.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;
(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?
(2)根据以上各式呈现的规律,用公式表示出来;
(3)试用你写的公式,直接写出下列两式的结果;
①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,
4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
⑵顺次连结各边中点得平行四边形。
推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
⑴研究它们的一般方法:
⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定
(1)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。
(2)弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
(4)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。
数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(“三要素”)
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。
说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定。
(2)一次函数y=kx+b(k,b为常数,b0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。
(3)当b=0,k0时,y=b仍是一次函数。
(4)当b=0,k=0时,它不是一次函数。
由于一次函数y=kx+b(k,b为常数,k0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.
由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(—,0)。但也不必一定选取这两个特殊点。画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可。
4、一次函数y=kx+b(k,b为常数,k0)的性质(正比例函数的性质略)
(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;
②k
(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);
(3)b的正、负决定直线与y轴交点的'位置;
①当b>0时,直线与y轴交于正半轴上;
②当b
③当b=0时,直线经过原点,是正比例函数.
(4)由于k,b的符号不同,直线所经过的象限也不同;
(1)由于正比例函数y=kx(k0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.
(2)由于一次函数y=kx+b(k0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.
先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.
(1)设函数表达式为y=kx+b;
(2)将已知点的坐标代入函数表达式,解方程(组);
(3)求出k与b的值,得到函数表达式.
(1)函数方法。函数方法就是用运动、变化的观点来分析题中的数量关系,函数的实质是研究两个变量之间的对应关系。
(2)数形结合法。数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法。
例1、当m为何值时,函数y=—(m—2)x+(m—4)是一次函数?
例2、一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg的物体,弹簧就伸长0.5cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数.
例3、(厦门)某物体从上午7时至下午4时的温度M(℃)是时间t(时)的函数:M=t2—5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为__℃.
(1)y是x的一次函数吗?请说明理由;在什么条件下,y是x的正比例函数?
(2)如果x=—1时,y=—15;x=7时,y=1,求这个一次函数的解析式。并求这条直线与坐标轴围成的三角形的面积。
例5、(哈尔滨)若正比例函数y=(1—2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1y2,则m的取值范围是_____________
例6、一次函数y=kx+b的自变量x的取值范围是—36,相应函数值的取值范围是—5—2,则这个函数的解析式为。
例7、我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币0。3万元,每吨芒果售价为人民币0。5万元.现设销售这两种水果的总收入为人民币y万元,荔枝的产量为x吨(0
(1)请写出y关于x的函数关系式;
(2)若估计芒果产量不小于荔枝和芒果总产量的20%,但不大于60%,请求出y附:初二数学一次函数知识点总结全面
教学目标
1.知识与技能:
理解单项式与多项式相乘的算理,体会乘法对加法的分配律的作用和转化的数学思想;会进行单项式与多项式相乘的运算。
2.过程与方法:
在探索单项式与多项式相乘的过程中,体会利用乘法分配律化未知为已知的转化的数学思想。
3.情感态度与价值观:
使学生获得成就感,培养学习数学的兴趣。
教学重点难点
1.教学重点:
单项式与多项式相乘的运算法则及其运用
2.教学难点:
灵活地运用单项式与多项式相乘的运算解决数学问题。
教学过程
一、复习导入
1.如何进行单项式乘单项式的运算?
单项式的系数?相同字母的幂?只在一个单项式里含有的字母?
(系数×系数)×(同字母幂相乘)×单独的幂
计算:(2a2b3c)(-3ab)=-6a3b4c
2.应用运算律来计算:6×(+-)
二、新课讲解
探究新知
为了扩大绿地的面积,要把街心花园的一块长m米,宽b米的长方形绿地,向两边分别加宽a米和c米,求扩大后绿地的面积?
m(a+b+c)=ma+mb+mc
引导学生用自己的话叙述上面的运算过程,然后师生共同总结:
单项式与多项式相乘,先用单项式成多项式中的每一项,再把所得的`积相加。
用公式表示上面的运算过程:m(a+b+c)=ma+mb+mc
通过乘法分配律,把单项式乘多项式转化成已经解决了的单项式乘单项式问题,这里体现了转化的数学思想。
三、典例剖析
例1.计算:
(-4x2)·(3x+1)注意:多项式中“1”这项不要漏乘.
(2) ( ab2-2ab) ·ab
学生解答各题,教师巡回指导,发现学生解题中存在的共同错误并点评,注意强调:
单项式乘以多项式要特别重视转化的过程,初学时这一步不要省略,以后熟练了可以逐步省略。
点评:
(1)多项式每一项要包括前面的符号;
(2)单项式必须与多项式中每一项相乘,结果的项数与原多项式项数一致(1不要漏乘);
单项式系数为负时,改变多项式每项的符号。
巩固法则
练习1下列计算对吗?若不对,应该怎样改?
(1) 3a(a-1)=3a2;
(2) 2x2(x-y)=2x3-2x2;
(3) (-3x2)(x-y)=-3x3-3x2y;
(4) (-5a)(a2-b)=-5a3+5ab.
练习2.填空
(1)单项式与多项式相乘,就是用单项式去乘多项式的________,再把所得的积________。
(2) 4(a-b+1)= ___________________。
(3) -3x(2x-5y+6z)= _____________________。
(4) (-2a2)2(-a-2b+c)=_____________________。
练习3计算
(1) (-3x)(2x-3y) (2) 5x(2x2-3x+1) (3) am(am-a2+1)
例2.计算
x(x2-xy+y2)-y(x2+xy+y2)
练习1:计算
x(x2-1)+2x2(x+1)-3x(2x-5)
练习2:化简求值
Yn(yn+9y-12)-3(3yn+1-4yn)其中y=-3,n=2
引导学生观察思考后,让学生尝试解答,之后教师展示示范,共同总结出方法:
计算代数式的值的一般步骤是先化简,再求值。
四、课堂小结
1.单项式乘以多项式的法则?
2.一种思想:单项式与多项式相乘的实质是把单项式乘以多项式转化为单项式乘法。
3.注意点:
(1)单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定;
(2)不要出现漏乘现象;
(3)运算要有顺序:先乘方,再乘除,最后加减。有括号一般先去括号(小→大);
(4)结果要合并同类项。
五、布置作业
书上习题14.1第4、7题
最新文章