成比例线段课件

比例线段课件 线段课件 08-17

成比例线段课件8篇。

编辑仔细筛选并整理了一系列有关“成比例线段课件”的文章供您查阅,这篇文章会是您的良师益友相信一下。在教学过程中,老师教学的首要任务是备好教案课件,准备教案课件的时刻到来了。教案是教育教学过程中对学生进行培养和指导的必要手段。

成比例线段课件 篇1

教学目标:

1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

2.学会作两条已知线段的比例中项;

3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

教学重点:

正确理解相交弦定理及其推论.

教学难点:

在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

教学活动设计

(一)设置学习情境

1、图形变换:(利用电脑使AB与CD弦变动)

①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

②进一步得出:△APC∽△DPB.

③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么?

组织学生观察,并回答.

2、证明:

已知:弦AB和CD交于⊙O内一点P.

求证:PA·PB=PC·PD.

(A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

(证明略)

(二)定理及推论

1、相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等.

结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA·PB=PC·PD.

2、从一般到特殊,发现结论.

对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且AB⊥CD于P.

提问:根据相交弦定理,能得到什么结论?

指出:PC2=PA·PB.

请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA·PB. 

若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

PC2=PA·PB ;AC2=AP·AB;CB2=BP·AB

(三)应用、反思

例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

引导学生根据题意列出方程并求出相应的解.

例2  已知:线段a,b.

求作:线段c,使c2=ab.

分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

作法:口述作法.

反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

练习1 如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是 多少?

将条件隐化,增加难度,提高学生学习兴趣

练习2 如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

练习3  如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC 交⊙O于C.  求证:PC2=PA·PB 

引导学生分析:由AP·PB,联想到相交弦定理,于是想到延长 CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易 证得PC=PD问题得证.

(四)小结

知识:相交弦定理及其推论;

能力:作图能力、发现问题的能力和解决问题的能力;

思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

(五)作业

教材P132中 9,10;P134中B组4(1). 第2课时 切割线定理

教学目标:

1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

教学重点:

理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

教学难点:

定理的灵活运用以及定理与推论问的内在联系是难点.

教学活动设计

(一)提出问题

1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PA·PB.

3、证明:

让学生根据图2写出已知、求证,并进行分析、证明猜想.

分析:要证PT2=PA·PB,  可以证明,为此可证以 PA·PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

 4、引导学生用语言表达上述结论.

切割线定理  从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

(二)切割线定理的推论

1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

观察图4,提出猜想:PA·PB=PC·PD.

2、组织学生用多种方法证明:

方法一:要证PA·PB=PC·PD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB.  (如图4)

方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明∠B=∠D,又∠P=∠P.  因此△PAD∽△PCB.(如图5)

方法三:引导学生再次观察图2,立即会发现.PT2=PA·PB,同时PT2=PC·PD,于是可以得出PA·PB=PC·PD.PA·PB=PC·PD

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的.两条线段长的积相等.(也叫做割线定理)

(三)初步应用

例1  已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米, PO=10.9厘米,求⊙O的半径.

分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

(解略)教师示范解题.

 例2  已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

求证:AE=BF.

分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B 两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.  因此它们的积相等,问题得证.

学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=AC·CD和BF2=BD·DC等.

巩固练习:P128练习1、2题  

(四)小结

知识:切割线定理及推论;

能力:结合具体图形时,应能写出正确的等积式;

方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

(五)作业教材P132中,11、12题.

探究活动

最佳射门位置

国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

分析与解 如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

故 ,又 ,

OB=30.34+7.32=37.66.

OP= (米).

注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角.


成比例线段课件 篇2

一、教学目标

1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.

2.使学生掌握三角形一边平行线的判定定理.

3.已知线的成已知比的作图问题.

4.通过应用,培养识图能力和推理论证能力.

5.通过定理的教学,进一步培养学生类比的数学思想.

二、教学设计

观察、猜想、归纳、讲解

三、重点、难点

l.教学重点:是平行线分线段成比例定理和推论及其应用.

2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

【复习提问】

叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).

【讲解新课】

在黑板上画出图,观察其特点: 与 的交点A在直线 上,根据平行线分线段成比例定理有: ……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:

平行于 的边BC的直线DE截AB、AC,所得对应线段成比例.

在黑板上画出左图,观察其特点: 与 的交点A在直线 上,同样可得出: (六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:

平行于 的边BC的直线DE截边BA、CA的延长线,所以对应线段成比例.

综上所述,可以得到:

推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.

如图, (六个比例式).

此推论是判定三角形相似的基础.

注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,如果已知 ,DE是截线,这个推论包含了下图的各种情况.

这个推论不包含下图的情况.

后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)

例3 已知:如图, ,求:AE.

教材上采用了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一项,即: .

让学生思考,是否可直接未出AE(找学生板演).

【小结】

1.知道推论的探索方法.

2.重点是推论的正确运用

七、布置作业

(1)教材P215中2.

(2)选作教材P222中B组1.

八、板书设计

数学教案-平行线分线段成比例定理 (第二课时)

成比例线段课件 篇3

教学建议

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

2、教学建议

本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

(1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

(2)在教学中,引导学生观察猜想证明应用等学习,教师组织下,以学生为主体开展教学活动.

第1课时:相交弦定理

教学目标 :

1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

2.学会作两条已知线段的比例中项;

3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

教学重点:

正确理解相交弦定理及其推论.

教学难点 :

在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

教学活动设计

(一)设置学习情境

1、图形变换:(利用电脑使AB与CD弦变动)

①引导学生观察图形,发现规律:D,B.

②进一步得出:△APC∽△DPB.

.

③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么?

组织学生观察,并回答.

2、证明:

已知:弦AB和CD交于⊙O内一点P.

求证:PAPB=PCPD.

(A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

(证明略)

(二)定理及推论

1、相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等.

结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PAPB=PCPD.

2、从一般到特殊,发现结论.

对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且ABCD于P.

提问:根据相交弦定理,能得到什么结论?

指出:PC2=PAPB.

请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PAPB.

若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

PC2=PAAC2=APCB2=BPAB

(三)应用、反思

例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

引导学生根据题意列出方程并求出相应的解.

例2 已知:线段a,b.

求作:线段c,使c2=ab.

分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

作法:口述作法.

反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

练习1 如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是 多少?

将条件隐化,增加难度,提高学生学习兴趣

练习2 如图,CD是⊙O的直径,ABCD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

练习3 如图:在⊙O中,P是弦AB上一点,OPPC,PC 交⊙O于C. 求证:PC2=PAPB

引导学生分析:由APPB,联想到相交弦定理,于是想到延长 CP交⊙O于D,于是有PCPD=PAPB.又根据条件OPPC.易 证得PC=PD问题得证.

(四)小结

知识:相交弦定理及其推论;

能力:作图能力、发现问题的能力和解决问题的能力;

思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

(五)作业

教材P132中 9,10;P134中B组4(1).

第2课时 切割线定理

教学目标 :

1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

教学重点:

理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

教学难点 :

定理的灵活运用以及定理与推论问的内在联系是难点.

教学活动设计

(一)提出问题

1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PAPB.

3、证明:

让学生根据图2写出已知、求证,并进行分析、证明猜想.

分析:要证PT2=PAPB, 可以证明,为此可证以 PAPT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明PTA=B又P,因此△BPT∽△TPA,于是问题可证.

4、引导学生用语言表达上述结论.

切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

(二)切割线定理的推论

1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

观察图4,提出猜想:PAPB=PCPD.

2、组织学生用多种方法证明:

方法一:要证PAPB=PCPD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明PAC=D,P,因此△PAC∽△PDB. (如图4)

方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明D,又P. 因此△PAD∽△PCB.(如图5)

方法三:引导学生再次观察图2,立即会发现.PT2=PAPB,同时PT2=PCPD,于是可以得出PAPB=PCPD.PAPB=PCPD

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

(三)初步应用

例1 已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米, PO=10.9厘米,求⊙O的半径.

分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

(解略)教师示范解题.

例2 已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

求证:AE=BF.

分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B 两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC. 因此它们的积相等,问题得证.

学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=ACCD和BF2=BDDC等.

巩固练习:P128练习1、2题

(四)小结

知识:切割线定理及推论;

能力:结合具体图形时,应能写出正确的等积式;

方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

(五)作业 教材P132中,11、12题.

探究活动

最佳射门位置

国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

分析与解 如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

故 ,又 ,

OB=30.34+7.32=37.66.

OP=(米).

注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角

成比例线段课件 篇4

比例线段(第一课时) 教学设计-1

比例线段(第一课时) 教学设计-1(下载:

成比例线段课件 篇5

教学内容:教科书第16页上的线段比例尺,练习五的第49题。

教学目的:使学生理解线段比例尺的含义,会根据线段比例尺求图上距离或实际距离。

教具准备:教师准备一些线段比例尺的地图或平面图。

教学过程:

、导人新课

教师:上节课我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,如比例尺1:10000就表示图上距离是l厘米实际距离就是10000厘米,像这样的比例尺叫做数值比例尺。除了数值比例尺外,还有线段比例尺。什么是线段比例

尺呢:这就是我们这节课要学习的内容。(板书课题)

二、新课

教师:线段比例尺是在图上附有一条注有数量的线段。用来表示和地面上相对应的实际距离。同学们可以翻开教科书第16页.看右下角有一幅地图。地图的下面就有一条线段比例尺。它上面有0、50和100几个数,还注明了长度单位千米。这些数和单位表示什么意思呢大家量一量从0到50这段线段有多长。(1厘米。)从50到100呢(也是1厘米。)从0到50就表示地图上1厘米的距离相当于地面上50千米的实际距离。从0到100就表示地图上2厘米的距离相当于地面上100千米的实际距离。

然后教师问:

l如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的实际距离

让学生在地图上找到沈阳和长春这两个城市,并量出它们的距离是多少厘米。再想一想:要求地面上这两个城市之间的实际距离大约是多少千米,该怎样计算

引导学生想:1厘米.的图上距离代表地面上多少千米的实际距离,(50千米。)我们量出沈阳到长春的图上距离是5.5厘米,就代表几个50千米的实际距离。(5.5个50千米。)怎么列式计算

让学生说怎样列式。教师板书:505.5=275(千米)

之后,进一步提出:

你能不能把这个地图上的线段比例尺改写成数值比例尺怎样改写(因为图上1厘米相当于地面上50千米的实际距离,现在图上距离和实际距离的单位不同,根据图上距离:实际距离=比例尺,要把图上距离和实际距离的单位化成同级单位,50

千米等于5000000厘米。所以这条线段比例尺改写成数值比例尺就是1:5000000。)

教师板书出数值比例尺。

三、课堂练习

完成练习五的第49题:

1.第5题,让学生独立填表:填表前,要提醒学生图上距离的单位应用什么,实际距离的单位应用什么。

2.第8题,让学生独立计算。集体订正后,让学生按照东南西北的方位说说拖拉机站、电影院、汽车站和供销社离学校的距离。如,电影院在学校的南面,距学校200米;拖拉机站在学校的西北面,距学校2500米。

3.第9题,让学生先求出试验田长和宽的图上距离,然后画出平面图,并且要注意在平面图上注明比例尺。

成比例线段课件 篇6


比例线段是数学中一个重要的概念,它在解决几何问题和实际应用中起着重要的作用。为了更好地帮助学生理解比例线段的概念和运用,设计了一份生动详细的比例线段课件。


第一部分:引入比例线段的概念


首先通过引人入背景故事来引起学生的兴趣。假设有一个远古宝藏被发现,宝藏的线索是一系列比例线段。然后通过引人入背景故事的方式,向学生介绍比例线段的定义和性质。使用有趣的例子和动画来展示比例线段是如何构成的,并说明比例线段之间的关系。通过这一部分的内容,学生可以初步理解比例线段的概念,并了解到它在生活中的运用。


第二部分:比例线段的计算方法


在这一部分,将具体介绍如何计算比例线段。通过一个实际问题的例子,引导学生思考如何使用比例线段的计算方法解决问题。然后,详细介绍了比例线段的计算公式和步骤。将使用有趣的动画和示意图来帮助学生理解计算方法,并提供大量的练习题,让学生亲自动手计算比例线段。通过这一部分的学习,学生可以掌握比例线段的计算方法,并能够独立解决相关问题。


第三部分:比例线段的应用


在这一部分,将介绍比例线段在实际生活中的应用。通过一个实例,向学生展示比例线段在建筑设计中的应用。例如,如何根据比例线段计算建筑物的尺寸,以及如何使用比例线段设计符合人体比例的家具等。将使用真实的案例和图表来说明比例线段在实际中的重要性和用途。通过这一部分的学习,学生不仅能够理解比例线段的理论知识,还可以将其应用到实际问题中。


第四部分:拓展学习


在这一部分,将提供一些拓展学习的资源和活动。例如,可以组织学生进行实地考察,寻找身边的比例线段应用。学生可以将所观察到的比例线段进行记录,并进行分析和总结。还可以提供一些相关的课外读物和在线学习资源,让学生进一步学习和探究比例线段的应用。


通过这份详细生动的比例线段课件,学生可以在轻松愉快的氛围中学习到比例线段的概念、计算方法和应用。相信,这份课件将激发学生的兴趣,促进他们对比例线段的深入理解和应用能力的提高。

成比例线段课件 篇7

一、教学目标

1、理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念、

2、把握比例基本性质和合分比性质、

3、通过通过的应用,培养学习的计算能力、

4、通过比例性质的教学,渗透转化思想、

5、通过比例性质的教学,激发学生学习爱好、

二、教学设计

先学后做,启发引导

三、重点及难点

1、教学重点比例性质及应用、

2、教学难点正确理解成比例线段及应用、

四、课时安排

1课时

五、教具学具预备

股影仪、胶片、常用画图工具

六、教学步骤

复习提问

1、什么是线段的比?

2、已知这两条线段的比是吗,为什么?

讲解新课

1、比例线段:见教材p203页。

如:见教材p203页图5—2。

又如:

即a、b、c、d是成比例线段。

注:①已知问这四条线段成比例吗?【m.zUOweN101.coM 高分作文网】

(答:成比例。,这里与顺序无关)。

②若已知a、b、c、d是成比例线段,是指不能写成(在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

板书教材p203页比例线段的一些附属概念。

2、比例的性质:

(1)比例的基本性质:假如,那么。

它的逆命题也成立,即:假如,那么。

推论:假如,那么。

反之亦然:假如,那么。

①基本性质证实了“比例式”和“等积式”是可以互化的。

②由,除可得到外,还可得到其它七个比例式。即由一个等积式,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式:。注重区别与联系。

③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

(2)合比性质:假如,那么

证实:∵,∴即:

同理可证:(找学生板演)

(3)等比性质:假如

那么

证实:设;则

等比性质的证实思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必把握。

例1(要求了解即可)

(1)已知:,求证:。

证实:∵,∴

“通法”:∵,∴即

(2)已知:,求证:。

方法一:

方法二:

(1)÷(2)得:

小结

(1)比例线段的概念及附属概念。

(2)比例的基本性质及其应用。

八、布置作业

(1)求

① ② ③

(2)求下列各式中的x

① ② ③ ④

九、板书设计

1、比例线段:

教师板书定义

………

比例线段的附属概念

………

2、比例的性质

(1)比例基本性质

…………

3、课堂练习

成比例线段课件 篇8

教学目标:

使学生理解线段比例尺的含义,会根据线段比例尺求图上距离或实际距离。

教学重点:

使学生理解并掌握线段比例尺的含义。

教具准备:

准备一些线段比例尺的地图和数值比例尺的地图。

教学时间:1课时。

教学过程:

一、导入

师用投影仪出示一幅线段比例尺的地图和一幅数值比例尺的地图。让学生观察两幅地图的比例尺。师指出(指着数值比例尺)这种就是我们前面所学的用数值来标明的数值比例尺。此外,还有一种比例尺,如这种(师指线段比例尺),它叫做线段比例尺。(板书课题)线段比例尺又是怎样表示地图与实际中的比例关系的呢?这就是我们这节课要学习的内容。

二、新课

1、引导自学。让学生打开课本第8页,自学线段比例尺的知识内容。

2、汇报、交流自学成果。

指出回答你有何发现?或你有何疑问?

学生或许有以下答案或问题:

a.我发现线段比例尺是由一条线段分成两段,并标上数据形成的。

b.我发现线段比例尺必须标明数据单位。

c.我发现线段比例尺中每节线段的长度是1厘米。

d.画线段比例尺,只能画两节吗?

e.每节线段的长度必须是1厘米吗?

教师抓住学生提出的问题及其发现,相机适当引导学生不断探索、发现,逐渐理解并掌握线段比例尺的含义。

接着,请一位学生拿尺子上台测量投影仪上的比例尺,确定一节的长度为1厘米,并让其说出这个比例尺表示地图上1厘米的距离相当于实际上的多少?你能把它改写成数值比例尺吗?(师相机板书)。

3、再请一位学生上台测量地图上两个地方的距离(投影仪显示其测量过程,教师注意在这一过程中的引导),确定距离后,让学生记录在黑板上。

然后,让大家动笔计算这两地的实际距离。教师巡视,个别辅导。

学生完成后,引导集体订正。

三、课堂练习

1、练习二的第5题,让学生独立填表。学生完成后,教师抽出存在突出错误问题的学生练习在投影仪上显示,并引导集体订正。

2、第8题,让学生独立计算。教师巡视,注意个别辅导。后引导集体订正。

3、第9题,让学生独立完成,师巡视。订正时,注重强调注明比例尺的问题。

四、课堂总结

板书设计:

yJS21.com更多精选幼儿园教案阅读

《比例》课件教案(通用8篇)


每个老师上课需要准备的东西是教案课件,我们需要静下心来写教案课件。要知道优秀教案课件,会让学生更快地理解各知识要点,对于写教案课件有哪些疑问呢?下面的内容主题为《比例》课件教案,是栏目小编为你整理的,为方便后续阅读,请你收藏本文!

《比例》课件教案 篇1

教学内容:

本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。

教材分析:

本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。

教学目标:

1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。

2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。

教学重点:

认识正、反比例的意义

教学难点:

根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。

课时安排:

正比例和反比例(4课时)

第1课时

教学内容

成正比例的量

教材第62—63页的例1和试一试,练一练和练习十三的第1—3题

课型

新授

本单元教时数:4本教时为第1教时备课日期月日

教学目标

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。

3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。

教学重点

使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

教学难点

根据正比例的意义正确判断两种相关联的量是不是成正比例。

教学准备

光盘课件

教学过程设计

教学内容

教师活动

学生活动

二次备课

一、教学例1

1、谈话引出例1的表格

2、这两种量的数据是怎样变化的?

时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。

小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。

3、但是,你能发现什么呢?

如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。

这个比值是什么呢?

谁能用一句话来概括例1中的变化与不变

4、介绍成正比例的量

指名说说,表中有哪两种量

引导学生观察,

指名说一说。

启发学生从“变化”中寻找“不变”。

学生试着回答,教师帮助完成。

学生完整的说说路程和时间成正比例的量

二、教学试一试

1、出示教材试一试

教师指导学生完成

学试着完成,并交流回答四个问题。

三、概括意义

1、引导学生观察例1和试一试,它们有什么共同点。

2、概括正比例的意义,揭示课题(板书)

3、用字母怎样表示成正比例关系的两种量呢?

y:x=k(一定)

观察,说说自己的发现。

学生完整的说一说例1和试一试成正比例关系。

四、巩固练习

1、完成练一练

2、练习十三第1题

重点让学生说出判断的理由

3、做练习十三第2题

4、做练习十三第3题

引导学生根据计算的结果来判断。完成书上的问题

重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。

独立判断,交流时说出判断的理由。

学生先各自算一算,交流,说出思考过程。

指名判断,交流时说出思考过程,其它同学进行补充或纠正。

学生理解题意,然后在书上画一画,算一算,填在书上。

五、全课总结

学习了什么?你有什么收获?

说一说

板书

正比例的意义

两种相关联的量=k(一定)y和x就成正比例的量

课后感受

第2课时

教学内容

正比例的意义及其图像

教材第63页例2,随后的练一练和练习十三的第4、5题

课型

新授

本单元教时数:4本教时为第2教时备课日期月日

教学目标

1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

教学重点

使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

教学难点

使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

教学准备

光盘课件

教学过程设计

教学内容

教师活动

学生活动

二次备课

一、教学例2

1、先出示例1的表格

谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。

出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?

引导学生观察这些点的排布规律,并用直线连起来。

提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)

(2)图中所描的点在一条直线上吗?

(3)根据图象判断一下,这辆汽车2。5小时行驶多少千米?行驶440千米需要多少小时?

学生描点。

学生按要求操作完成。

指名回答

如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。

二、巩固练习

1、练一练

学生做好后展示学生画的图象,共同评议

问:你们画出的表示打字时间和打字个数关系的图象有什么特点?

指名回答第(3)个问题

追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10。5分钟呢?打450个字、625个字各用几分钟?

2、练习十三第4题

既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。

第二题要求估计,答案出入是允许的

3、第5题

先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。

学生独立完成

指名回答第(2)个问题

学生相互间说一说

学生回答,要说明理由

讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。

三、全课总结

今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?

说说,议论议论。

板书

正比例的意义及其图像

例2(图像)

课后感受

《比例》课件教案 篇2

教学内容: 按比例分配

教学目标:

1、使学生理解按比例分配的意义。

2、掌握按比例分配应用题的特征及解题方法。

3、培养学生应用所学知识解决实际问题的能力。

教学重点:

掌握按比例分配应用题的特征及解题方法。

教学难点:

按比例分配应用题的实际应用。

教学过程:

一、复习引入

1、填空

已知六年级1班男生人数和女生人数的比是:3:2。

(1)男生人数是女生人数的( )

(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

(5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

2、口答应用题

六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

口答:100÷2=50(平方米)

提问:这是一道分配问题,分谁?(100平方米)

怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?

这样分还是平均分吗?

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。(板书:分配)

二、讲授新课

1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

2、提问:分谁?(100平方米)怎么分?(按3 :2分)

求的是什么?(求二年级1班的保洁区是多少平方米?六年级1班的保洁区是多少平方米?)

3、思考:由“如果按3 :2分配”这句话你可以联想到什么?

(1)六年级的保洁区面积是二年级的3/2倍

(2)二年级的保洁区面积是六年级的2/3

(3)六年级的保洁区面积占总面积的3/5

(4)二年级的保洁区面积占总面积的2/5

… …

小组汇报结果

4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?

方法一、3+2=5 100÷5=20(平方米)

20×3=60(平方米) 20×2=40(平方米)

方法二、3+2=5 100× 3/5=60(平方米)

100× 2/5=40(平方米)

方法三、100÷(1+2/3 )=60(平方米)

60× 2/3=40(平方米)或100-60=40(平方米)

方法四、100÷(1+3/2 )=40(平方米)

40× 3/2=60(平方米)或100-40=60(平方米)

5、比较思路:这几种方法中,你认为哪种方法好?为什么?

(第二种,思路简捷,计算简便)说说第二种方法的思路?

①求出总份数

②各部分数占总份数的几分之几?

③按照求一个数的几分之几是多少的方法解答。

6、这道题做得对不对呢?我们怎么检验?

①两个班级的面积相加,是否等于原来的总面积。

②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

7、练习

一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3 :2。两种作物各播种多少公顷?

8、教学例3学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(1)讨论:这道题与前面所做的题有什么区别?

分配什么?按照什么来分?

怎样计算各班栽的棵数占总棵数的几分之几?

(2)学生独立解题

①三个班的总人数:47+45+48=140(人)

②一班应栽的棵数:280× 47/140=94(棵)

③二班应栽的棵数:280×45/140 =90(棵)

④三班应栽的棵数:280× 48/140=96(棵)

答:一班、二班、三班各应栽94棵、90棵、96棵。

9、小结:观察我们今天学习的两个例题有什么共同特点?

(已知总数量、各部分量的比,求各部分量)

怎么解答?

(先求总份数,各部分量占总数量的几分之几,最后求各部分量)

我们把具备上述特点,用这种特定方法解答的分配问题叫做“按比例分配”应用题,

板书(补充课题):按比例分谁?怎么分?

板书:把一个数量按照一定的比来进行分配。

三、巩固练习

1、六年级(2)班共有42人,男、女人数的比是3:4,男、女生各有多少人?

2、一个三角形三条边的长度比是3 :5 :4。这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

(1)还是按比例分配问题吗?(2)如果是四个数的连比你还会解答吗?

3、一个长方形周长是20厘米,长与宽的比是7 :3,求长与宽各是多少厘米?

7+3=10 20×7/10=14(厘米) 20×3/10=6(厘米)

4、思考:平均分是不是按比例分配的应用题?按照几比几分配的?

四、课堂小结

今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?

五、课后作业

练习十三 2、3、4、6

反思:

一、挖掘教材的趣味性、现实性,激发学生学习兴趣

“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。” 也就是说,当数学和儿童的现实生活密切结合时,数学才是活的,富有生命力的,才能激发儿童学习数学的兴趣。“我班的保洁区面积如何分配”这种贴近学生生活又有一定挑战性的实际例题,不仅能调动学生学习的积极性,而且能培养学生解决实际问题的能力。而且这种学生熟悉的生活素材演绎的问题情境,能使他们真正体验到数学不是枯燥空洞的,不是高深莫测的,数学就在自己身边,是实实在在的。

二、挖掘教材的开放性、挑战性,激励学生创新

现行教材是课程改革过程中的过渡性教材,其中绝大部分的数学问题都是必要条件的问题,探索性、思考性和现实性的数学教材显得比较薄弱,教学中,需要教师补充一些具有开放性、挑战性的学习材料,适当让学生接触一些开放性的问题,培养学生的创新意识。开放性学习材料,除了引进有多余条件或条件不充分的问题,还要逐步引进在解决问题的方式、方法上以及答案上开放的问题,留给学生充分的思维空间和选择余地,激励学生去发现、去创新,来弥补教材不足

“按“3 :2分配”你读懂了什么?”这种开放的问题情境,给学生创造了自由发展的更大空间,满足学生的数学学习需求,能使他们真正体验到数学不是枯燥空洞的。再次验证了只有学生积极投入的课堂,才是真正充满生机和活力的课堂。

三、挖掘教材的问题性、情境性,培养学生多角度、个性化解决问题

教材呈现的方式是教材内容的表现形式,也是课堂教学教与学的载体,而同样的教学内容,如果用不同的呈现方式,就会产生不同的教学效果。为取得更好的教学效果,需要我们教师在呈现教材时,为学生创设一种良好的思维情境。一个好的问题情境,会使学生产生困惑和好奇心,能迅速地把学生的注意力吸引到教学活动中,使学生产生浓厚的学习兴趣和强烈的求知欲,从而使学生自觉、兴奋地投入到加深练习中,学习和探求新知识的教学活动中。同样是5:2的条件变换另一个条件,就能解决更多不同的问题,“还能怎样变换呢?”的悬念,这种诱惑力,激发了学生探求和解决问题的浓厚兴趣,将学生自然地带进了新知的探究中。这个例子再次告诉我们:小学数学教学中,教师要重视为教材创设问题情境,让学生在情境的引导下,积极主动探索和追求,来获取知识,发展能力,培养情感,从而让我们的“教材”成为我们学生真正喜欢的“学材”。

《比例》课件教案 篇3

教学要求:

使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。

进一步提高解决简单实际问题的能力。

教学过程:

提出本课复习题

基本概念的复习

什么叫两种相关联的量?

下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?

什么样的两种量成正比例关系?什么样的两种量成反比例关系?

成正比例关系的量与成反比例关系的量有什么异同点?

应用练习

完成教材97页的“做一做”。

第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。

巩固练习

完成教材99页第6~7题。

全课总结(略)

教学目标:

使学生进上步理解和掌握比和比例的意义与性质。

区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

教学过程:

讲述本课复习课题并板书

基本概念的复习

比和比例的意义与性质。

什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?

比和分数、除法有什么联系?

说说比的基本性质的比例的基本性质?

比的基本性质与比例的基本性质各有什么用处?

看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

完成教材95的“做一做”。

结合第3题让学生说说什么叫做解比例?根据是什么?

示比值和化简比。

独立完成教材96页上的题目。

说说求比值与化简比的区别?

(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

看书中的表,总结方法。

完成教材96页的“做一做”

比例尺

问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

比例尺除写成数字化形式处,还可怎样表示?

完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)

练习巩固

完成教材十九页第1~4题。

全课总结(略)

《比例》课件教案 篇4

一、教学目标

(一)知识与技能

在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。

(二)过程与方法

通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。

(三)情感态度和价值观

主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。

【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。

二、教学重难点

教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题

教学难点:利用正比例的关系列出含有未知数的等式。

三、教学准备

课件。

四、教学过程

(一)复习回顾

1.说说正比例、反比例的相同点和不同点。

2.判断下列每题中的两个量是不是成比例,成什么比例?

(1)已知A÷B=C。

当A一定时,B和C()比例;

当B一定时,A和C()比例;

当C一定时,A和B()比例。

(2)购买课本的单价一定时,总价和数量的关系。

(3)总路程一定时,速度和时间的关系。

【设计意图】通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。

(二)探究新知,培养能力

1.提出问题。

教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。

课件出示教材第61页例5。

思考:题中告诉了我们哪些信息?要解决什么问题?

教师:你能利用数学知识帮李奶奶算出上个月的水费吗?

2.解决问题。

(1)学生尝试解答。

(2)交流解答方法,并说说自己的想法。

教师:谁愿意来说一说你是怎么解决的?

预设1:

28÷8×10

=3.5×10

=35(元)

(先算出每吨水的价钱,再算出10吨水需要多少钱)

预设2:

10÷8×28

=1.25×28

=35(元)

(也可以先求出用水量的倍数关系,再求总价)

教师:谁和这位同学的方法一样?

【设计意图】用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。

3.激励引新。

教师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

课件出示以下问题,让学生思考和讨论:

(1)题目中相关联的两种量是()和( ),说说变化情况。

(2)()一定,()和()成()比例关系。

(3)用关系式表示是()。

(4)集体交流、反馈。

板书:

教师概括:因为水价一定,所以水费和用水的'吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(5)根据正比例的意义列出比例式(方程)。

学生独立完成,教师巡视。

反馈学生解题情况。

解:设李奶奶家上个月的水费是x元。

28:8=x:10或()

8x=28×10

x=280÷8

x=35

答:李奶奶家上个月的水费是35元。

(6)将答案代入到比例式中进行检验。

教师:你认为李奶奶用了10吨水的水费为35元钱,这个答案符合实际吗?你是怎么判断的?

(7)学生交流,汇报。

【设计意图】“人人都能获得良好的数学教育,不同的人在数学上获得不同的发展”是课标的教学理念,为此让学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。

4.变式练习。

教师:刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?(出现下面的练习)

张大妈:我们家上个月用了8吨水,水费是28元。王大爷家上个月的水费是42元,他们家上个月用了多少吨水?

(1)比较一下此题和例5有什么联系和区别?

(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

(3)集体订正,请学生说一说是怎样想的。

5.概括总结。

教师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用正比例解决问题的思考过程是怎样的。

学生讨论交流,汇报。

(1)分析找出题目中相关联的两种量。

(2)判断它们是否是正比例关系。

(3)根据正比例的意义列出比例。

(4)最后解比例。

(5)检验作答。

教师总结:同学们不但会解决问题,而且还善于归纳总结方法。就像大家想的那样,先分析题中的数量关系,判断相关联的两种量成什么关系,根据问题中的等量关系列出方程,解方程并检验作答。

【设计意图】本着“以学生发展为本”的理念,围绕生活中的水费问题,让学生经历“尝试──理解──总结”的全过程,从而理解、掌握用正比例解决问题的方法,使学生解决问题的能力有一个提升。

(三)巩固练习

1.只列式不计算。

(1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。

(189:3=x:9)

(2)小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用x元钱。

(x:3=6:4)

2.用正比例解决问题。

(1)小兰的身高1.5米,她的影长是2.4米。如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?

(2)小红计划每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟才能完成计划?

【设计意图】通过即时练习巩固,增强学生对具体情境中成正比例的量作出判断和解释的能力,能有条理地解释问题解决的思考过程,有助于提高学生解决问题的能力。

(四)课堂小结,拓展延伸

同学们,谁来说说,上了这节课,你收获了什么?

【设计意图】课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。

《比例》课件教案 篇5

教学目标

1.使学生理解正比例的意义.

2.能根据正比例的意义判断两种量是不是成正比例.

3.培养学生的抽象概括能力和分析判断能力.

教学重点

使学生理解正比例的意义.

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.

教学过程

一、复习准备

口答(课件演示:成正比例的量)

1.已知路程和时间,怎样求速度?

2.已知总价和数量,怎样求单价?

3.已知工作总量和工作时间,怎样求工作效率?

二、新授教学

(一)导入新课

这些都是我们已经学过的常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.

(二)教学例1.(课件演示:成正比例的量)

1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米

2.出示下表,并根据上述内容填表.

《比例》课件教案 篇6

【教学内容】

《义教课标实验教科书数学》(人教版)六年级下册第39-41页成正比例的量。

【教学目标】

1、使学生理解正比例的意义,会正确判断成正比例的量。

2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

【教学重点】

正比例的意义。

【教学难点】

正确判断两个量是否成正比例的关系。

【教学准备】

多媒体课件

【自学内容】

见预习作业

【教学预设】

一、自学反馈

1、揭题:今天这节课,我们一起学习成正比例的量。板书:成正比例的量

2、通过自学,你能说说什么叫做成正比例的量?

3、你是怎样理解成正比例的量的含义的?

4、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的引导下,学生会举出一些简单的例子。

二、关键点拨

1、正比例的意义

(1)出示表格。

高度/㎝24681012

体积/㎝350100150200250300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25平方厘米。

板书:

教师:体积与高度的比值一定。

(2)说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

2、判断正比例关系:下面哪些是成正比例的两个量?

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

三、巩固练习

1、学生独立完成例2后反馈交流。

(1)从图中你发现了什么?

这些点都在同一条直线上。

(2)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

②体积是225㎝3的水,杯里水面高度是多少?

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

(3)你还能提出什么问题?有什么体会?

2、做一做。

过程要求:

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

(2)表中的路程和时间成正比例吗?为什么?

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?

(5)你还能提出什么问题?

3、独立完成第44页练习七第1、2题。

4、判断并说明理由。

(1)圆的周长和直径成正比例。

(2)圆的周长和半径成正比例。

(3)圆的面积和半径成正比例。

四、分享收获畅谈感想

这节课,你有什么收获?听课随想

《比例》课件教案 篇7

一、教材分析

【复习内容】

教科书第12册94页“整理与反思”和94-95页“练习与实践”1-6题

【知识要点】

1.比和比例的意义与性质:

比比例

意义两个数的比表示两个数相除。(老教材:两个数相除又叫做这两个数的比.)表示两个比相等的式子叫做比例。

基本

性质比的前项和后项都乘或除以相同的数(0除外),比值不变。在比例里,两个外项的积等于两个内项的积。

2.比、分数与除法的关系:

a:b==a÷b(b≠0)

3.求比值和化简比的联系与区别:

意义方法结果

求比值比的前项除以比的后项所得的商叫做比值。前项除以后项一个数(整数、小数、分数)

化简比把两个数的比化成最简单的整数比前项和后项都乘或除以相同的数(0除外)一个比

4.图形的放大与缩小(新教材增加的内容)

5.解比例

6.按比例分配的实际问题

【教学目标】

1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

二、教学建议

复习比的知识抓住三点进行:一是举实例说说什么是比,既要有两个同类数量的比,也要有两个不同类数量的比,使学生对比的含义有比较全面的理解。二是通过改写a∶b,沟通比与分数、除法的关系,从除数不能是0体会分母、比的后项也不能是0。三是找出比的基本性质、分数的基本性质和商不变的规律之间的内在联系,完善认知结构。

练习与实践中,要利用第3题里的比组成比例,回忆比例的意义和性质,理解把照片①变成照片④是把图形按一定的比缩小,把照片④变成照片①是按一定的比把图形放大。

三、知识链结

1.认识比(教科书六上P68、69例1例2)

2.比的基本性质(教科书六上P70、例3)

3.化简比(教科书六上P71例4)

4.按比例分配(教科书六上P75例5)

5.图形的放大与缩小(教科书六下P38、39例1例2)

6.比例的意义和性质(教科书六下P40例3、P43例4)

7.解比例(六下P45例5)

四、教学过程

(一)比的知识:

1.举例说说什么是比?什么是比的基本性质?

2.说一说用比的知识可以解决哪些实际问题。

3.完成教科书p94“练习与实践”

(1)完成第一题:学生独立数出班上男女生人数,再完成此题。

(2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

(二)比和分数、除法的联系

出示:a∶b=( )( )=( )÷( )(b≠0)

1.先填空,再说说这样填的根据是什么?

2.说说比的基本性质与分数的基本性质、商不变的规律的联系。

3.练一练:

(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。( )

(2)填空:( )( )=( )÷( )=( )∶( )(填好后展示学生不同的结果。)

(三)比例的知识

1.什么是比例?

2.比和比例有什么关系?(小组讨论后交流)

3.比例的基本性质是什么?

4.比例的基本性质有什么作用?怎样解比例?

5.练一练:完成教科书p94“练习与实践”

(1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

估计后再算一算,来验证估计。

(2)完成第4题:解比例,做好后选两题验算一下。

(四)完成教科书p95“练习与实践”

(1)完成第5题:先学生独立做最后交流第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的93100。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

(2)完成第6题:第一小题让学生独立得出:深色与浅色地砖铺地面积的比是20∶40,化简得1∶2。

第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

(五)评价小结:

学了本课你对所学知识有什么新认识?还有什么问题?

习题精编

一、对号入座。

1.( )÷10=0.6=( )%=( ):( )=

2.把:化成最简单的比是( );千克:400克的比值是( )。

3.甲乙两数的比是3:5,甲数是乙数的( )%,乙数是甲数的( )%,甲数与两数和的比是( )。

4.一杯400克的盐水,含糖率是20%,糖与糖水的比是( ),再加入20克糖,糖与糖水的比是( )。

5.把3:8的前项加上6,要使比值不变,后项可以乘( )或加( )

6.如果A×=B×,那么A:B=( ):( ),当A=0.8时,B=( )

《比例》课件教案 篇8

教学目标:

1.在实践活动中体验生活中需要的比例尺。使学生认识比例尺的意义,学会求一幅平面图的比例尺。

2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。

教学重点:

认识比例尺的意义。

教学难点:

求一幅平面图的比例尺。

板书设计:

比例尺

(1)9.5厘米:95米=9.5:9500=1:1000

6厘米:60米=6:6000=1:1000

(2)19厘米:95米=19:9500=1:500

12厘米:60米=12:6000=1:500

图上距离 :实际距离=比例尺

教学过程:

(包括导引新课、依标导学、异步训练、作业设计等)

一、生活原型再现

师:(出示孙楠同学的照片)你们认识他吗?他是谁?

生:孙楠。

师:怎么可能呢?照片上的人这么小,怎么会是他呢?

生:是缩小了……

师:如果孙楠的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?

生:不像他了,像丑八怪……

师:那怎样才能像他呢?

生:都要缩小。

师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?

生:不像,要缩小相同的倍数。……

二、创设情境,以疑激思

同学们都喜欢足球,踢足球要讲究战术,要研究战术需要设计足球场的平面图,下面我们就来当一回小小设计师,设计出足球场的平面图。

出示:足球场:长 95米,宽60米。 学生作图。

三、 独立探究,合作交流。

1、通过学生讨论,引出学习要求。

(1)确定图上的长和宽的长度;

(2)画出足球场的平面图;

(3)写上图上的长和宽的长度;

(4)分别写出图上长、宽与实际长、宽的比,并化简。

根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。

2、学生小组学习。

3、学生汇报设计思路。

生1:我是把实际的长和宽都缩小1000倍,图上的长就是9.5厘米,宽就是6厘米,这样的长方形图就是足球场的平面图。……

(根据学生的汇报板书)

图上距离:实际距离

(1) 9.5厘米:95米=9.5:9500=1:1000

6厘米:60米=6:6000=1:1000

(2) 19厘米:95米=19:9500=1:500

12厘米:60米=12:6000=1:500

4、揭示比例尺的意义。

图上距离和实际距离的比,叫做这幅图的比例尺。

图上距离 :实际距离=比例尺

师:1:500的比例尺,说说你是怎样理解的?

生:表示图上距离是实际距离的1/500;

表示实际距离是图上距离的500倍;

图上距离和实际距离的比是1:500;

图上1厘米表示实际距离5米,

介绍数值比例尺和线段比例尺。让学生掌握两种比例尺各自的特点。

四、加深理解,拓展应用。

(1)在咱学校校园的平面图上,用15厘米长的线段表示实际长度60米,你能求出这幅图的比例尺吗?

(2)辨析:比例尺是一把尺吗?

(3)比例尺一般出现在什么地方?(地图上或平面图上)

(4)出示山东省主要城市位置图。

师:在这张地图上,你去过什么地方?

师:今年暑假老师准备去泰安登泰山,你能帮老师算一算烟台到泰安有多远吗?需要什么条件?

生:比例尺。出示比例尺 1∶8000000

生:图上距离。

师:给你一把尺子能解决这个问题吗?

学生尝试解决。

交流:

生1:在这幅地图上,我用尺子量得烟台到泰安的距离是5.5 厘米,根据比例尺图上1厘米表示实际距离80千米,5.5×80=440千米。

生2:根据实际距离是图上距离的8000000倍,可以用

5.5×8000000=44000000厘米=440千米

生3:根据图上距离是实际距离的1/8000000,也可以用

5.5÷1/8000000=5.5×8000000=44000000厘米=440米

生4:老师,也可以用方程来解。

解:设烟台到泰安的距离是x厘米。

1:8000000=5.5:x

x=44000000

44000000厘米=440千米

师:那老师如果乘坐每小时100千米的汽车,几小时就能到达?

生:4.4小时

师:可是老师以前去过泰安,是需要8个多小时才能到达的,这是为什么呢?

一时,学生都皱起了眉头陷入了沉思,经过片刻的等待,终于有孩子举起了手:“老师,我们量出的图上距离是直线的,而实际的路线不可能是直的,汽车要走许多许多弯路的。”

忽有一学生喊到:“老师,如果我们通过飞机来计算,那肯定是准确的,因为飞机可是走直线的吧!”……

五、反思体验 拓展完善

1、学生谈自己的收获,总结本节课的内容。

2、你还想知道什么?

六、作业设计

自主练习:2、3

教学后记:

(包括达标情况、教学得失、改进措施等)

上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。

(1)在学生已有的经验上学习数学

新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画足球场的平面图,可以说是水到渠成的。

(2)让学生经历了知识的形成过程

只有体验过,理解才会深刻。让学生在画足球场的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。

(3)让学生密切联系了生活实际

数学来源与生活,又应用于生活实际。本节课从让学生设计足球场平面图,到让学生计算老师到泰安的实际距离及需要的时间,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。

比例的课件十篇


我们听了一场关于“比例的课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。

比例的课件 篇1

正反比例应用题教学设计

西华小学

王丽英

教学目标

1.复习成正比例和反比例关系的量的意义。

2.掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题。

3.进一步培养同学们分析、推理和判断等思维能力。 教学重点和难点

1、判断两种相关联的量成什么比例;确定解答应用题的方法。 教学准备 多媒体课件

教学过程设计

今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。

一、复习概念

1、什么叫成正比例的量?它的关系式是什么?

2、什么叫成反比例的量?它的关系式是什么?

3、正反比例它们有什么相同和不同的地方?

二、复习数量关系

1.判断下面每题里相关联的两种量是不是成比例?如果成比例,成

什么比例?

1.工作效率一定,工作时间和工作总量。( ) 2.每块砖的面积一定,砖的块数和铺地面积。( ) 3.挖一条水渠,参加的人数和所需要的时间。( ) 4.从甲地到乙地所需的时间和所行走的速度。( ) 5.时间一定,速度和距离。( ) 2.选择题:

1.如果a = c÷b ,那么当 c 一定时,a和b 两种量( )。

① 成正比例 ② 成反比例 ③ 不成比例 2.步测一段距离,每步的平均长度和步数( )。

① 成正比例 ② 成反比例 ③ 不成比例 3.比的后项一定,比的前项和比值( )。

① 成正比例 ② 成反比例 ③ 不成比例 = πd 中,如果c一定,π和 d( )。

①成正比例 ② 成反比例 ③ 不成比例

5.化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式( )对。

40:15= 60:χ ② 40χ=15×60 ③ 60χ=15×40

三、复习简单应用题

例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?

A、题中涉及哪三种量?其中哪两种是相关联的量? B、哪一种量是一定的?你是怎么知道的?

C、题中“照这样计算”就是说 ( )一定,那么( )和( )成( )比例关系。学生独立解答。

2、总结 正、反比例解比例应用题要抓的四个环节

3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。

②、一列火车从甲地到乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。

③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。

④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

⑤、小敏买3枝铅笔花了元,小聪买同样的铅笔5枝,要付给营业员多少钱?

⑥、甲种铅笔每支元,乙种铅笔每支元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

四、巩固练习

1、用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?

解:设可装订χ本。

(30+10)χ=500×30 4 0χ= χ= χ=375 答:可装订375本。

2、比一比,想一想,每一组题中有什么不同, 你会列式吗? (1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?

(2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?

五、拓展延伸 用正反两种比例解答:

1、一辆汽车原计划每小时行80千米,从甲地到乙地要小时。实际小时行驶了36千米。照这样的速度,行完全程实际需要几小时?

六、全课总结

解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

七、板书设计

正反比例应用题

=K(一定) X×Y=K(一定) X和Y成正比例关系。 X和Y成反比例关系。

正y、反比例解比例应用题要抓的四个环节 x第

一、分析:可分四步。 第一步:确定什么量是一定的。

第二步:相依变化的量成什么比例。

第三步:找准相对应的两个量的数。

第四步:解方程(根据比例的基本性质) 第

二、设未知数为X,注意写明计量单位。 第

三、根据正反比例的意义列出方程。 第

四、检验并答题。

正反比例应用题(复习课)——教学反思

西华小学

王丽英

正反比例的意义和应用题是人教版小学数学第十二册的内容,这个教学内容要求学生学会分析、判断两种相关联的量是否能成正比例或反比例,学会比较正反比例的相同点及不同点,同时学会用比例的方法解答相关的应用题,作为一节复习课,课前我首先进行了深入的研究,对本课内容进行了整合,自己设计了课件,一节课下来有很多感触: 我觉得在教学过程中做好了以下几方面:

1、能强化正、反比例意义概念的复习,因为正反比例的意义所涉及的文字内容较多,因此,在教学中以简化的概括让学生很容易就把两个意义的核心内容记牢。

2、重视知识间的对比,让学生在对比中发现正、反比例的相同点及不同点,杜绝在以后的学习中出现混乱的现象。

3、练习设计形式多样,让学生在完成不同类型的题目中巩固知识。

4、善于引导学生分析问题,回答问题,出现问题的根源所在,让学生真正掌握知识。

5、课堂教学的连贯性较强,知识之间的衔接严密,教学层次之间过渡自然,让不同层次的学生均能有所收获。

课后,我反复回忆了本节课,发现也存在不足之处,

1.教学时没有让学生讨论分析题里的数量关系成什么比例,老师讲的多,学生说的少。

2.教学时不注重情感交流,应及时抓住学生的闪光点,及进表扬,充分让学生表现自己。

3.讲课节奏快,对差生辅导不到位。讨论的环节和交流的环节花费的时间少,抽的学生少,导致学生没有更好的掌握怎样从关键字眼上找正反比例的特征,因此有些学生不会判断。不会判断就不会列方程。 对于这节课的不足我在今后的教学中要克服缺点,不断积累有效的教学经验,争取每节课都能收到很好的教学效果。

比例的课件 篇2

教学目标:

知识与技能:1.结合丰富的实例,认识反比例。2.能根据反比例的意义,判断两个相关联的量是不是反比例。

过程与方法:通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

情感态度价值观:培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。

教学重点:认识反比例,根据反比例意义判断两个相关联的量是否成。

反比例。

教学难点:认识反比例,根据反比例意义判断两个相关联的量是否成。

反比例。

教具准备:电脑课件。

教学过程:

一、复习引入。

1、计算。

2、判断下面各题中的两种量是否成正比例?为什么?

(1)文具盒的单价一定,买文具盒的个数和总价。

(2)一堆货物一定,运走的量和剩下的量。

(3)汽车行驶的速度一定,行驶的路程和时间。

3、说说什么是正比例。

师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?

二、出示学习目标。

1.能根据反比例的意义,判断两个相关联的量是不是反比例。2通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

3培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。

三、指导自学。

师:给你们讲个小故事:

聪明!嘿嘿??

过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!

学习提示:

一独立思考?

1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”

二合作学习。

小组讨论上述的问题。

三看书合作学习。

1、把25页例2、例3的表格补充完整。

4、你知道什么是反比例吗?

四、学生自学。

五、检查自学效果。

让学生说说自学要求中的内容。

师归纳:两种相关联的量,一种量随着另一种量的变化而变化,

在变化过程中两种量的积一定,那么这两种量成反比例。

六、引导更正,指导运用。

你们还找出类似这样关系的'量来吗?”

排队做操,总人数不变,排队的行数和每行的人数是反比例;长方体的体积一定,底面积和高是反比例。

七、当堂训练。

基础练习。

1、填空。

两种_____的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。

2、判断下面每题中的两种量是不是成反比例,并说明理由。

(1)煤的总量一定,每天的烧煤量和能够烧的天数。

(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

(3)生产电视机的总台数一定,每天生产的台数和所用的天数。

(4)圆柱体的体积一定,底面积和高。

(5)小林做10道数学题,已做的题和没有做的题。

(6)长方形的长一定,面积和宽。

(7)平行四边形面积一定,底和高。

提高练习。

宽/cm1。

四、小结。

通过这节课的学习,你有什么收获?

这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。

相关联,一个量变化,另一个量也随着变化积一定。

xy=k(一定)。

比例的课件 篇3

教学目标

1.使学生理解解比例的意义.

2.使学生掌握解比例的方法,会解比例.

教学重点

使学生掌握解比例的方法,学会解比例.

教学难点

引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已

学过的含有未知数的等式.

教学过程

一、复习准备

(一)解下列简易方程,并口述过程.

2  =8×9

(二)什么叫做比例?什么叫做比例的基本性质?

(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

(四)根据比例的基本性质,将下列各比例改写成其他等式.

3∶8=15∶40

二、新授教学

(一)揭示解比例的意义.

1.将上述两题中的任意一项用  来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.

2.学生交流

根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.

3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.

(二)教学例2.

例2.解比例 3∶8=15∶

1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.

2.组织学生交流并明确.

(1)根据比例的基本性质,可以把比例改写为:3  =8×15.

(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.

(3)规范并板书解比例的过程.

解:3 =8×15

=40

(三)教学例3

例3.解比例

1.组织学生独立解答.

2.学生汇报

3.练习:解下面的比例.

=      ∶  =  ∶

三、全课小结

这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.

四、巩固练习

(一)解下面的比例.

1.  2.  3.

(二)根据下面的条件列出比例,并且解比例.

1.5和8的比等于40与  的比.

2.  和  的比等于  和  的比.

3.等号左端的比是1.5∶  ,等号右端比的前项和后项分别是3.6和4.8.

五、布置作业

(一)解比例.

=    =    ∶  =3∶12

(二)商店有一种衣服,售价是24元,比原来定价便宜25%.现在售价比原来定价便宜多少元?

(三)一个梯形的面积是12平方厘米,它的上底是3厘米,下底是5厘米,高是多少厘米?(列方程解答)

六、板书设计

教案点评

该教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。

比例的课件 篇4

教学目标:

一、知识与技能

1、使学生理解比例的意义和基本性质,会解比例

2、使学生理解正、反比例的意义,能够正确判断成正、反比例的量,会运用比例知识解决有关的实际问题。

3、使学生能够运用比例知识,求出平面图的比例尺以及根据比例尺求图上距离和实际距离。

4、能理解图形放大与缩小的原理,并能把简单的图形进行放大与缩小。

二、过程与方法

1、经历探索两个量的变化情况的过程,理解并掌握正比例和反比例的意义。

2、能从比例知识的角度提出问题,理解问题,并能运用比例知识解决问题,发展学生的应用意识,发展学生的实践能力。

3、学会与人合作,并能与他人交流思维的过程和结果

三、情感、态度与价值观

1、使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

2、体验数学活动充满着探索与创造

3、形成实事求是的态度以及进行质疑和独立思考的习惯

教学重点:比例的意义和正、反比例的意义

教学难点:正确判断正、反比例

教学关键:理解正、反比例意义,认真分析两个量的变化情况 教学时数:18课时

课时安排:

1、 比例的意义和基本性质……………………….3课时

2、 正比例和反比例的意义……………………….5课时

3、 比例的应用…………………………………….5课时

4、 整理和复习…………………………………….4课时

5、 单元测试……………………………………….1课时

《比例的意义》教学反思

比例的知识在工农业生产和日常生活中有着广泛的应用。例如绘制地图需要比例知识,在生产和生活还经常用到两种量之间成正比例关系或反比例关系。比

例的知识还是进一步学习中学数学物理,化学等知识的基础。另外,通过对比例知识的学习还可以加深学生对数量关系的认识,使学生初步了解一种量是怎样随着另一种量的变化而变化。获得初步的函数观念,并利用这些知识解决一些简单的实际问题。因此学好比例这部分内容是很重要的。

教材是提供给学生学习内容的一个文本,教师要根据学生和自己的情况,对教材进行灵活的处理。教者对本节教材进行了再思考、再开发和再创造,真正实现了变“教教材”为“用教材”。这节课中,将例题和习题有机的穿插和调整,以学生已有的知识经验为基础,让学生在算一算、想一想、说一说中理解了比例的意义,知道了比例从生活中来,进而认识到了数学在生活中有着广泛的应用,激发了学生学好数学的信心和积极情感。此外,教者还大胆地组织学生开展探究比例的基本性质的活动,没有根据教材上所提供的现成问题“分别算一算比例的两个外项和两个内项的积,你发现了什么?”机械地执行,给学生暗示思维方向,设置思维通道,缩小探索的空间,使学生失去一次极好的锻炼思维的机会,而是大胆放手,用“四个数组成等式”这一开放练习产生新鲜有用的教学资源,再通过教师适当、精心的引导,帮助学生有效地进行探究,体验了探究的成功,增强了学生的数学素养。

通过本次的教学展示,总体感觉自己整节课的教学流程清晰,教师对本节课的两个重点突破较好,学生都理解了比例的意义,能正确地读写比例,并且能根据比例的意义正确地写出比例。也理解并掌握比例的意义和基本性质,学会了应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。练习设计新颖,能体现学生思维的递进性,练习有层次。为帮助学生理解、掌握本课的教学任务起到了很好的巩固作用。

但本节课也存在着一些不足之处:

(1)整节课一味担心自己的教学任务不能完成,对学生放手不够,有牵着学生走的嫌疑。

(2)教师讲解太过仔细,以至拓展练习无法完成。在今后的教学中将加大“放手”力度,多注意培养学生创新思维;语言力争言简意赅,把更过的时间还给学生探究问题,和独立解决问题。

比例的课件 篇5

教学目标:

1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

2、学会应用比例的意义和基本性质解决实际问题。

教学重点:

掌握解比例的方法,会解比例。

教学难点:

应用比例的意义和基本性质解决生活中的实际问题。

(一)汇报预习案上复习题。

1、解下列方程.

χ=×

2、应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?把组成的比例写出。

3、在括号里填上适当的数。

可以根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。(板书课题)

二、自主探究,合作交流,完成预习案。

根据题意可知“模型的高度:原塔高度=1:10”,已知原塔的高度为320m,如果设模型的高χ米,则可列出比例式为( ):320=1:10

根据比例的基本性质,两个外项χ与10相乘的积()两内项320与1的积。(填等或不等):

4、小结解比例的方法及应注意的问题。

3、博物馆展出了一个高为19.6厘米的秦代将军俑模型,它的高度与实际高度的比是1:10。这个将军俑的实际高度是多少?

作业布置:

比例的课件 篇6

一、教学目标:

1、让学生在实践活动中体验生活中需要比例尺。

2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

二、教学重点:

正确理解比例尺的含义。

三、教学难点:

运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

四、教学准备

多媒体

教学过程:

一、情境导入

师:同学们,老师家的房子要扒了,老师想买个面积大一点的房子,现在老师有两套房子的平面设计图,你能帮老师选择买那套房子吗?看谁能帮老师解决这个难题。(出示投影)

二、探究新知、

1、计算

师:下面就请你们来当一个小小的设计师,课前我们已测量出教室的长是8米,宽是6米,请你们把教室的平面图画在老师发给你的白纸上,并完成表格。

师:在画之前,先看清楚要求。(课件显示):

(1)确定图上的长和宽;

(2)个人独立画出平面图;

(3)在下表中填出图上的长、宽与实际的长、宽的比,并化简。

2、展示交流

你这样想?怎样画?请告诉大家。(学生展示交流)

谁有不同的想法、画法?(学生充分交流不同的意见)

(设计意图:在交流中学生思维互相碰撞,提高认识。另外,有利于教师了解学生的学习基础。)

3、评析感受感受比例尺的价值

他们画得像吗?

(指画得像的图片)问:其中的奥秘是什么呢?

请想一想,说一说。明确图上长、宽与实际长、宽的比是一定的,画出的平面图才逼真。

(设计意图:思考图形画得象不象?为什么?产生认知矛盾,引发深层次的思考。)

4、揭示概念

象这样,在绘制平面图时,需要确定图上距离和实际距离的比,这个比叫做这副图的比例尺。

投影出示比例尺的概念。

5、总结求比例尺时的注意事项

(1)求你所画那副图的比例尺

(2)求老师所买那套房子的实际面积

三、小结

本节课你有哪些收获,还有那些不明白的地方?

比例的课件 篇7

1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.

2.通过观察、比较、归纳,提高学生综合概括推理的能力.

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.

理解正反比例的意义,掌握正反比例的变化的规律.

理解正反比例的意义,掌握正反比例的变化的规律.

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

数量也是两种相关联的量.你还能举出一些例子吗?

例1.一列火车行驶的时间和所行的路程如下表:

……

(2) 2表示什么?180呢?比值呢?

(3) 这个比值表示什么意义?

(4) 360比5可以吗?为什么?

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.

(1)计算工效和时间的乘积.

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的`规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变

(四)结合三组题观察、讨论、总结变化规律.

讨论题:

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程中,它们的异同点是什么?

不同点:第一组商不变,第二组积不变,第三组和不变.

(1)两种量成正比例必须具备什么条件?

(2)两种量成反比例必须具备什么条件?

判断下面各题是否成比例?成什么比例?

(1)表中有哪两种相关联的量?

(3)每组等式说明了什么?

(4)两种相关的量是否成比例?成什么比例?

2.当速度一定,时间路程成什么比例?

当时间一定,路程和速度成什么比例?

当路程一定,速度和时间成什么比例?

4.修一条路,已修的米数和剩下的米数.

今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的量的变化规律,这是本质.

(一)判断下面每题中的两种量是不是成正比例,并说明理由.

1.苹果的单价一定,购买苹果的数量和总价.

2.轮船行驶的速度一定,行驶的路程和时间.

3.每小时织布米数一定,织布总米数和时间.

4.长方形的宽一定,它的面积和长.

(二)判断下面每题中的两种量是不是成反比例,并说明理由.

1.煤的总量一定,每天的烧煤量和能够烧的天数.

2.种子的总量一定,每公顷的播种量和播种的公顷数.

3.李叔叔从家到工厂,骑自行车的速度和所需时间.

4.华容做12道数学题,做完的题和没有做的题.

比例的课件 篇8

教学目的:

1、结合丰富的实例,认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是正比例。

3、利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

教学过程

一、复习导入:

1、在现实生活中有许多互相依赖的变量,谁来举例子说一说都有哪些?

2、在这些互相依赖的变量中,有一些互相依赖的变量之间有着共同之处,这节课我们就一起来研究它们,看谁在这节课里表现得最好。

二、新授

1、请同学打开书19页,看第一题。

(1)读题

(2)指导看图,请同学看书上左边的图像,横轴表示什么?纵轴表示什么?

(3)请同学在书上把表格填完整

(4)学生汇报

(的表格和图像,想一想,哪个量是随着哪个量变化而变化的?怎么变化的?(正方形的周长是随着边长的变化而变化的,正方形的周长是随着边长的增加而增加的)再看(2)的表格与图像,哪个量随着哪个量是怎样变化的?(正方形的面积是随着边长的增加而增加的)。

(6)看看这两个表格和图像,正方形的'周长与边长的变化规律和正方形的面积与边长的变化规律相同么?(不一样,正方形的周长总是边长的4倍,也就是比值一定,正方形的周长与边长的变化规律的图像是一条直线,正方形的面积是边长与边长的乘积,正方形的面积与边长的变化规律的图像是一条曲线)

2、接着请同学看黑板,我们再来看第二题

(1)找一生读题 怎么求路程?路程=速度×时间

(2)请同学根据这个式子在书上把表格填完整

(3)对答案

从中你发现了什么规律? 路程与时间的比值(也就是速度)相同

(相同,那么我们就说路程和时间成正比例。(板书课题正比例)思考:速度一定时,路程和时间成正比例,那么单价一定时,购买苹果应付的钱数和质量之间是什么关系?(正比例)

结合二三题的表格,谁来说说成正比例必须具备几个条件?(必须具备两个条件:一是必须具备两个变量,二是这两个变量之间的比值一定)(黑板板书两个条件)

(4)师:也就是说,一个量增加或者减少,另一个量也跟着增加或者减少,在变化的过程中这两个量的比值不变,我们就说这两个量之间成正比例

一句话:一个量变化,另一个量也发生变化,在变化的过程中这两个量的比值不变,我们就说这两个量之间成正比例(屏幕出示此句话)

5、用字母表示正比例式子

A、如果用s表示路程,t表示时间,那么路程与时间的关系可以怎么表示(表示为s=

B、如果用y和x表示两个变量,k表示他们的比值,你能用字母表示出成正比例的量之间的关系么?黑板板书y=kx(k 一定)(板书此关系式)

师:现在你们会判断两个量是否成正比例么?下面我要考考大家,看谁能顺利过关?

汇报:(不成正比例,虽然小明岁数增加,爸爸的岁数也增加,但是小明的岁数与爸爸的岁数的比值随着时间的变化而变化,是一个变量)

(3)师小结:判断两个量是不是成正比例,不但要看一个量是否随另一个量变化而变化,还要看这两个变量的比值是不是一定,比值变了就不成正比例。

三、巩固练习

1、判断下面各题中的两个变量是否成正比例,并说明理由。

3、找一找生活中成正比里的例子。看谁想得多?

四、课堂总结

比例的课件 篇9

什么叫正比例?

两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例。

显然,若y与x成正比例,则y/x=k(k为常量);反之亦然。

例如:在行程问题中,若速度一定时,则路程与时间成正比例;在工程问题中,若工作效率一定时,则工作总量与工作时间成正比例。

正比例的例子:

正方形的周长与边长 (比值4)。

圆的周长与直径 (比值π)。

购买的总价与购买的数量(比值 单价)。

路程的例子:

1.速度一定,路程和时间成正比例。

2.时间一定,路程和速度成正比例。

都是定一个,变一个 。例如aX=Y中,a不变,则 X与Y成正比例。

比例的课件 篇10

教学目标:

使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

1.解下列简易方程,并口述过程。

2.什么叫做比例?比例的基本性质是什么?

3.应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

4.根据比例的基本性质,将下列各比例改写成其它等式。

(放大前后的相关线段的长度是可以组成比例的)。

(2)如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?

引导学生写出含有未知数的比例式。

告诉学生:“像上面这样求比例中的未知项,叫做解比例。

(4)思考:“根据比例的基本性质可以把比例变成什么形式?”

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。(在6x前加上“解:“)

(5)让学生把解比例的过程完整地写出来。指名板书。

提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?” (先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)

“从上面的过程可以看出,在解比例的过程中哪一步是新知识?”

3.补充练习:

利用比例的.基本性质,把下列比例改写成含有未知数的等式。(投影出示,由学生独立完成后汇报。

)

三、全课小结:

1.通过本课的学习,你有哪些收获?

2.这节课我们学习了解比例。想一想,解比例的关键是什么?

(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可。

比例课件必备10篇


小编精心设计的“比例课件”一定会让您感到非常满意。每个老师为了上好课需要写教案课件,只要我们老师在写的时候认真负责就可以了。教案编写是教师进行教学投入的重要支持。此文一读相信您会拥有新的认知深度!

比例课件(篇1)


一、教学目标


1. 理解比例的概念和性质。


2. 熟练运用比例的性质进行计算和解决实际问题。


3. 培养学生的逻辑思维和数学推理能力。


二、教学内容


1. 比例的概念和性质。


2. 比例的计算方法。


3. 比例在实际问题中的应用。


三、教学准备


1. 板书:比例的性质。


2. 课件:比例的计算方法和实际问题。


3. 教具:尺子、计算器等。


四、教学过程


【导入】


1. 引入比例的概念:同学们,你们知道什么是比例吗?举个例子。


2. 听一听同学们的回答,然后简单解释比例的概念:比例是指两个或多个数之间的等比关系。比例可以表示为a:b或a/b,其中a和b是比例中的两个数,表示它们的比值。


【探究】


1. 假设有一个比例a:b,那么这个比例的倒数是多少?


2. 继续思考,如果将比例a:b化简为最简形式,它的两个数分别是多少?


3. 让学生自主探究,得出以下:


- 比例a:b的倒数是b:a。


- 比例a:b化简为最简形式后,它的两个数没有公因数。


【展示】


1. 板书比例的性质:


- 性质1:比例a:b的倒数是b:a。


- 性质2:比例a:b化简为最简形式后,它的两个数没有公因数。


2. 请学生读一遍板书上的比例的性质,然后进行讲解。


【练习】


1. 让学生完成以下练习:


- 求比例3:4的倒数和最简形式;


- 求比例6:9的倒数和最简形式。


2. 收集学生解答的结果,进行讨论和纠正。


【拓展】


1. 引导学生思考比例在日常生活中的应用,例如购物打折、均衡饮食等。


2. 提供实际问题,让学生使用比例的性质进行计算和解决问题。


【总结】


1. 学生进行比例性质的


- 比例的倒数是倒过来的比例。


- 比例可以化简为最简形式。


2. 确保学生掌握比例的性质和计算方法,解决实际问题时能运用灵活。


五、教学反思


通过本节课的教学,学生能够理解比例的概念和性质,能够熟练运用比例的计算方法并解决实际问题。在教学过程中,教师注重启发学生思维,培养他们的逻辑思维和数学推理能力。同时,通过引导学生进行思考和讨论,激发他们对数学的兴趣和学习动力。

比例课件(篇2)

教学目的:

1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。

3、培养学生的知识迁移的能力,增强学生的合作意识。

教学重点:使学生掌握解比例的方法,学会解比例。

教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

教学过程:

一、创设情境,生成问题

1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

2、判断下面每组中的两个比是否能组成比例?为什么?

6:3和8:4 : 和 :

3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)

二、探索交流,解决问题

1、什么叫解比例?

我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

2、教学例2。

(1)把未知项设为X。解:设这座模型的高是X米。

(2)根据比例的意义列出比例:X:320=1:10

(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。

根据比例的基本性质可以把它变成什么形式?3x=8×15。

这变成了什么?(方程。)

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。

(4)学生说,教师板书解比例的过程。

教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

3、教学例3。

出示例3:解比例 =

提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)

这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6

让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。

4、总结解比例的过程。

刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

5、P35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。

三、巩固应用,内化提高

1、P37第7题。

2、P37~38第8~11题。

3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。

4、一个比例的四个项都是大于0的整数,它的两个比的比值都是 ,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。

5、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?

四、归纳整理,反思提升

什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?

比例课件(篇3)

教学目的:

1.通过检测讲评,进一步理解和掌握正、反比例应用题的解题规律。

2.通过一题多变、一题多解等题组练习形式,由浅入深,由易到难,培养学生思维的灵活性。

我们已经学过了正、反比例应用题,今天我们上一节检测讲评课课。(板书课题:正反比例应用题)通过这节课的学习,希望进一步理解和掌握正反比例应用题的解题规律。

检测题。

1.什么叫成正比例的量?它的关系式是什么?

2.什么叫成反比例的量?它的关系式是什么?

3.判断下面两种量成不成比例?成什么比例?

a.订阅《中国少年报》的份数和钱数。

b.日产量一定,天数和总产量。

c.路程一定,速度和时间。

d.圆的周长和半径。

e.长方形的周长一定,长和宽。

f.圆锥的体积一定,底面积和高。

大家对概念掌握得较熟练,但在应用中可看出对概念的理解程度还是有差距的。两种量是不是成正反比例的量先明确是谁和谁,其次看它们是不是相互影响,若是,就看着两种量是不是属于积商关系,积商一定时,就下断论。例如人的身高和体重是不是成正反比例的量,这两种量一种量变化,另一种量不一定发生变化,直接否定。再如,圆周率和圆周长是不是成正反比例的量,因为圆周长变化时圆周率并不发生变化,也是直接否定。a、b、c、d、f中两种量相互影响,且积或商一定所以成正反比例的量,e中两种量相互影响,但不实际上已定,故不成正反比例的'量。大家一定要把握概念的实质,灵活运用。

二、练一练。

1.计算下列各题:

农具厂生产一批农具,3天生产360台,照这样计算,30天可生产多少台?(指名读题)。

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)。

订正时请板演的同学先讲一讲,做题的时候自己是怎么想的?并板书列式:360/3=x/30。

师:这道题,你们觉得他做得咋样?如果工作时间30天不直接告诉我们,还可以怎么说?

生:如果再生产27天,一共可生产多少台?

师:同原题比较,这道题复杂在哪呢?

生:原题的条件是直接的,这题的条件是间接的。

生:原题问题所对应的量是已知的,这题问题所对应的量是未知的。

师:这道题怎样解答呢?(要求学生口头列出比例式)。

生:解:设一共可生产x台,360/3=x/(3+27)(板书:360/3=x/(3+27))。

教师提问:3+27求的是什么?把3+27写成27可以吗?

教师强调:列式时一定要找准相关联的量中相对应的数。

师;这道题还可以怎样解答?

生:解:设27天可生产x台,360/3=x/27x+360。(板书:360/3=x/27x+360)。

教师小结:80%同学能做出地一题,第二问题就有点大了。其实象这道题,问题虽然变了,但题中基本数量关系未变,所以我们都是用正比例的方法来解答的。这道题我们可以直接设问题为x,列出这样的比例式(指360/3=x/(3+27))。也可以间接设27天的生产量为x,求出27天的生产量再加上前3天的生产量,就得到了一共的生产量。

解答正比例应用题的关键一是要正确判断相关联的两种量是否成正比例,二是要找准相关联的量中相对应的数。

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)。

教师订正时请同学讲述解题思路,并板书方程:100x=80*20。

将原题变成:

以上4题要求学生独立完成。

教师评讲:通过刚才的变换我们发现,较复杂的反比例应用题,其复杂性表现在两个方面。一是已知条件发生变化,引起未知数x对应值的复杂化。二是问题发生变化,引起未知数x的复杂化。但不管怎样,我们要紧扣反比例的意义,对应用题中两相关联的量进行正确的判断。

等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

比例课件(篇4)

1.使学生理解比例尺的好处并能正确地求出平面图的比例尺.

2.使学生能够应用比例知识,根据比例尺求图上距离或实际距离.

理解比例尺的好处,能根据比例尺正确求出图上距离或实际距离.

谈话导入:(出示准备好的地图、平面图)同学们请看,这些分别是祖国地图、本省地图和学校的平面图.在绘制这些地图和平面图的时候,都需要把实际的距离按必须的比例缩小,再画在图纸上.有时由于机器零件比较小,需要把实际距离扩大必须的倍数以后,再画在图纸上.不管是哪种状况,都需要确定图上距离和实际距离的比.这天我们就来学习这方面的知识比例尺.

例4.设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离.求图上距离和实际距离的比.

2.思考.

(1)要求图上距离与实际距离的比,能不能直接用题中给出的两个数列式?为什么?就应怎样办?

(2)是把厘米化成米,还是把米化成厘米?为什么?就应怎样化?

3.求出图上距离和实际距离的比.

4.揭示比例尺的好处.

教师说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,所以就给它起了个新的名字比例尺.(教师在“图上距离∶实际距离”的后面板书:=比例尺)有时图上距离和实际距离的比也能够写成分数形式.

板书:

图上距离是比的前项,实际距离是比的后项,比例尺是图上距离比实际距离得到的最简单的整数比.

教师强调:

(1)比例尺与一般的尺不同,它是一个比,不应带有计量单位.

(2)求比例尺时,前、后项的长度单位必须要化成同级单位.

(3)比例尺的前项,一般应化简成“1”.如果写成分数的形式,分子也应化简成“1”.

北京到天津的实际距离是120千米,在一幅地图上量得两地的图上距离是2厘米,求这幅地图的比例尺.

例5.在比例尺是1∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离大约是多少千米?

根据比例尺的好处,已知比例尺和图上距离,能不能用解比例的方法求出实际距离呢?怎样求?

(因为,已知图上距离为15厘米,比例尺为,要求的实际距离不明白,可用表示,所以可列比例式)

1.讨论:这个比例式中的指的是实际距离.题中要求的是南京到北京的实际距离为多少千米,根据本题的已知条件,所设未知数应用什么单位?为什么?

(1)为什么要设南京到北京的实际区高为厘米?

(2)这个比例式表示的实际好处是什么?

(3)解这个比例式的依据是什么?

(4)在求出=90000000后,为什么还要化成900千米?

3.反馈练习.

先说出下图中的比例尺是多少;再用直尺量出图中河西村与汽车站间的距离是多少厘米,并计算出实际的距离大约是多少千米.

例6.一个长方形操场,长110米,宽90米.把它画在比例尺是的图纸上,长和宽各应画多少厘米?

教师提问:题目中告诉了我们什么已知条件?求什么?先求什么?

(1)先求长的图上距离.

(2)求宽的图上距离.

教师说明:在这道题中,要分别求出图上距离的长和宽,同一个问题里不同的未知数,要用不同的字母来表示.因为前面图上距离的长用表示了,那里就不能再用它来表示宽的图上距离了.因此,我们设宽应画厘米.

这节课我们学习了比例尺,明白了图上距离与实际距离的比叫做这幅图的比例尺.并能根据比例尺求出图上距离或实际距离.应注意的是,在计算中,图上距离与实际距离的单位务必是相同的.

(一)决定下列这段话中,哪些是比例尺,哪些不是?为什么?

把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米.

1.图上长与实际长的比是().

2.图上宽与实际宽的比是1∶400().

3.图上面积与实际面积的比是1∶160000().

4.实际长与图上长的比是400∶1().

(二)在比例尺是1∶5000000的中国地图上,量得上海到杭州的距离是3.4厘米,计算一下,上海到杭州的实际距离大约是多少千米?

五、课后作业.

右图的比例尺是,量得图中所示的宽和高,并计算出实际的宽和高各是多少?

例4.设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离.求图上距离和实际距离的比.

例5.在比例尺是1∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离大约是多少千米?

例6、一个长方形操场,长110米,宽90米.把它画在比例尺是的图纸上,长和宽各应画多少厘米?

1.帮忙学生正确理解比例的好处和性质,并能正确应用.

在1、2、3、4、5、6、7、8、这八个数字中,哪些数能组成比例,组成怎样的比例?

1.组成比例有什么前提条件?

2.这八个数字能够组成比例吗?有哪些?

3.怎样才能保证组成的比例即不重复也不遗漏?

1∶2=4∶8,4∶8=1∶2;

2∶1=8∶4,8∶4=2∶1;

1∶4=2∶8,2∶8=1∶4;

4∶1=8∶2,8∶2=4∶1.

在,3,0.8,,4.8,2,中,哪些数能组成比例?组成怎样的比例?

比例课件(篇5)

比例的意义教学设计

金安中心学校 授课人:吴挺勇

教学内容: 教科书第32—33页及相应的做一做。

教学目标: 1.知识与技能:使学生理解比例的意义,能应用比例的意义判断两个比能否构成比例。 2.过程与方法:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

3.情感、态度与价值观:培养学生在实际生活中发现数学的存在,并在实际生活中能感受到数学的趣味,提高学生学习数学的积极性。 重点和难点:

1、认识比例、理解比例的意义。

2、应用比例的意义判断两个比能否构成比例。 教学准备; 多媒体课件 教学过程:

一、导入

1、请同学们回忆一下上学期我们学过的比的知识,,谁能说说什么叫比?什么叫比值?什么叫比的基本性质?

2、我们知道了比的前项除以后项所得的商叫做比值。怎样求比值呢?你们还记得吗?

求出下面每个比的比值。

16:20 : 2:

请同学们观察一下,哪两个比的比值相等?

:的比值和2:的比值相等。

因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来(板书;:=2:)像这样表示两个比相等的式子叫做什么呢?这就是我们这节课要学习的内容。(板书课题:比例的意义)

二、探究新知

1、出示教材第32页的情景图

请同学们认真观察这四幅图,你都知道了哪些信息?

第一幅图的内容是**升国旗仪式;第二幅图的内容是校园升旗仪式;第三幅图的内容是教室场景;第四幅图的内容是签约仪式。

请同学们找一找四幅图中有什么共同的东西?

(都有国旗)。

国旗是我们国家的象征,我们不要随意玩弄或者丢弃国旗,我们必须尊重它,热爱它。

2、请说出四面国旗的长和宽各是多少?

出示课件四面国旗长与宽的具体数据,写出它们长与宽的比。

3、请同学们分别写出学校里两面国旗,长和宽的比值是多少 根据学生的回答,板书

33 操场上的国旗::= 教室里的国旗:60:40=

22 你们发现了什么?这两个比有什么关系?

3 这两个比的比值都是。它们相等。 2 因为这两个比相等,所以我们可以把它们用等号连起来。

板书:(:16=60:40)像这样(指着这个式子和复习题的式子:=2:)表示两个比相等的式子叫做比例。

要求全班同学齐读一篇。

4、设疑,上面的四幅图中,你还能找出哪些比可以组成比例。

5、比例是由几个比组成的,这几个比必须具备什么条件?判断两个比能不能组成比例,

关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?

三、教师小结:

通过上面的学习,我们知道了比例是由两个相等的比组成的,在判断两个比能不能组成比例时,关键是看着这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比简化或是求出比值后再看。

例如:判断下面每组中的两个比能不能组成比例。

6:10和9:15

11:2和:4 3631

16:10=

:2=

9:15=

:4=

=(比值相等)

6:10和9:15(能组成比例)

写成:6:10=9:15 比较“比”和“比例”的两个概念。

11:2和:4(不能组成比例) 36 引导学生从意义上.项数上对它们进行比较,最后归纳:比是由两个数组成,是一个式子,表示两个数相除;比例是由四个数组成,是一个等式,表示两个比相等的式子。

四、课堂练习

1、教材第33页做一做第1题.

2、教材第33页做一做第2题.

五、巩固练习:

(课件出示)

六、总结

通过这节课的学习,你们有什么收获?

比例课件(篇6)

教学目标

1.使学生理解比例的意义,能应用比例的意义判断两个比能否成比例。

2.在比的知识基础上引出比例的意义,结合实例,培养学生将新、旧知识融会贯通的能力。

3.提高学生的认知能力。

教学重点:比例的意义。

教学难点:找出相等的比组成比例。

教具准备:课件

教学过程:

一、旧知铺垫

1.什么是比?

(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

2.求下面各比的比值。

12 :16 1/3 :2/54.5 :2.7 10 :6

二、探索新知

1.课件出示课本情境图。

(1)观察课本情境图。(不出现相片长、宽数据)

①说一说各幅图的情景。

②图中图片有什么相同之处和不同之处?

(2)你知道这些图片的长和宽是多少吗?

(3)这些图片的长和宽的比值各是多少?

A.6 ∶4=B.3∶2= C.3∶8 = D.12∶8=E.12∶2=

(4)怎样的两张图片像?怎样的两张图片不像?

①D和A两张图片,长与长、宽与宽的比值相等,12∶6=8∶4,所以就像。

②A长与宽的比是6∶4,B长与宽的比是3∶2,6∶4=3∶2,所以就也像。

2.认一认。

图D和图A两张图片,长与长、宽与宽的比值相等,图A和图B两张图片

长和宽的比值相等。

板书:12∶6=8∶4 6∶4=3∶2

(5)什么是比例?

板书:表示两个比相等的式子叫做比例。

“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?

比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。

(6)比较“比”和“比例”两个概念。

上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

(7)找比例。

在这四副图片的尺寸中,你还能找出哪些比可以组成比例?学生猜想另外两副图片长、宽的比值。求出副图片长、宽的比值,并组成比例。 如:3∶2 =12∶8 6∶4= 12∶8

3.下表是调制蜂蜜水时蜂蜜和水的配比情况,根据比例的意义,你能写出比例吗?

(2)把组成的比例写出来。

(3)说一说你是怎么写的,一共可以写多少个不同的比例。

4. (1)仔细观察下面的比例,你有什么发现。

板书:12∶6=8∶4 6∶4=3∶23∶2=15∶10 10∶2=15∶3 12×

4=6×8 6×2=4×3 3×10=2×15 10×3=2×15

发现:在比例里,两个内项的积等于两个外项的积。如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

(2).淘气的发现你同意吗?请你写出几个比例验证一下。 如:3∶2 =12∶8 6∶4= 12∶8

三、巩固练习

1.练一练第3题。应用比例内项的积与外项的积的关系,判断下面哪几组的两个比可以组成比例,并写出组成的比例。

2.练一练第4题。下面各表中相对应的两个量的比能否组成比例?把能组成的比例写出来。

四、课堂小结。

(1)什么叫做比例?

(2)一个比例式可以改写成几个不同的比例式?

(3)比例的基本性质是什么?

板书设计

比例的认识

12∶6 = 8∶4 可以写成12/6=8/4

内项

外项

表示两个比相等的式子叫做比例。

比例的基本性质:

两个内项的积等于两个外项的积。

把比例写成分数形式,等号两端分子和分母分别交叉相乘,积相等。

比例课件(篇7)

《比例的认识》教学设计

(2016-03-03 16:37:00) 转载▼

分类: 教学设计2015-2016第二学期六

首案编写者:李芳芳

教学内容

比例的认识 教材16——18页 教学目标 知识技能

结合“图片像不像”“调制蜂蜜水”等情境,找到相等的比,理解比例的意义,认识各部分名称,能通过化简比或求比值判断两个比能否组成比例,会用两种形式表示比例。 数学思考与问题解决

经历自学和合作的过程,体验学习的快乐。 情感态度

培养学生自主参与的意识,培养学生观察、分析、概括的能力。 教学重点

通过情境理解比例的意义,通过求比值或化简比判断两个比是否能组成比例。 教学难点

通过求比值或化简比判断两个比是否能组成比例,并正确的写出比例。 教法学法

讲授与自学相结合、自主学习法、合作学习法 教学准备

多媒体课件、学生自学卡 教学过程

一、回顾旧知,复习铺垫 1.复习学过的有关比的知识。 2.谈话引入新课。

二、引导探究,学习新知 1.教学比例的意义。 同学们还记得这些图吗?请联系比的知识,想一想怎样的两张图片像,怎样的两张图片不像?

你们能说出每幅图的长与宽的各是多少吗?请在学习卡上写下来。 写出长与宽的比,并求出比值。完成学习卡的第一题。 2.初步感知比例的意义。 (1)交流反馈。 (2)引出比例的意义,

因为这两个比的比值相等,所以我们可以写成一个等式,6:4=12:8,也可以写成6/4=12/8 师:像这样表示两个比相等的式子叫做比例。(板书:比例) 3.组织看书,认识名称

我们知道了比例的意义,那么,比例的各部分名称是什么呢?请大家自学16页的“认一认”,完成学习卡的第二题。

【设计意图:让学生自学比例的各部分名称,把学习的主动权还给他们,既培养了他们的自学能力,又处理好了讲授与自学的关系。】 4.利用新知,学以致用

师:在图上这五张图片的尺寸中,你还能找出哪些比来组成比例? (小组讨论,交流汇报) 生汇报

【设计意图:通过教师系统的总结,传递给学生一个信号,考虑问题要多方位思考。】 5.内化意义,提高认识

(1)从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件? (2)要判断两个比能否组成比例,关键看什么?如果不能一眼看出两个比是不是相等,怎么办?” 6.引申应用

学生自学数学书的16页的问题三。 7.比较“比”和“比例”两个概念。

教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢? 8.教学比例的基本性质 (1)教学比例各部分的名称。

教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P17,看看什么叫比例的项、外项、内项。 指名让学生指出板书中的比例的外项、内项。 (2)教学比例的基本性质。

教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书: 两个外项的积是80×5=400 两个内项的积是2×200=400 “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。

通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来? 最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成:

“这个比例的外项是哪两个数呢?内项呢?”

“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样? 学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

三、巩固深化,拓展思维。 (题略)

四、全课小结,提高认识

通过这节课的学习,你们都有哪些收获?

板书设计:

比例 比 = 比

12︰6 = 8︰4 ( 12/6=8/4) 内项

外项 教学反思:

比例的意义是学生对比的意义、性质和比值的意义以及求比值的方法有了较充分认识的基础上进一步学习的,掌握这部知识将为进一步学习正、反比例的意义,用比例的方法解应用题奠定了坚实的基础。所以这一概念的建立很重要。

一、创造有效学习情境,激发学习主动性

1.在备课之前,我仔细阅读了课标,教学参考书,以及各种参考资料,不过对情境图的处理我还是大胆的对它进行了创新:那就是通过独立完成“学生学习卡”的第一题,(这里有二层意思,一是复习旧知,二是为比例的意义做准备。)让他们通过计算和归纳,将比或比值相等的比写在一起,把比或比值不相等的比的写在一起,让数据来说话,比值相等的图片就像,比值不相等的图片就不像。在学生充分感知的基础上,揭示比例的意义。

2.当引出比例的意义后,我又将自学与讲授相结合。让学生自学16页的“认一认”,完成学习卡的第二题,这样做既符合“学法建议”里的“以学生自学为主,理解比例的意义”又“采用小组合作学习的形式,让学生自学成为习惯,合作成为常态。”我在这个环节特别安排了两组“数字相同,而组成的比例的不同”这样的例子,旨在通过这个练习给大家传递一个信号,“相同的四个数,由于不同的数字排列,比值不同,会组成不同的比例。”这个目的达到了。学生汇报完毕后,我让小组长到讲台上给大家讲解比例的内项和外项,检验他们的学习成果。

3.多次运用学习卡的“第一题”的数据,刚才“我们是纵向比较得出这几张图片像的理由的,其实我们还可以横向比较,比如:图片A的长与B图片的长比是6︰3,比值是2,A图片与B图片宽的比是4︰2,比值是2,因此他们也可以组成比例6︰3=4︰2”,这样设计的原因之一是:充分运用主题图的作用,原因之二是:主要体现同一个图形的长与宽的比,也可以是宽与长的比,每两张图片的长与长的比,宽与宽的比,根据两个相等的比可以组成多个比例。原因之三是通过系统的比较,传递给学生一个信号,考虑问题可以多方位思考。 4.通过“思考与讨论”环节,学生重温了刚刚学过的比例的知识,又将感性知识上升到了理性思考,小组间的互相交流与讨论,让每个孩子成了学习的主人特别是当学生表述完,我都听着有点别扭的时候,我及时调整思路,让“小组长”到讲台上边举例边见解,当她自己觉得这样行不通的时候,他们就会想办法解决自己的问题。给小组长展示的平台,他们的积极性会更高,学生在学生过程中感受到成功的喜悦,参与课堂的主动性被充分调动。

二、变“教教材”为“用教材——拓宽教材”

教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。两个地方我觉得用得比较好:

1.这节课中我将情境图分“两次运用”,第一次先指定学生找“长与宽的比”,这样做,容易让学生迅速找到“比值相等的比,”——引出比例的意义,因为前二十分钟是学生学习的黄金时间,概念的教学需要让学生把握它的实质;第二次是当学生知道比例的意义,初步了解到判断两个比是否能组成比例关键看他们的比值是否相等,让他们再去数据中找比例,这样分散了难点,突出了重点。

2.“ 蜂蜜水是否一样甜”课本上给出了两种不同的比例,通过小组合作学习,他们找出了另外两种,将学习卡的第二题做了完善和补充。

比例课件(篇8)

正、反比例复习课导学案 红土学校 刘丽花

复习内容: 正、反比例的应用。 学习目的:

1.通过练习,进一步理解和掌握正、反比例意义及应用题的解题规律。 2.通过一题多解等形式,由浅入深,由易到难,培养学生思维的灵活性。 学习重点:

找出相关联量中相对应的两个数。 学习难点:

用两个变量来表示定量。 学习过程: 一.温故知新。 问题一

正比例和反比例的意义有什么共同点和不同点? 问题二

用比例解决实际问题可以归纳为哪几个步骤? 二.巩固练习。

(一)。下面各题里相关联的两种量成不成比例,如果成比例,成什么比例?

1.总价一定,单价和数量。 ( ) 2.比例尺一定,图上距离和实际距离。 ( ) 3.全班人数一定,出勤人数和缺勤人数 。( ) 4 .一个圆的直径和周长。 ( ) 5.一根铁丝剪成同样长的段数与每段的长度。( )

(二)选择题 1.从南京到南通,汽车车轮的直径与转数( )。

① 成正比例 ② 成反比例 ③ 不成比例 2.当( )时,x 和 y 成正比例。

① x × y = k (一定) ② = k(一定)

③ x + y = k (一定)

3.步测一段距离,每步的平均长度和步数( )。

① 成正比例 ② 成反比例 ③ 不成比例

(三)比一比,想一想, 你会列比例吗?

(1)黎明发电厂运来一批煤,计划每天烧6吨,可以烧54天。实际每天比计划节约了2吨,这样可以烧几天?

(2)电视机厂要生产640台电视机,前8天共生产了总任务的10%。照这样计算,后来又生 产18天,又生产了多少台?

三.拓展练习 你看我多棒 你会列几种比例解?

1.用一台打字机打字,6小时打36页,照这样计算,如果再打4小时,一共可以打字多少页?

想挑战吗?

奇怪!一道题同时可以用正反两种比例解!你相信吗?

2.一辆汽车原计划每小时行80千米,从甲地到乙地要小时。实际小时可行驶36千米。照这样的速度,行完全程实际需要几小时?

四.小结

通过本节课的学习,自己有什么收获。

正比例教学设计

正比例教学反思

《正比例函数》教学反思

比与比例教学设计

正比例函数教学设计(共5篇)

比例课件(篇9)

基于课程标准的《比例的意义》教学设计

【教案背景】 我国的课程实施或教学主要有三种类型:基于教师经验的课程实施、基于教科书的课程实施和基于课程标准的教学。我们应该从基于教师自身经验或教科书的课程实施,走向基于课程标准的教学,即教学目标源于课程标准、评估设计先于教学设计、指向学生学习结果的质量,使自己能够“像专家一样”整体地思考标准、教材、教学与评价的一致性问题。

【教学课题】 义务教育课程标准实验教科书(人教版)六年级下册数学,第32~33页的例

1、练习六和做一做相关习题。 【目标分解依据】

1、基于课程标准:

在实际情境中理解比及按比例分配的含义,并能解决简单的问题,体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。积极主动探求给定事物中隐含的规律或变化趋势,学生能主动参与数学活动,综合运用所学知识获得解决简单实际问题的活动经验和方法,初步感受数学知识间的相互联系,感受数学思考过程的条理性和数学结论的确定性,体会数学的作用和价值。

2、基于教材安排:

教材安排了五个活动:第一,使学生通过现实情境体会比例的应用。第二,四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等的,由此引入比例意义的教学。。。第三,依据四面国旗长与宽可以组成多个比例式,为比例意义的教学提供较多的资源。第四,为以后学习图形的放大与缩小做铺垫。第五,有助于在教学中渗透爱国主义教育。

3、基于学生实际:

本节内容是在比的知识基础上教学的,学生在学习本节课之前,对比的意义和性质、按比例分配等知识已经积累了一些经验,少部分学生已经通过其他方式知道比例的意义,能应用比例的意义判断两个比能否成比例,但理解的并不透彻,大部分学生对于新知比较生疏。因此,在学习本课时,通过五个活动,让学生掌握比例的意义,并根据这一知识解决生活中的简单问题,在问题中发现比例,进行观察、比较、分析,从而抓住比例概念的实质,更好的区分“比”和“比例”这两个概念,深入理解和应用比例的知识,承上启下,为后面的学习打好基础。

【教材分析】 认识比例的现实素材是图形的放大或缩小,比例能揭示图形放大或缩小的数学含义,而且解决图形放大或缩小、比例尺的实际问题要应用比例的知识。本单元教学“数与代数”领域的比例知识,还教学“空间与图形”领域的图形放大或缩小,以及比例尺的知识,把两个领域的内容融合能发挥数形结合的作用,提高教学效率。 中

【评价设计】

1、交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。

2、表现性评价:通过小组讨论表现、学生回答问题情况,适当对学生进行点拨。

3、选择性反应评价:运用选择题检测“理解比例的意义”、“组比例”的掌握情况。 【基本评价题目】

1、下面各个比能与2:9组成比例的是( ) A、9:2 B、: C、1: 检测:学生对“理解比例的意义”、“组比例”的掌握情况。

2、写出两个比值是的比,并组成比例。

检测:学生对组比例的掌握情况。

3、比表示两个数( );比例表示( )。

检测:学生对比喻比例区别的掌握情况。

【教学目标】 使学生理解比例的意义,能应用比例的意义判断两个比能否成比例。

【教学重点】 比例的意义。

【教学难点】 找出相等的比组成比例。

【教学方法】 在学生已有的比的知识基础上,结合具体实例,引出比例的意义。引出比例意义后,还应回到实例中,体现从具体──抽象──具体这样一个认知过程。 【教学过程】

一、回忆:

1、什么是比? (1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

300:5=60:1 (2)小明身高米,小张身高米,写出小明与小张身高的比。 :=12:14=6:7 2.求下面各比的比值。

12:16 : : 10:6

二、探索新知 1.教学例1` (1)初步感知相等的比,课件呈现教材情境图。(不出现国旗长、宽数据)①说一说各幅图的情景。

②图中有什么相同之处?

你知道这些国旗的长和宽是多少吗?

出现各图中国旗的长、宽数据。

测量教室里国旗的长、宽各是多少厘米。

(2)感知比例式,(指教室里的国旗)这面国旗的长和宽的比值是多少?操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

(3)什么是比例? 在这一基础上,教师可以明确告诉学生比例的意义,并板书。 (4)小组找比例。

还能找出其它的比吗?并组成比例。 (5)汇报。 2.做一做。

完成课文“做一做”。

第1题。

什么样的比可以组成比例?

把组成的比例写出来。

说一说你是怎么找的。

同学之间互相交流,检验各自所写的比例。

第2题。

学生独立写比例

同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。 3.课堂小结。 (1)什么叫做比例?

(2)一个比例可以改写成几个不同的比例式?

三、巩固练习

完成练习六第1~3题。

四、总结,作业 【教案中涉及资源】

【教学反思】这节课,突出了常态下如何扎实有效的组织学生学习好一节课的内容,使数学学习与现实生活紧密联系,使学生认识到我们的数学学习是有用的,它能解决我们实际生活中的很多问题,从而提高学生学习积极性,从学生掌握知识、课堂参与情况来看,整节课的设计还是比较适合学生的思维发展。在结构上,注重了前后呼应,使整堂课也显得比较紧凑。

根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。在练习中要根据给出的4个数据,组比例,隐含着相似三角形对应边成比例的性质。学生通过迁移比较,小组合作交流,多方验证,大家的思维从先前的不知所问到最后的豁然开朗,个个实实在在地当了一名小小的“数学家”,经历了这个愉快的学习过程,获得了成功的体验。

比例课件(篇10)

各位老师:

大家好!我今天说课的内容是《比例尺的应用》。我的说课将从说教材、说学情、说教学流程三个方面展开。

一、说教材

1、教学内容

《比例尺的应用》是人教版数学六年级下册第三单元的内容。第一课时。

2、教材地位和作用

这节课是在学生学完“比例尺的意义”后安排的内容。这部分内容是学生学习有关地图、工程图纸的计算的基础。比例尺在生活中也有广泛应用,学好它也具有很好的现实意义。

3、教材编写思路、结构特点

教材安排了两个例题,例2出示了北京地铁的线路图,让求实际距离。教材中只呈现了列方程式的一种方法,教学时应放手让学生自主选择合适解法。例3是综合运用比例尺知识解决实际问题的内容。主要是让学生采取小组合作的方式,自己制定合适的比例尺求出图上距离。由于这部分内容在上学期已经学过,所以教学时没有按照教材中的结构进行,而是做了适当调整。

4、教学目标

知识技能:根据给定的比例尺,灵活运用知识解决求实际距离的简单问题

数学思考:根据比例尺的知识,在解决求实际距离的问题时有自己的见解和方法

问题解决:结合具体情境,能按给定的比例尺解决简单实际问题

情感态度:感受比例尺在日常生活中的应用,获得自主解决问题的积极体验

5、教学重难点

教学重点:应用比例尺的知识,培养学生解决生活中实际问题的能力。

教学难点:求实际距离

二、说学情

学生对于这部分知识并不陌生,但由于隔的时间较长,大部分学生已经对这部分知识淡忘了,因此本课主要是让学生在对原有知识进行回顾梳理的基础上并综合运用比例尺知识解决实际问题。学生的知识困难在于能从多角度思考问题,解决问题,提高综合运用所学知识的能力。

三、说教学流程

课程标准中指出,数学来源于生活,学生活中的数学,因此我对教材进行了重新编排,紧紧围绕学生的生活展开。为此我安排了如下环节“

1、复习准备

出示中国地图,让学生观察图中的比例尺。并通过三个问题“什么是比例尺?怎样求比例尺?求比例尺时需要注意哪些问题?”唤醒学生的记忆,再通过问“生活中哪些地方会用到比例尺?”让学生明白比例尺的应用价值,从而引出本节课要学习的内容。

[设计意图:通过回顾单元知识,师生一起梳理建构单元知识树,对此部分的知识点有个系统的理解]

2、联系生活学新知

此环节安排了两个活动,一个是求图上距离,另一个是求实际距离的.问题。

(1)求图上距离的问题,以画学校操场平面图的情况为背景。让学生自主制定比例尺后先独立完成,然后组内交流,最后分组进行展示

学具的准备:大小不同的纸张

[设计意图:设计此题的目的有两个,一个是使学生明确要求图上距离,就必须知道比例尺和实际距离,掌握求图上距离的方法。第二个是要让学生明白要根据纸张的大小,确定合适的比例尺。同时也可渗透数值比例尺和线段比例尺的转化方法]

(2)求实际距离

大屏幕出示:陡子峪到六道河镇的线路图。要求出此路段的实际距离,需要知道什么?然后依次出示图上距离和比例尺,然后让学生动手计算。师巡视让有不同做法的学生到黑板上展示。

[设计意图:让学生用学到的知识去解决实际问题,也让学生明确数学与生活的联系.同时鼓励算法的多样化]

3、达标测评

主要有判断和课后的“做一做”

【设计意图:通过这些题巩固学生对比例尺的应用知识加深,提高学生解决实际问题的能力,从而对知识得到了升华。]

4、课堂小结

让学生谈谈收获和感想。然后教师总结,结束此课。

[设计意图:师生谈话式总结本节课,真实的反馈了学生掌握比例尺这部分知识的情况,懂得了学习比例尺的重大作用,达到了学习的境界;同时学生如果有想问的问题,这时候也可以提出来,体现了一种平等、和谐、融洽的师生关系。]

比例的课件教案12篇


比例的课件教案是幼儿教师教育网小编为您准备的一篇文章,主要介绍了老师们在上课时根据事先准备好的教案课件内容进行教学,并且需要不断完善教案课件设计。通过学生的反应,老师们可以判断教学目标是否得到了实现。希望您会喜欢这篇文章,并收藏起来哦!

比例的课件教案 篇1

【教学内容】

义务教育课程标准实验教科书《数学》(人教版六年级 下册)教材P59―60内容。

【教学目标】

1.理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。

2.通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。

3. 发展学生的应用意识和实践能力。

【教学重点】运用正反比例解决实际问题。

【教学难点】正确判断两种量成什么比例。

【教材分析】

解比例应用题是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用.教材通过两个例题讲解正、反比例应用题的解法,通过讲解使学生掌握正反比例应用题的特点以及解题的步骤。用正、反比例解应用题首先要根据题意分析数量关系,能从题目中找出两种相关联的量,这两种量中相对应的两个数的比值(或者积)是否一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数 列比例解答.判断的过程是正、反比例意义实际应用的过程,所以是比例应用题的难点,要予以高度重视.同时还要引导学生对“比例分配与正比例应用题”“正比例应用题与反比例应用题”这两组概念加以区别,从多角度、多方位提高学生对比例概念的理解和运用能力.

【学情分析】

解比例应用题是在学生已经掌握了“比例的基本知识”、同时在四五年级学习了简单的“归一应用题”的基础上进行教学的。所以本节课可以重点体现“学生是数学学习的主人”, “以学生为中心”,“一切为了学生的发展”的教学理念。学生对用比例解决问题已经有了一定的知识沉淀,所以在设计本节课时,老师力求让学生积极参与教学过程,通过让学生独立思考、小组讨论、自我展示、一题多解等多种形式的教学,完成“要我学”为“我要学”的转变过程;强化以人为本,重视培养学生的学习能力,突出学生的自主学习性,建立新型师生关系,营造民主的教学氛围。另外,在练习的设计上,本节课力图通过加强对比训练,提高学生分析问题、解决问题的能力。

【设计理念】

利用比例的知识解答应用题,首先要判断两种相关联的量的关系,判断的过程就是正、反比例意义实际应用的过程,所以是比例应用题的重点,也是难点.正、反比例的应用题,学生在已学过的四则应用题中,实际上已经接触过,只是用归一、归总的方法来解答,因此在教学中可以运用迁移类比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣.首先让学生用以前的方法解答,然后提问:“这道题里有怎样的的比例关系?为什么?”引导学生判断两种量的比例关系,最后根据比例的意义列出等式解答.这样加深了对比例的理解,又揭示了与旧知识的联系,既分散了难点,又教给了思维方法。

通过本节的教学,使学生加深对正、反比例意义的理解,能够正确判断成正、反比例的量,会用比例的知识解答比较容易的应用题.

【教学过程】

一、铺垫孕伏(课件演示:比例的应用)

判断下面每题中的两种量成什么比例关系?

1、速度一定,路程和时间.

2、路程一定,速度和时间.

3、单价一定,总价和数量.

4、每小时耕地的公顷数一定,耕地的总公顷数和时间.

5、全校学生做操,每行站的人数和站的行数.

【设计意图:通过基本数量关系式的分析让学生进一步熟练掌握正反比例的意义,为后面分析应用题做好铺垫。】

二、探究新知

(一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.(板书:解比例应用题)

(二)教学例5(课件演示:教材对话主题图)

例5、张大妈上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?

学生利用以前的方法独立解答:

先算出每吨水的价钱,再算10吨水的多少钱?

12.8÷8×10

=1.6×10

=16(元)

【设计意图:通过学生用原来学习的解答归一应用题的方法,能使学生进一步理解:单价一定的意义,为正确列出比例式打好基础了。】

2、利用比例的知识解答.

思考:这道题中涉及哪三种量?(水的单价、数量和总价三种量)

哪种量是一定的?你是怎样知道的?(水的单价一定.)

用水的数量和水费总价成什么比例关系?(水的数量和总价成正比例关系.)

教师板书:单价一定,水的数量和总价成正比例

教师追问:两家水的总价和用水量的什么相等?(比值相等,也就是水的单价相等)

怎么列出等式?

解:设李奶奶家上个月水费x元.

8x=12.8×10

x=16

答:李奶奶家上个月水费16元.

3、怎样检验这道题做得是否正确?(学生自主完成)

4、变式练习:张大妈上个月用了8吨水,水费是12.8元,王大爷上个月水费是19.2元,他们家上个月用了多少吨水?

【设计意图:通过变式训练的订正和交流,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没有改变,只是未知量变了,这样可以让学生更加灵活地理解和解答这样的应用题。】

(三)教学例6(课件演示例6主题图)

例6: 一批书如果每包20本,要捆18包,如果每包30本,要捆多少包?

1、学生利用以前的算术方法独立解答.

20×18÷30

=360÷30

=12(包)

2、那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的——————是一定的,__________和__________成__________比例.所以两次捆书的__________和__________的__________是相等的.

3、如果设要捆x包,根据反比例的意义,谁能列出方程?

30x=20×18

x=360÷30

x=12

答:每捆12包.

4、变式练习

一批书如果每包20本,要捆18包,如果每捆15包,每包多少本?

【设计意图:例6教学沿用了例5的教学形式,但放开了学生,让学生自主探究,明白正、反比例应用题的区别和联系,学生在解答过程中不但学会了分析正、反比例应用题的技巧,同时也能够区分两种应用题的解答方法】

三、全课小结

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.

四、随堂练习

1、先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,__________,__________?

(2)王师傅4小时生产了200个零件,照这样计算,__________?

2、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

3、同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

【设计意图:通过由易到难,梯级训练,让学生对用比例解决问题有一个初步的巩固和训练,加深知识印象,同时也对本节课起到系统知识的目的,让学生形成一个完整的知识整体,为后面完成课堂作业做好准备】

五、布置作业

1、一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

2、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?

3、P60---做一做

【设计意图:通过独立作业,让学生理解用比例解决问题的一般方法和技巧,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力,发展学生的应用意识和实践能力,完成本节课的教学目标。】

【板书设计】

解比例应用题

例5: 例6:

单价一定,总价和数量成正比例。 总数量一定,每包本书和包数成反比例。

解:设李奶奶家上个月水费x元. 解:设要捆x包

30x=20×18

8 x=12.8×10 x=360÷30

x=16 x=12

答:(略) 答:(略)

【教学后记】:正反比例应用题是小学阶段应该掌握的重点内容,这节课通过新旧知识之间的联系和以旧促新教学理念,设计了简单易学的教学过程,学生在学习的过程中,没有感到学习新知识的压力,能够轻松完成学习任务。同时通过变式训练和拓展训练,让学生掌握了正反比例应用题的相同点和不同点,为后面解答比例问题打好了坚实的基础。

比例的课件教案 篇2

教学目标

1.知识技能

结合“图片像不像”“调制蜂蜜水”等情境,找到相等的比,理解比例的意义,认识各部分名称,能通过化简比或求比值判断两个比能否组成比例,会用两种形式表示比例。

2.数学思考与问题解决

经历自学和合作的过程,体验学习的快乐。

3.情感态度

培养学生自主参与的意识,培养学生观察、分析、概括的能力。

教学重点

通过情境理解比例的意义,通过求比值或化简比判断两个比是否能组成比例。

教学难点

通过求比值或化简比判断两个比是否能组成比例,并正确的写出比例。

教法学法

讲授与自学相结合、自主学习法、合作学习法

教学准备

多媒体课件、学生自学卡

教学过程

一、回顾旧知,复习铺垫

1.复习学过的有关比的知识。

2.谈话引入新课。

二、引导探究,学习新知

1.教学比例的意义。

同学们还记得这些图吗?请联系比的知识,想一想怎样的两张图片像,怎样的两张图片不像?

你们能说出每幅图的长与宽的各是多少吗?请在学习卡上写下来。

写出长与宽的比,并求出比值。完成学习卡的第一题。

2. 初步感知比例的意义。

(1)交流反馈。

(2)引出比例的意义,

因为这两个比的比值相等,所以我们可以写成一个等式,6:4=12:8,也可以写成6/4=12/8

师:像这样表示两个比相等的式子叫做比例。(板书:比例)

3.组织看书,认识名称

我们知道了比例的意义,那么,比例的各部分名称是什么呢?请大家自学16页的“认一认”,完成学习卡的第二题。

【设计意图:让学生自学比例的各部分名称,把学习的主动权还给他们,既培养了他们的自学能力,又处理好了讲授与自学的关系。】

4.利用新知,学以致用

师:在图上这五张图片的尺寸中,你还能找出哪些比来组成比例?

(小组讨论,交流汇报)

生汇报

【设计意图:通过教师系统的总结,传递给学生一个信号,考虑问题要多方位思考。】

5.内化意义,提高认识

(1)从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?

(2)要判断两个比能否组成比例,关键看什么?如果不能一眼看出两个比是不是相等,怎么办?”

6. 引申应用

学生自学数学书的16页的问题三。

7. 比较“比”和“比例”两个概念。

教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

8. 教学比例的基本性质

(1)教学比例各部分的名称。

教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P17,看看什么叫比例的项、外项、内项。

指名让学生指出板书中的比例的外项、内项。

(2)教学比例的基本性质。

教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

两个外项的积是80×5=400

两个内项的积是2×200=400

“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。

通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?

最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成:

“这个比例的外项是哪两个数呢?内项呢?”

“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?

学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

三、全课小结,提高认识

通过这节课的学习,你们都有哪些收获?

比例的课件教案 篇3

教学内容:

北师大版小学数学第十二册第二单元第30—31页。

教学目标:

1让学生在实践活动中体验生活中需要比例尺。

2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学重点:正确理解比例尺的含义。

教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

教学准备:多媒体

教学过程:

一、独立探究、合作生成

教师:请同学们在自己纸上画出长9米,宽7米的教室地面来。

学生1:(有学生会发出质疑)哪有那么大的本子?不够画怎么办?

学生2:可以利用前面所学的知识————图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。

教师:你的想法很对,跟笑笑同学的想法一样(用课件出示第31页笑笑家的平面图),在这幅图上你们发现了什么新问题?

学生:在图的右下方有“比例尺1:100”

教师:观察真仔细!比例尺1:100是什么意思?

1学生讨论。

2学生汇报:

学生1:图上1厘米长的线段表示实际100厘米。

学生2:图上距离是实际距离的1/100。

学生2:表示实际距离是图上距离的100倍。

3揭示比例尺的意义。

教师:比例尺是表示图上距离与实际距离的比,这就是今天要学习的新知识——比例尺(板书课题)

二、自然生成、进行应用

1教师补充板书:图上距离∶实际距离=比例尺

图上距离/实际距离=比例尺

2教师:你们在什么地方看到过比例尺?

学生1:在中国地图上。

学生:在世界地图上。

学生:在房屋设计图上。

……

2教师:比例尺1∶300是什么意思?(注重意思的多样化)

学生交流(略)

3认识比例尺特征:

(1)课件出示中国地图的比例尺、世界地图的比例尺……

教师:通过观察,你们发现比例尺有什么特点?

学生:地图上的比例尺一般写成前项是1的比

4、运用知识,尝试解决问题:

教师:现在请大家量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。

算一算笑笑卧室实际的长是()米,宽是()米,面积是()平方米。

(1)学生独立完成。

(2)汇报算法

学生1:先量出卧室的长5厘米,实际长=5厘米×100=500厘米=5米

学生2:量出卧室的长4厘米,实际宽=4厘米×100=400厘米=4米

学生3:卧室的实际面积是5×4=20平方米

三、解决问题、巩固提高

1、算出笑笑家的总面积是多少平方米?

2、在父母卧室南墙正中有一扇宽为2米的窗户,在平面图上标出来。

3按比例尺是1:200,画出我们教室的平面图。

四、总结深化、活化知识

这节课大家有哪些收获?

五、研究性作业

1完成第30页的思考题。

2、试画自己家庭的住宅平面图,并计算一下每个房间的面积。

比例的课件教案 篇4

教学目标

1.使学生理解正比例的意义.

2.能根据正比例的意义判断两种量是不是成正比例.

3.培养学生的抽象概括能力和分析判断能力.

教学重点

使学生理解正比例的意义.

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.

教学过程

一、复习准备

口答(课件演示:成正比例的量)

1.已知路程和时间,怎样求速度?

2.已知总价和数量,怎样求单价?

3.已知工作总量和工作时间,怎样求工作效率?

二、新授教学

(一)导入新课

这些都是我们已经学过的常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.

(二)教学例1.(课件演示:成正比例的量)

1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米

2.出示下表,并根据上述内容填表.

比例的课件教案 篇5

【教学内容】苏教版P40页例3、练一练及练习九的3----7题。

教学目标:

1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

教学重点:理解比例的意义。

教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

教学过程:

一、创设情境,导入新课

师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)

师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)

师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的意义吗?(学生回答)

好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的)

2厘米

3.2厘米

4.8厘米

3厘米

6.4厘米

4厘米

9.6厘米

6厘米

二、新授

师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?

(学生板演,观察到比值相等,教师板书:两个比相等)

师:那我们就可以将这两个比用等号连接。(教师板书学生汇报的两个相等的比)

教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。

请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答,等式;有两个相等的比)

(教师再强调:一定是比值相等的两个比才能组成比例。)

师:你还能从四面国旗中找出哪些比例?

(学生写在练习本上,然后汇报。教师板书)

师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(学生口答)

?师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?

学生从形式上区分:比由两个数组成;比例由四个数组成。

学生从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。

三、巩固应用

(一)数的比例

课本.40页练一练。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)

(二)形的比例

出示两个具有放大关系的三角形

3厘米

5厘米

4.5厘米

7.5厘米

师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)

(三)生活中的比例

师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!

1、课本41页第3题(学生独立完成,小组订正交流。)

2、小明买了3本笔记本花了9元钱,李刚买了5本同样的笔记本花了15元。(你能根据题中的数据写出几组比例式吗?并说出理由。)

四、总结

师:这节课,大家都非常的积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)

师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。

五、课堂检测

1、下面哪些组的两个比可以组成比例?如果能,在()打对号。

10:2和35:42()0.6:0.2和:()

:4和3:():和12:8()

2、在下面的六个比中,选择两个比组成比例。

::4:71.4:2.8:10:15

3、写出比值是的两个比,并组成比例。

4、小强3分钟走了180米,小刚1小时走了3.6千米。小强说他们各自所走的路程和时间的比能组成比例,小刚说不能组成比例。请问:谁说的对?

六、布置作业

课本练习九4题、7题

比例的课件教案 篇6

导学目标

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

导学重点:成正比例的量的特征及其判断方法。

导学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。

预习学案

填空

1、如果路程时间=()(一定),那么()和()成正比例。

2、如果油的重量花生仁重量=()(一定),那么()和()成正比例。

3、如果yx=k(一定),那么()和()成正比例。

导学案

学习例1

在相同的杯子里装上水,下表显示了水的高度和体积,把表填写完整。

高度24681012

体积50100150200250300

底面积

体积和高度有什么变化?观察他们的比值,你发现了什么?

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:

yx=k(一定)

想一想,生活中还有哪些成正比例的量?

小组讨论交流。

看书P40例2。

(1)题中有几种量?哪两种量是相关联的量?

(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?

(3)它们的数量关系式是什么?

(4)从图中你发现了什么?

(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?

三、课堂小结:

什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?

课堂检测

下列各题中的两种相关联的量是否成正比例关系,并说明理由。

1、正方体的棱长和体积

2、汽车每千米的耗油量一定,耗油总量和所行千米数。

3、圆的周长和直径。

4、生产800个零件,已生产个数和剩余个数。

5、全班的人数一定,一、二组的人数和与其他组的人数和。

6、和一定,加数与另一个加数。

7、小苗牌2B铅笔的总价和购买枝数。

8、出油率一定,所榨出的油的重量和大豆的重量。

课后拓展

从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得12,二儿子分得13,小儿子分得19,但不能把牛杀掉或卖掉。三个儿子按照老人的要求怎么分也分不好。后来一位邻居顺利地把17头牛分完了,你知道三个儿子各分得多少头牛吗?

板书设计

成正比例的量

高度/cm24681012

体积/cm350100150200250300

底面积/cm2

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例表达式:yx=y(一定)

比例的课件教案 篇7

教学内容: 按比例分配

教学目标:

1、使学生理解按比例分配的意义。

2、掌握按比例分配应用题的特征及解题方法。

3、培养学生应用所学知识解决实际问题的能力。

教学重点:

掌握按比例分配应用题的特征及解题方法。

教学难点:

按比例分配应用题的实际应用。

教学过程:

一、复习引入

1、填空

已知六年级1班男生人数和女生人数的比是:3:2。

(1)男生人数是女生人数的( )

(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

(5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

2、口答应用题

六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

口答:100÷2=50(平方米)

提问:这是一道分配问题,分谁?(100平方米)

怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?

这样分还是平均分吗?

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。(板书:分配)

二、讲授新课

1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

2、提问:分谁?(100平方米)怎么分?(按3 :2分)

求的是什么?(求二年级1班的保洁区是多少平方米?六年级1班的保洁区是多少平方米?)

3、思考:由“如果按3 :2分配”这句话你可以联想到什么?

(1)六年级的保洁区面积是二年级的3/2倍

(2)二年级的保洁区面积是六年级的2/3

(3)六年级的保洁区面积占总面积的3/5

(4)二年级的保洁区面积占总面积的2/5

… …

小组汇报结果

4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?

方法一、3+2=5 100÷5=20(平方米)

20×3=60(平方米) 20×2=40(平方米)

方法二、3+2=5 100× 3/5=60(平方米)

100× 2/5=40(平方米)

方法三、100÷(1+2/3 )=60(平方米)

60× 2/3=40(平方米)或100-60=40(平方米)

方法四、100÷(1+3/2 )=40(平方米)

40× 3/2=60(平方米)或100-40=60(平方米)

5、比较思路:这几种方法中,你认为哪种方法好?为什么?

(第二种,思路简捷,计算简便)说说第二种方法的思路?

①求出总份数

②各部分数占总份数的几分之几?

③按照求一个数的几分之几是多少的方法解答。

6、这道题做得对不对呢?我们怎么检验?

①两个班级的面积相加,是否等于原来的总面积。

②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

7、练习

一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3 :2。两种作物各播种多少公顷?

8、教学例3学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(1)讨论:这道题与前面所做的题有什么区别?

分配什么?按照什么来分?

怎样计算各班栽的棵数占总棵数的几分之几?

(2)学生独立解题

①三个班的总人数:47+45+48=140(人)

②一班应栽的棵数:280× 47/140=94(棵)

③二班应栽的棵数:280×45/140 =90(棵)

④三班应栽的棵数:280× 48/140=96(棵)

答:一班、二班、三班各应栽94棵、90棵、96棵。

9、小结:观察我们今天学习的两个例题有什么共同特点?

(已知总数量、各部分量的比,求各部分量)

怎么解答?

(先求总份数,各部分量占总数量的几分之几,最后求各部分量)

我们把具备上述特点,用这种特定方法解答的分配问题叫做“按比例分配”应用题,

板书(补充课题):按比例分谁?怎么分?

板书:把一个数量按照一定的比来进行分配。

三、巩固练习

1、六年级(2)班共有42人,男、女人数的比是3:4,男、女生各有多少人?

2、一个三角形三条边的长度比是3 :5 :4。这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

(1)还是按比例分配问题吗?(2)如果是四个数的连比你还会解答吗?

3、一个长方形周长是20厘米,长与宽的比是7 :3,求长与宽各是多少厘米?

7+3=10 20×7/10=14(厘米) 20×3/10=6(厘米)

4、思考:平均分是不是按比例分配的应用题?按照几比几分配的?

四、课堂小结

今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?

五、课后作业

练习十三 2、3、4、6

反思:

一、挖掘教材的趣味性、现实性,激发学生学习兴趣

“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。” 也就是说,当数学和儿童的现实生活密切结合时,数学才是活的,富有生命力的,才能激发儿童学习数学的兴趣。“我班的保洁区面积如何分配”这种贴近学生生活又有一定挑战性的实际例题,不仅能调动学生学习的积极性,而且能培养学生解决实际问题的能力。而且这种学生熟悉的生活素材演绎的问题情境,能使他们真正体验到数学不是枯燥空洞的,不是高深莫测的,数学就在自己身边,是实实在在的。

二、挖掘教材的开放性、挑战性,激励学生创新

现行教材是课程改革过程中的过渡性教材,其中绝大部分的数学问题都是必要条件的问题,探索性、思考性和现实性的数学教材显得比较薄弱,教学中,需要教师补充一些具有开放性、挑战性的学习材料,适当让学生接触一些开放性的问题,培养学生的创新意识。开放性学习材料,除了引进有多余条件或条件不充分的问题,还要逐步引进在解决问题的方式、方法上以及答案上开放的问题,留给学生充分的思维空间和选择余地,激励学生去发现、去创新,来弥补教材不足

“按“3 :2分配”你读懂了什么?”这种开放的问题情境,给学生创造了自由发展的更大空间,满足学生的数学学习需求,能使他们真正体验到数学不是枯燥空洞的。再次验证了只有学生积极投入的课堂,才是真正充满生机和活力的课堂。

三、挖掘教材的问题性、情境性,培养学生多角度、个性化解决问题

教材呈现的方式是教材内容的表现形式,也是课堂教学教与学的载体,而同样的教学内容,如果用不同的呈现方式,就会产生不同的教学效果。为取得更好的教学效果,需要我们教师在呈现教材时,为学生创设一种良好的思维情境。一个好的问题情境,会使学生产生困惑和好奇心,能迅速地把学生的注意力吸引到教学活动中,使学生产生浓厚的学习兴趣和强烈的求知欲,从而使学生自觉、兴奋地投入到加深练习中,学习和探求新知识的教学活动中。同样是5:2的条件变换另一个条件,就能解决更多不同的问题,“还能怎样变换呢?”的悬念,这种诱惑力,激发了学生探求和解决问题的浓厚兴趣,将学生自然地带进了新知的探究中。这个例子再次告诉我们:小学数学教学中,教师要重视为教材创设问题情境,让学生在情境的引导下,积极主动探索和追求,来获取知识,发展能力,培养情感,从而让我们的“教材”成为我们学生真正喜欢的“学材”。

比例的课件教案 篇8

教学内容:

九年义务教育六年制小学数学第十二册P62——63

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:认识正比例的意义

教学难点:掌握成正比例量的变化规律及其特征

设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

一、复习铺垫激情促思

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、初步感知探究规律1、出示例1的表格(略)

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

(2)引导学生观察表中数据,寻找两种量的变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)

(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

(板书:路程和时间成正比例)

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书

3、抽象表达正比例的意义

引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书:=k(一定)

揭示板书课题。

先观察思考,再同桌说说

大组讨论、交流

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系

学生独立填表

完整说说铅笔的总价和数量成什么关系

学生概括

三、巩固应用深化规律

1、练一练

生产零件的数量和时间成正比例吗?为什么?

2、练习十三第1题

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第2题

先独立判断,再有条理地说明判断的理由。

4、练习十三第3题

先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

讨论、交流

独立完成,集体评讲

说明判断的理由

说一说,画一画

填一填,议一议

讨论

四、总结回顾评价反思

这节课你学会了什么?你有哪些收获?还有哪些疑问?

比例的课件教案 篇9

教学内容:

义务教育课程标准实验教科书数学六年级下册P43“练一练”和练习十的1~4题

教学目标:

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质。

3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。

教学重点:

理解并掌握比例的基本性质。

教学难点:

探究发现比例的基本性质。

设计理念:

本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。

教学步骤教师活动学生活动

一、复习引新

导入新课

1、找找比比:

(判断下面的比,哪些能组成比例?把组成的比例写出来。)

3:518:300.4:0.21.8:0.9

5/8:1/47.5:32:89:27

学生独立完成,重点说说判断过程。

2、今天我们继续研究比例的有关知识。

学生练习

学生回顾判断两个比能否组成比例的方法

二、认识比例

探索规律1、认识比例各部分的名称

(1)介绍“项”:组成比例的四个数,叫做比例的项。

(2)3:5=18:30学生尝试起名。

师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

3:5=18:30

内项

外项

(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

出示:3/5=18/30

(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

2、教学例4

(1)理解题意,信息搜索:

提问:你能根据图中的数据写出比例吗?

(2)、学生写不同比例:

引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

(3)、学生探索规律

学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)

(4)、写比例,验证规律:

是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。

(5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。

4、练习:“试一试”判断能否组成比例。

出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。

提问:2.6:1.8和0.5:0.25能组成比例吗?根据比例的基本性质,能判断两个比能不能组成比例吗?

学生练习:找出比例中的内项和外项

6:5=36:30

4:7=21:49

学生自主表达,图中有哪些数据信息?

学生独立思考,再小组交流

学生练习:如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成()

学生分析哪两个数是外项,哪两个数是内项。

比较理解比例的基本性质

学生思考后归纳:判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

三、巩固练习

拓展提高

1、做“练一练”

使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

2、在()里填上合适的数。

5:3=():6

4:()=():5

3、做练习十第1、2题学生尝试练习后交流讨论

先让学生尝试填写,再交流明确思考方法。

四、全课小结

总结反馈通过今天的学习,你有哪些收获?

把你发现规律的方法介绍给朋友、亲人。

五、课堂作业练习十3、4题

比例的课件教案 篇10

教学内容:苏教版六数下83-84页“整理与反思”和“练习与实践”1-6题。

教材分析:教材第83页的“整理与反思”主要是复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求说说比的基本性质与分数的基本性质、商不变的规律有什么联系与区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变规律内在的一致性,有利于学生加深对比与分数、除法的理解,促进学生对数学知识的灵活运用。

教学目标

1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

教学重、难点重点:正确理解正比例、反比例的意义,运用比例的基本性质判断两个比能否组成比例。

难点:运用比例的知识解决一些简单的实际问题。

课前准备课件。

教学流程设计意图

一、比的知识:

1.举例说说什么是比?什么是比的基本性质?

2.说一说用比的知识可以解决哪些实际问题。

3.完成教科书第83页“练习与实践”。

(1)完成第一题:学生独立数出班上男女生人数,再完成此题。

(2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

二、比和分数、除法的联系

出示:a∶b=()÷()=(b≠0)

1.先填空,再说说这样填的根据是什么?

2.说说比的基本性质与分数的基本性质、商不变的规律的联系。

3.练一练:

(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()

(2)填空:

=()÷()=()∶()

(填好后展示学生不同的结果。)

三、比例的知识

1.什么是比例?

2.比和比例有什么关系?(小组讨论后交流)

3.比例的基本性质是什么?

4.比例的基本性质有什么作用?怎样解比例?

5.练一练:完成教材第83页的“练习与实践”。

(1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

估计后再算一算,来验证估计。

(2)完成第3题:解比例,做好后选两题验算一下。

四、完成教材第84页“练习与实践”。

(1)完成第4题:先学生独立做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

(2)完成第5题:

第一小题让学生独立得出:深色与浅色地砖铺地面积的

比是20∶40,化简得1∶2。

第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

(3)完成第6题。

五、评价小结:

学了本课你对所学知识有什么新认识?还有什么问题?

通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。

沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。

对比和比例进行比较,强化理解,进一步优化知识结构。

复习解比例。

应用比例分配知识解决实际问题。

比例的课件教案 篇11

【教学内容】

《义教课标实验教科书数学》(人教版)六年级下册第39-41页成正比例的量。

【教学目标】

1、使学生理解正比例的意义,会正确判断成正比例的量。

2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

【教学重点】

正比例的意义。

【教学难点】

正确判断两个量是否成正比例的关系。

【教学准备】

多媒体课件

【自学内容】

见预习作业

【教学预设】

一、自学反馈

1、揭题:今天这节课,我们一起学习成正比例的量。板书:成正比例的量

2、通过自学,你能说说什么叫做成正比例的量?

3、你是怎样理解成正比例的量的含义的?

4、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的引导下,学生会举出一些简单的例子。

二、关键点拨

1、正比例的意义

(1)出示表格。

高度/㎝24681012

体积/㎝350100150200250300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25平方厘米。

板书:

教师:体积与高度的比值一定。

(2)说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

2、判断正比例关系:下面哪些是成正比例的两个量?

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

三、巩固练习

1、学生独立完成例2后反馈交流。

(1)从图中你发现了什么?

这些点都在同一条直线上。

(2)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

②体积是225㎝3的水,杯里水面高度是多少?

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

(3)你还能提出什么问题?有什么体会?

2、做一做。

过程要求:

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

(2)表中的路程和时间成正比例吗?为什么?

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?

(5)你还能提出什么问题?

3、独立完成第44页练习七第1、2题。

4、判断并说明理由。

(1)圆的周长和直径成正比例。

(2)圆的周长和半径成正比例。

(3)圆的面积和半径成正比例。

四、分享收获畅谈感想

这节课,你有什么收获?听课随想

比例的课件教案 篇12

教学内容

教科书第54页例3,练习十二5,6,7题。

教学目标

1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

教学重、难点

运用正比例知识解决简单的实际问题。

教学准备

教具:多媒体课件。

学具:作业本,数学书。

教学过程

一、复习引入

1.判断下面各题中的两种量是不是成正比例?为什么?

(1)飞机飞行的速度一定,飞行的时间和航程。

(2)梯形的上底和下底不变,梯形的面积和高。

(3)一个加数一定,和与另一个加数。

(4)如果y=3x,y和x。

2.揭示课题

教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

二、合作交流,探索新知

1.用课件出示例3

教师:这幅图告诉我们一个什么事情?需要解决什么问题?

教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

2.全班交流解答方法

指导学生思考出:

(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

3.尝试用正比例知识解答

如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

(1)题中有哪两种相关联的量?

(2)题中什么量是不变的?一定的?

(3)题中这两种相关联的量是什么关系?

引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

随学生的回答,教师可同步板书:

教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

引导学生讨论后回答,先要把李老师应付的.钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

教师:同学们会计算吗?把这个比例式计算出来。

学生解答。

教师:解答得对不对呢?你准备怎样验算?

学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

三、课堂活动

1.出示教科书第49页的例1图和补充条件

竹竿长(m)26…

影子长(m)39…

教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

学生独立思考解答,讨论交流。

2.小结方法

教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

(1)设所求问题为x。

(2)判断题中的两个相关联的量是否成正比例关系。

(3)列出比例式。

(4)解比例,验算,写答语。

四、练习应用

完成练习十二的5,6,7题。

五、课堂小结

这节课我们学习了什么知识?你有什么收获?

相关文章

最新文章

推荐访问