最新比例的课件(锦集11篇)

比例的课件 05-31

作为一名人民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么什么样的教学设计才是好的呢?以下是小编为大家整理的《比例的意义和基本性质》教学设计,欢迎阅读,希望大家能够喜欢。

比例的课件 篇1

教学过程:

一、复习铺垫

1、下面两种量是不是成正比例?为什么?

购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

2、成正比例的量有什么特征?

二、探究新知

1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。

2、教学p42例3。

(1)引导学生观察上表内数据,然后回答下面问题:

a、表中有哪两种量?这两种量相关联吗?为什么?

b、水的高度是否随着底面积的变化而变化?怎样变化的?

c、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

d、这个积表示什么?写出表示它们之间的数量关系式

(2)从中你发现了什么?这与复习题相比有什么不同?

a、学生讨论交流。

b、引导学生回答:

(3)教师引导学生明确:因为水的体积一定,所以水的`高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)

三、巩固练习

1、想一想:成反比例的量应具备什么条件?

2、判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

(6)你能举一个反比例的例子吗?

四、全课小节

这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

五、课堂练习

p45~46练习七第6~11题。

教学目的:

1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

3、初步渗透函数思想。

教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。

教学难点:利用反比例的意义,正确判断两个量是否成反比例。

比例的课件 篇2

教学目标

知识目标:理解比例的意义。

技能目标:能正确判断两个比是否能组成比例,培养学生抽象概括能力。

情感目标:使学生初步感知事物间是相互联系、变化发展的。

教学重难点

重点:理解比例的意义。

难点:判断两个比能否组成比例。

教学工具

多媒体课件

教学过程

一、新课导入

请同学们回忆一下比的知识,比的前项、后项和比值。

二、教学过程

1.比例的意义

(1)出示p40例1

操场上和教室里两面国旗的长和宽的比值有什么关系?

2.4∶1.6=3∶2

60∶40=3∶2

2.4∶1.6=60∶40

象这样表示两个比相等的式子叫做比例。

比例也可以写成:=

做一做

1、下面那组中的两个比可以组成比例?把组成的比例写出来。

(1)6∶10和9∶15 (2)20∶5和1∶4

(3) ∶和6∶4 (4)0.6∶0.2和∶

答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2

(4)0.6∶0.2=3∶2 ∶ =3∶1

所以,只有第一组可以组成比例为6∶10=9∶15

2、用图中4个数据可以组成多少比例?

答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5

全课小结

通过这节课,我们学到了什么知识?什么是比例?

拓展延伸

用8、12四个数分别作为比例的项,你能组成几个比例?

课后小结

通过这节课,我们学到了什么知识?什么是比例?

课后习题

一、填空

1、( )叫做比例。

2、两个比的'( )相等,这两个比就相等。

3、把6×8=24×2改写成四个比例。

4、把7m=8n改写成四个比例。

5、根据8×9=3×24,写出比例( )

6、如果7a=6b,那么a:b=( ):( )。

7、如果9a=5b,那么b:a=( ):( )。

二、选择

1、下面的比中能与3∶8组成比例的是( )。

a.3.5∶6 b.1.5∶4 c.6∶1.5

2、甲数除乙数的商是1.8,那么甲数与乙数的比是( )。

a.9:5 b.5:9 c.1:8

3、下面的数中,能与6、9、10组成比例的是( )。

a.7 b.5.4 c.1.5

板书

表示两个比相等的式子叫做比例。

比例的课件 篇3

教学内容:比例的意义

教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

教学重点:比例的意义。

教学难点:找出相等的比组成比例。

教学过程:

一、旧知铺垫

1、什么是比?

(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

300:5=60:1

(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

1.2:1.4=12:14=6:7

2.求下面各比的比值。

12:16:4.5:2.710:6

二、探索新知

1.教学例1。

(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

①说一说各幅图的情景。

②图中有什么相同之处?

(2)你知道这些国旗的长和宽是多少吗?

①出现各图中国旗的长、宽数据。

②测量教室里国旗的长、宽各是多少厘米。

(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?

学生回答教师板书:

60:40=

(3)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

①学生回答长、宽比值。

2.4:1.6=

②两面国旗的长和宽的比值相等。

板书:2.4:1.6=60:40

也可以写成=

(5)什么是比例?

在这一基础上,教师可以明确告诉学生比例的意义,并板书:

表示两个比相等的式子叫做比例。

(6)找比例。

师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?

过程要求:

①学生猜想另外两面国旗长、宽的比值。

②求出国旗长、宽的比值,并组成比例。

③汇报。

如:5:=15:10=

5:=15:105:=2.4:1.6

==

2.做一做。

完成课文“做一做”。

第1题。

(1)什么样的比可以组成比例?

(2)把组成的比例写出来。

(3)说一说你是怎么找的。

(4)同学之间互相交流,检验各自所写的.比例。

第2题。

(1)学生独立写比例,看谁写得多。

(2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

3.课堂小结。

(1)什么叫做比例?

(2)一个比例式可以改写成几个不同的比例式?

三巩固练习

完成课文练习六第1~3题。

四作业

课后记:

教学内容:比例的基本性质

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:比例的基本质性。

教学难点:发现并概括出比例的基本质性。

教学过程:

一、旧知铺垫

1.什么叫做比例?]

2.应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4:和5:2

:和:0.2:和1:4

3.用下面两个圆的有关数据可以组成多少个比例?

如(1)半径与直径的比:=

(2)半径的比等于直径的比:=

(3)半径的比等于周长的比:=

(4)周长与直径的比:=

二探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6=60:40

内项

外项

(2)学生认一认,说一说比例中的外项和内项。

如:=:

外内内外

项项项项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。

板书:两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

外项的积等于内项的积。

(4)举例说明,检验发现。

如::0.5=1.2:

两个外项的积是×=0.6

两个内项的积是0.5×1.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=

2.4×40=1.6×60

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)归纳。

比例的课件 篇4

教学内容

第23~24页例1、例2以及相应的“做一做”,练习五第1~4题

教学目的

1、让学生掌握用比例解应用题的方法。

2、让学生感受生活中的数学,体验数学的应用价值,培养学生运用所学知识解决实际问题的能力。

教学重难点

利用已学的正比例的意义,通过自己探索,掌握解答正比例应用题的方法。

教学过程

一、复习

1、判断下面各题中的两个量成什么比例关系?

1)、速度一定,路程和时间(正)

2)、三角形的面积一定,底和高(反)

3)、一个为0的`自然数与它的倒数(反)

4)、Y=3XY与X(正)

5)、每块砖的面积一定,砖的块数和总面积(正)

二、引入

一辆汽车从甲地开往乙地行驶路程和时间表:

路程(千米)70140350……

时间(小时)125……

(1)、观察提问:

1)、表中相关的量是哪两种量,汽车行的路程和时间成什么比例?

为什么?师从表中圈出140350

25

师:将其中一个数当作未知数能编一道就用题吗?

2)、学生试编

如学生编题时没有“照这样速度”或“照这样计算”,师提醒:读题的人怎样知道速度一定?

3)、生汇报所编之题,(选其中一题)师出示例1

师:你们自编的题目会用以前学过的方法解答吗:

学生试做;汇报:(师板书)

生:归一140÷2×5

倍比140÷(5÷2)

分数140÷2/5或140×5/2

方程140÷2=X÷5

师:大家想出了这么多合理的解答方法,真能干,我们已经学过了比例的意义、解比例的知识,能不能利用比例的这些知识来解答这道题呢?

今天我们就探讨如何用比例解答应用题(板书课题)

二、新知

1、学生分组讨论,尝试用所学的比例知识来解答应用题。

2、讨论后,请两组学生上来写写他们的列式。

解:设两地之间的距离有X千米

140/2=X/5

师:请讲讲你们的解题思路

学生:根据“照这样计算”可以看出速度一定,也就是路程/时间=速度(一定)既比值一定。所以,路程和时间成正比,根据比例的意义列出等式。

师:140/2表示什么?X/5表示什么?

3、学生总结一下解比例应用题的步骤:

1)、读题,找出条件和问题。

2)、找准变量和定量,判断两种相关联的量成什么比例。

3)、设未知数。

4)、根据比例意义列出等式并解答。

齐读解题步骤,师:这几步中,最关键的是哪步?

4、出示刚才学生编的另一题:

一辆汽车从甲地开往乙地2小时行驶140千米,已知公路长350千米,需要行驶多少小时。用比例解答该怎样解答。

师:这道题的定量变了吗?路程和时间成什么比例关系?

生试独立完成。集体订正。请学生讲讲解题思路。

三,巩固练习:

1、补充条件,使它成为一道完整的应用题,并用比例解答。

一台织布机织布,4小时织布80千米,照这样式计算()一共可以织多少千米?

学生1:补充“3小时”后,全体学生试做。

学生2:补充“再织3小时”学生试做。

请不同做法的学生板书,并说说解题思路。

生1:间接设生2:直接设

解设3小时织布X米解设一共可织布X米

80/4=X/4+380/4=X/3

X=60X=140

60+80=140

比例的课件 篇5

教学内容:

九年义务教育六年制小学数学第十二册P62——63

教学目

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:认识正比例的意义

教学难点:掌握成正比例量的变化规律及其特征

设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

一、复习铺垫激情促思

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、初步感知探究规律1、出示例1的表格(略)

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

(2)引导学生观察表中数据,寻找两种量的`变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)

(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

(板书:路程和时间成正比例)

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书

3、抽象表达正比例的意义

引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书:=k(一定)

揭示板书课题。

先观察思考,再同桌说说

大组讨论、交流

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系

学生独立填表

完整说说铅笔的总价和数量成什么关系

学生概括

三、巩固应用深化规律

1、练一练

生产零件的数量和时间成正比例吗?为什么?

2、练习十三第1题

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第2题

先独立判断,再有条理地说明判断的理由。

4、练习十三第3题

先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

讨论、交流

独立完成,集体评讲

说明判断的理由

说一说,画一画

填一填,议一议

讨论

四、总结回顾评价反思

这节课你学会了什么?你有哪些收获?还有哪些疑问?

比例的课件 篇6

六年级开学以来,学校组织了两次考试,一次是月考,一次是期中考试。下面我来分析一下这次期中考试数学学科考试的情况和自己的一点想法。

这次考试的现状:本次考试成绩很不理想,合格率优秀率甚差。通过这次考试,我体会到,在教学中,哪怕是教师对内容讲很多遍,也仍会有部分学生掌握得不好。学生的认知能力有强弱之分,我们不能认为自己讲了很多遍之后,学生就记住了,掌握了。我们的头脑中始终应该有这样一根弦:可能还有部分学生对某些内容没有掌握好。有了这根弦,也许我们就会经常去查漏补缺,而不至于怨天尤人。另外,数学知识随着年级增加,数学知识积累,应该愈加深厚,但事实恰恰相反,学生随着年龄的增加基本对以前的知识已经停留在边缘了,有时按进度设计的教案,不得不在现在如此实际的学生面前搁浅,重新探求以前的知识,这也是造成成绩下降的.一个方面。

学生的态度方面的问题。部分学生平时的学习态度表现的就不够端正。主要表现在作业方面。一部分学生根本不会写作业,另一部分学生作业虽然能按时按量完成,但书写较差,更谈不上作业的正确率。及时也对他们进行批评教育,与家长联系过,但由于水平,知识层次与优生差别太大,自信渐渐失去,学习态度也恶化了。

其次,课堂上学生听课的有效性较差。很多时候我发现班上有很多一部分学生上课听得不认真。虽然,这些学生中并不全是思想开小差的,很多都是不积极参与的,感觉课堂与他无关。实践证明,只有让学生经历知识的形成过程,他才能有效地掌握所学的知识。从这次考试上也充分证明了这一点。有些题目已经反复强调过,但仍有部分学生出错。

教学常规方面:首先我们得熟悉自己任教的学科,并积累大量的经验。往往会出现这样的情况:你把许多自认为很好的经验,方法传授给学生,学生仍掌握不好。这里有一个问题值得我们注意,我们把经验,方法讲给学生听了,不等于学生就获得了这个经验,方法,我们必须要有及时的,有针对性的练习去进行巩固,才能转化为学生自己的东西,要把作业,知识点落到实处。另外,人都有懒惰的天性,要想大部分学生都掌握较好,还得在课堂上,作业上严格要求他们。

自己在教学中的思维较窄,思路不够开阔,不能在教学中做到举一反三,学生在学的时候也学的较死,不能举一反三。

在仅剩的半个学期之中,通过学生和我的共同努力,我希望能把我们班的数学成绩搞上去,争取提高及格率,优秀率提高一倍。

比例的课件 篇7

一、试卷的总体分析

本次测试充分体现了《数学新课程标准》的思想,坚持从学生实际出发,立足学生的发展和终生学习能力的需要,试题贴近学生生活实际,知识面覆盖广、突出教材重点,题型多样,内容丰富,即考查学生在义务教育整个阶段学习的基础知识、基本技能、基本数学思想与方法;

又考查了学生思维能力及灵活运用知识的能力。总结有以下特点:

1、本次命题考查范围以小学六年级上学期1—4单元为内容,注重基础知识与基本技能相结合,进行综合性考查。考查题型有填空、判断、选择、计算、动手操作、解决问题。题型难易适当,更多的是面向全体学生,同时加强了数学和生活实际的联系。命题中更多的关注课程改革情况,充分体现了新的教学理念,相信每个学生都有成功的潜能。

2、试题的基本特点:

(1)试题加强了学生数学与生活实际相联系。

通过数学知识在现实生活中的应用,丰富和拓展学生所学知识,感受数学与现实生活的联系,提高学生的数学活动经验和应用意识。

(2)试题突出了对实践能力与动手能力的考查。

数学来源于生活又应用于生活,应突出培养学生的实践能力和动手操作能力,命题时做到尽量体现这一点。

二、试题分析

第一题填空,侧重于考查学生的基础知识和基本技能,同时增加了题目的灵活性。失分最多的'是第3、8、11、12小题。学生不能在具体情境中活用所学知识,审题马虎比和比值不区分。这是教学中亟待解决的问题。教师要充分利用教材资源,开发拓展教学资源,使学生达到举一反三、灵活应用知识的水平。

第二题判断。正确率较高,少数同学出错误,错误原因一是学生对于基本概念的理解不准确,导致学生的判断能力降低;二是学生对非知识性的语句,不会分辨。

第三题选择。个别学生分率和量放在一起不会区分如第3小题,教师要为学生多举例说明,举一反三的训练攻破难关。

第四题计算,分为直接写得数、简便计算,解方程,学生计算准确,口算及计算能力较强。也有个别学生计算不认真,出现马虎现象,还有少数学生没有简算,计算策略出现问题,教学时教师应予以关注。

第五题实践操作,作图较好,能利用位置和方向知识,作图正确判断,但少数学生方向辨别和量角出现错误,造成不同程度的失分。

第六题解决问题,题目不难,学生解决问题的能力较高,失分较多的是第5、6小题,第5题把工作总量当做‘1’。第6题审题错误。建议教学时联系实际,加强对学生读题能力的培养。

三、主要成绩

从学生完成试卷的情况来看,大多数学生对基础知识掌握较好,尤其是基本题和计算,各个层次的学生通过复习都有了不同程度的提高。试卷突出了对能力和素质的考查,增加与现实生活经验有关的解决问题充分体现了新课程理念。大多数学生能灵活运用所学知识解决问题,但也有不少学生面对稍难的题目,不肯动脑分析,认真解答,缺乏自信心和克服困难的勇气。表现在稍复杂的数据和文字都会对一些能力较弱或习惯较差的学生造成一定的影响,计算时顾此失彼,卷面上有不少单纯的计算错误、看错数据等低级错误。这些问题,反映在教学上存在着一些问题:

四、存在问题

1、教师灌输的多,学生探究的少。在教学中,对稍有难度的题目,教师没有给足时间让学生探究,怕浪费教学时间而完不成教学任务,教师的讲解、点拨取代了学生的思考过程和知识的建构过程。

2、“双基”与能力的培养,教学处理不够协调。由于“万变不离其宗”的旧观念作怪,往往注重了双基,忽视了能力的培养,而导致了学生学的是“花知识”,不能应用所学的数学知识,解决相关的实际问题。

3、只注重知识传授,忽视了情感态度培养。

五、今后改进教学措施

1、加强教师的新课标学习,进一步更新教学观念。

每位教师要积极参与课程改革,认真学习新课标,学习新的教育理念和先进的教育思想,更新教育手段和教学方法,努力提高教育质量和教学水平。建议各校进一步强化并深化校本教研活动。在校本教研活动中,围绕教研主题认真开展教研,认真钻研教材,及时调整教师教学管理行为。

2、教学中要面向全体,因材施教。

从学生答题中,可以窥见到学生的学习水平、学习方式、思维的灵活性、深刻性,计算能力、动手操作能力、读题和解决问题的能力等方面存在很大差距,所以教师在教学中要面向全体,承认差别,因材施教,分层教学,教师设计的提问和练习以及作业要满足不同层次学生的求知欲望。

3、重视学生思维能力和创新意识的培养。

要激发学生的好奇心和求知欲,通过思考,不断追求新知,发现、提出、分析并创造性地解决问题,使数学学习成为再发现再创造的过程。教学中注重创设问题情境,提高学生解决问题的策略意识。让学生适当关注生活中的数学问题,接触一些开放性问题、探索性问题,为培养学生的创新意识提供机会,改变数学教学过于追求“精确”、“唯一答案”、和“最优化”的状况,留给学生充分的思维空间和情感发展空间,要鼓励学生发散思维,鼓励创新,培养学生的创新精神、创新意识。

4、加强学生的日常养成教育,培养良好的学习习惯。

培养学生良好的学习习惯和学习态度,注重培养学生读题意识,学会审题,培养学生良好的解题习惯。注重学生良好的数学情感、态度的培养,提高学生自我认识和自我完善的能力,克服学生出现比较普遍的审题做题不细心,过于马虎的现象,书写清楚,卷面整洁。

比例的课件 篇8

教学目标:

1、知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

2、过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

3、情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

教学重点:

理解比例的意义,探究比例的基本性质。

教学难点:

探究比例的.基本性质和应用意义,会判断两个比能否组成比例。

教学过程:

一、创设情境,引入新课

同学们,五星红旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?

1、出示三幅场景图(见教材第40页主题图)

2、提问,你们知道每一幅图中国旗的长和宽是多少吗?(出示课件)

3谈话:在制作国旗的尺寸的过程中也存在有趣的比。同学们可以算一算这三幅国旗的长和宽之比,并求出比值。

4、汇报,教师依次出示

二、引导探究,明确意义

(一)比例的意义

(1)观察这三组数据,你有什么发现?

(2)看三组数据,能否从中选出两个比组成等式呢?

(3)学生汇报,教师任选其中的板书

(4)师:肯定学生的回答后指出,像这样的等式我们还可以继续写下去。这样两个比相等,我们就可以说这两个比可以组成比例。(出示)这就是比例的意义也是我们今天所要学习的一个重要内容。

(5)引导学生再次理解意义并强调,两个比相等,并让学生说说什么是比例?

(6)试写比例的分数形式。

2、根据意义,判断比例

下面哪组中的两个比可以组成比例?把组成的比例写出来。

(1)学生独立完成。

(2)指名汇报。

(3)师:20:5和1:4为什么不能组成比例?那么你能想办法给20:5找个朋友组成比例吗?想一想,这样的朋友能找几个?你认为找到朋友的共同特点是什么?也就是说要符合什么条件?

小结后强调指出,判断两个比能否组成比例,关键是看它们的比值是否相等。

(二)比例的基本性质

师:我们知道比中两个数分别叫做比的前项和后项。今天我们学习的比例中的四个数也有自己的名字,你们知道它们分别叫什么吗?(和学生介绍内项和外项)。

(1)写出一组比例,让学生指出各部分的名称。

(2)如果把比例写成分数的形式,你能找出它的内项和外项吗?

生独立指出比例的内项和外项。

1、活动探究总结性质

谈话:比例表示两个比相等的式子,就像除法有商不变的性质一样,比例也有它特有的性质,会是什么呢?我们可以怎样研究?

(1)请你试着写出一些比例:

(2)问题:观察比例式,两个外项与两个内项之间有什么关系?想想、写写、算算,看你有什么发现?(可以提示学生分别算出两个外项和两个内项的和,差,积,商,看看有没有一定的规律)

(3)学生探究,教师巡视,收集资源。

(4)探究:你发现了什么?怎么发现的?

(5)验证:有了这样的发现之后,你有什么问题呢?

(6)可以得出什么?(比例的性质)

(7)提问:如果把比例写成分数的形式,比例的基本性质会出现什么形式呢?

2、运用性质

(1)提问:判断比例是否成立,你是根据什么判断的?有几个方法?

(2)出示一些练习,判断哪一组中的两个比可以组成比例?

三、归纳总结,交流收获

1、本节课学习了什么?

比例的课件 篇9

教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

教学目的:

1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

2.使学生进一步认识事物之间的相互联系和发展变化规律。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程():

一、复习

1.让学生说说什么是成正比例的量:

2.用投影片出示下面的题:

(1)下面各题中哪两种量成正比例?为什么?

①笔记本单价一定,数量和总价:

⑨汽车行驶速度一定.行驶的路程和时间。

②工作效率一定.’工作时间和工作总量。

①一袋大米的重量一定.吃了的和剩下的。

(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

二、导入新课

教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

三、新课

1.教学例4。

出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。

让学生观察这个表,然后每四人一组讨论下面的问题:

(1)表中有哪两种量?

(2)所需的加工时间怎样随着每小时加工的个数变化?

(3)每两个相对应的数的乘积各是多少?

学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间

10 × 60=600。

30 × 20=600。

40 × 15=600,

“这个积600。实际上是什么?”在“加工时间”后面板书:零件总数

“积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)

“每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。

2.教学例5。

用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。

(1)理解题意,填写装订本数。

“谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)

“这40本是怎么计算出来的?”(用600÷15)(zfw152.COM 趣祝福)

“如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

(2)观察分析表中两种量的变化规律。

让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)

“装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的`页数装订的本数

15 40

20 30

25 24

一’然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。

1,单价一定.数量和总价。

2,路程一定,速度和时间。。

3,正方形的边长和它的面积。

1.时间一定,工效和工作总量。

二、导入新课

教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断

两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我

们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。

板书课题:正比例和反比例的比较

三、新课

1.教学例7。

出示例7的两个表:

表1表2

让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:

在表l中:在表2中:

相关联的量是路程和时间.路程随着相关联的量是速度路程随时间变化,速度是和时间,速度随着时间变化

一定。因此,路程和时间,路程是一定的。因此,速

成正比例关系。度和时间成反比例关系

然后提问:

(1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/

(2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?

教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?

板书:速度×时间=路程

=速度=速度

教师:当速度一·定时,路程和时间成什么比例关系?

教师:当路程一定时,速度和时间成什么比例关系?

教师:当时间一定时。路程和速度成什么比例关系?

2.比较正比例和反比例关系。

教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:

四、巩固练习

1.做教科书第28页“做一做”中的题目。

让学生自己填,并说一说为什么。

2.做练习七的第1—2题。

教师巡视,个别辅导,最后订正。

五、小结

教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

比例的课件 篇10

教学内容:教材23页-24页例1、例2,24页做一做,练习五1、2、

素质教育目标

(一)知识教学点

1.使学生能正确判断应用题中涉及到的量成什么比例关系。

2.使学生能利用正、反比例的意义正确解答应用题。

(二)能力训练点

1.培养学生的判断推理能力。

2.培养学生的分析能力。

(三)德育渗透点

1.引导学生利用已有的知识,自己探索,解决实际问题,培养学生的勇于探索的精神。

2.对学生继续进行辩证唯物主义观点的启蒙教育。

教具学具准备:投影仪、投影片。

教学重点:是使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题。

教学难点:是帮助学生通过分析应用题的已知条件和所求问题,确定题中哪些量成什么比例关系,并利用正反比例的意义列出等式。

教学步骤

一、铺垫孕伏

判断下面每题中的两种量成什么比例关系?

1.速度一定,路程和时间。

2.路程一定,速度和时间。

3.单价一定,总价和数量。

4.每小时耕地的公顷数一定,耕地的总公顷数和时间。

5.全校学生做操,每行站的人数和站的行数。

二、探究新知

1.引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的'知识可以解决一些实际问题。这节课我们就来学习比例的应用。(板书:比例的应用)

2.教学例1

(1)出示例1,学生读题。

例1一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

(2)请同学们先用以前学过的方法解答。

学生在课本上完成,订正时板书:140÷2×5

=70×5

=350(千米)

(3)下面我们研究用比例的知识解答。

①教师说明:用比例的知识解答,首先要确定题中有哪几种量,哪种量是固定不变的,哪两种量是变化中的,变化着的两种量成什么比例关系。

②想:这道题中涉及到了哪三种量?

哪种量是一定的?你是怎样知道的?

行驶的路程和时间成什么比例关系?

③学生回答:题中有路程、时间和速度三种量。

“照这样的速度”就是说速度一定。

行驶的路程和时间成正比例关系。

(随学生回答,板书:速度一定,路程和时间成正比例)

④因为速度一定,路程和时间成正比例,那么根据正比例的意义,两次行驶的路程和时间的什么相等?

⑤如果我们设甲乙两地间的公路长X千米。(板书:解:设甲乙两地间的公路长x千米)

这两个比之间存在着什么关系?(板书:=)

⑥解出这个比例,就可以得到这道题的答案,请同学们自己完成。订正时板书:20X=140×5

X=350

答:两地之间的公路长350千米。

⑦怎样检验这道题做得是否正确?(学生说说)

(4)如果把例1中第三个已知条件和问题换一下,(投影出示题目)

一辆汽车2小时行驶140千米,照这样的速度,甲乙两地之间的公路长350千米,从甲地到乙地需要行驶多少小时?

学生自己解答后订正。

3.教学例2

(1)出示例2,学生读题。

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时要行多少千米?

(2)请同学们先用以前学过的方法解答。(做完后订正并板书)

70×5÷4

=350÷4

=87.5(千米)

(3)那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的路程是一定的,______和______成______比例。

所以两次行驶的______和______的______是相等的。

(4)学生把讨论结果填在课本上。

订正时板书:路程一定,速度和时间成反比例。

(5)如果设每小时需要行驶X千米(并板书),根据反比例的意义,谁能列出方程?(板书:4X=70×5)

(6)接下来请同学们自己完成,订正时板书:

X=87.5

答:每小时需要行驶87.5千米。

(7)如果把例2中的第三个已知条件和问题互换一下:(投影出示)

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行87.5千米,需要几小时到达?

学生自己解答后订正。

4.小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

三、巩固发展

1.下面两题先说说题中的哪两种量有什么比例关系,再用比例知识解答。(投影出示)

(1)32页做一做

(2)练习八第2题

找学生把两题的比例关系说完后,自己完成,完成后订正。

2.先想一想:下面各题中存在着什么比例关系?再填上条件和问题,并用比例知识解答。(口答)

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,______,______?

(2)王师傅4小时生产了200个零件,照这样计算,______?

四、全课小结

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

五、布置作业练习五1、3、4题。

比例的课件 篇11

教学内容:义务教育课程标准实验教科书数学六年级下册P45练习十的第5—8题

教学目标:

1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。

2、让学生在经历探究的过程中,体验学习数学的快乐。

教学重点:学会解比例。

教学难点:掌握解比例的书写格式。

设计理念:在本课时的设计中,引导学生根据按比例放大图形,把相关数据组成比例,用未知数X来表示比例中的未知项,列出比例式。

在解比例的教学设计上,重点利用旧知的迁移,通过学生主动探索新知与旧知的联系,在比较分析中,把握规律,掌握解比例的方法。

教学步骤教师活动学生活动

一、练习引入

1、小练笔:

在()里填上合适的数。

5:4=():12

4:()=():6

2、教师:前面我们学习了一些比例的'知识,谁能说一说怎样填空的?

3、比例的基本性质是什么?这节课我们还要继续学习有关比例的知识。学生练习

学生回顾比例的基本性质

二、探索新知

出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?

(1)读题审题,理解题意

老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的相关线段的长度是可以组成比例

(2)引导分析,写出比例

如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。

师介绍:“像上面这样求比例中的未知项,叫做解比例。

(3)找到依据,变形解答

讨论:怎样解比例?根据是什么?

思考:“根据比例的基本性质可以把比例变成什么形式?”

教师板书:6x=13.5×4。“这变成了什么?”(方程。)

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。

(4)、板书过程,总结思路

师生把解比例的过程完整地写出来。指名板书。

师问:第一步计算的依据是什么?

师生总结解比例的过程。

提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)

(5)、练习提高,再说思路

做“试一试”,学生独立完成,再说说解题思路。

学生读题,分析题意

学生写出含有未知数的比例式

学生小组交流,大组汇报

学生交流总结思路:在解比例的过程中第一步是关键,是根据比例的基本性质把比例变成方程。下面和以前学习的解方程的方法一样。

学生独立练习,小组说明思路。

三、巩固练习

1、做“练一练”

2、做练习十第6、7题。

3、做练习十第8题

学生先说说按比例“缩小或放大“的含义。再列出相应的比例式并求解。

学生独立审题并解题。讲评时重点指导学生解决第(2)问。

四、比较提高。

1、通过本课的学习,你有哪些收获?

2、把你掌握的解比例的方法在小组里介绍一下,并在大组交流。

五、作业练习九第5、6题。

    为了您方便浏览更多的比例的课件网内容,请访问比例的课件

相关文章

最新文章

推荐访问

Copyright©2006-2025 幼儿教师教育网 yjs21.com 湘ICP备2022004057号-6

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。