金秋的硕果离不开园丁的照顾,孩子的成长离不开老师的教育。越来越多的教师习惯在上课前备好教案。教案是教师设计和安排教学内容、教学步骤、教学方法等的实践性教学文件,教案的内容具体要怎样写呢?在此,你不妨阅读一下六年级数学教案,供您参考,并请收藏本页!
教学目标:
1、通过图形直观的表征,让学生更加清晰求的都是同一个阴影部分的面积。从而让学生直观地看到了加减法算式之间的联系,越来越接近1,感悟极限思想。
2、培养学生利用图形来分析问题、解决问题的意识和能力。
3、重视利用图形来分析题意,理清思路,提高解决问题的能力
一、创设情景,导入新课
计算出结果。
二、探索交流,解决问题
1、教学例2
计算
从第二个数开始,每个数是前一个数的
我一个一个加下去看看,答案好像有点规律。加下去,等号右边的分数越来越接近于1。
可以画个图来帮助思考。用一个圆或一条线段来表示“1”。
从图上可以看出,这些分数不断加下去,总和就是1。
2、渗透极限思想。
如果不停地加下去,
1、猜一猜“和”是多少?
2、请用“形”来解释这个结果。
3、反馈:
如果不停地加下去,空白部分会怎么样?
那的结果怎么样?(无限接近1。)
运用知识
你能用所学知识解决下列问题吗?
我是这样想的
所以原式的结果是1。
三、布置作业
作业:第110页练习二十二,第3题、第4题、第5题。
教学目标
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。
教学重点
使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。
教学难点
利用比例的基本性质来解比例。
教学过程
一、旧知铺垫
1、什么叫做比例?
2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?
3、比例有几种表示形式?(板书:a:b=d:c a/b=d/c)
二、导入新知
同学们,你们知道吗?比例的基本性质有两个作用,一个就是我们刚才用来判断两个比能否组成比例,而另一个是什么呢?同学们想不想知道?这节课我们就来研究研究。
三、探索新知
1、出示埃菲尔铁挂图
这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。
2、出示例题
(1)、读题。
(2)、从这道题里,你们获得了哪些信息?
(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)
(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)
(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)
(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)
(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。
(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为X米”,把这个X代入这个数学模式中就组成了一个比例式(板书:X:320=1:10)
(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?
(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)
(11)、指着X:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做? (指名板演)
(12)、为什么可以写成这样的等式呢?10X=320*1(根据比例的基本性质)
(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)
(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。
(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验? (把结果代入题目中看看对应的比的比值是不是能成比例.)
(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。)
(17)、解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)
现在同学们会用解比例的方法来解决问题了吗?
那就做做下面这道题:育新小区1号楼的实际高度为35米,它的高度与模型高度的比是500:1。模型的高度是多少厘米?
2、教学例3
过渡:我们知道比例还有另一种表示形式,当是1.5/2.5=6/X这样形式的时候,又该怎么解呢?
(1)、出示例3,问:这题与刚刚那个比例有哪些不同?
(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)
(3)、在这个比例里,哪些是外项?哪些是内项?
(4)、解答(提问:你们是怎么解答的?)、检验。
(5)、12/24=3/X
3、巩固练习
4、课堂小结。
(1)、这节课主要学习了什么内容?(板课题:解比例)什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。)
(2)、现在你们知道比例的基本性质的另一个作用是什么了吗?(用来解比例)
5、拓展延伸
老师给你们出一道思考题:在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?
教学内容:
苏教版义务教育教科书《数学》六年级上册第29~30页例2、练一练,第32~33页练习五第6~9题。
教学目标:
使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。
通过操作,观察,培养学生的推理能力,发展学生的思维。
教学重点与难点:
一个数的几分之几是多少的实际问题的数量关系和解题方法。
教具:长方形纸、彩笔、水杯
教学过程:
一、创设情境
同学们,上节课我们学习了分数乘整数的计算方法,你想不想继续往下学?在学新课之前我们先来复习一下上节课的内容。
复习:计算下面各题,并说出计算方法。
上面各题都是分数乘以整数,说一说分数乘以整数的意义以及计算方法
二、探究新知
今天,我们来学习一个数乘以分数的意义和计算方法。
教学例2
出示例2的图,然后出示条件:
小芳做了10朵绸花,其中是红花,是绿花。
引导学生理解:“其中”是什么意思?
使学生明白是10朵中的,然后出示问题
红花有多少朵?
引导学生看图理解:求红花有多少朵,就是求10朵的
让学生应用已有的知识经验解决。
学生可能列式:10÷2=5(朵)
在此基础上指出:求10朵中的是多少,还可以用乘法计算。
教师说明要求,学生列式解答。
在此基础上教学第(2)题,怎样解决
(2)绿花有多少朵?
可以先让学生在图中圈一圈,借助圈的过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的2份是多少,引导学生用以前的方法解决。
10÷5×2=4(朵)
在此基础上告诉学生:求10朵的是多少也可以用10×来计算。
学生独立计算,订正时指出:
计算10×可以先约分
2、引导学生进行比较
通过对上述两个问题的计算,你明白了什么?
小组讨论:10朵的,也就是把10朵花平均分成5份,求这样的2份是多少。计算10×时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2,求出2份是多少。
引导小结:求一个数的几分之几是多少,可以用乘法计算。
三、练习
1、做练一练的第1题。
先让学生根据题意涂色,然后列式解答。
2、做练一练的第2题。
通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。
3、做练习五第6题。
4、做练习五第8题。
提问:求月季和杜鹃各多少棵时,为什么乘的分数不一样?
5、做练习五第9题。
比较三道算式的计算方法,你有什么体会和大家分享?
四、总结
本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?
五、作业
完成练习五第7题。
讲评目标:
1、通过讲评,进一步巩固本单元知识点。
2、通过对典型错误的剖析、矫正、帮助学生掌握正确的思考方法和解题策略。
学习目标:
认真细致进行错例分析,用心思考,积极交流,总结经验,查漏补缺,体会数学方法和思想在解题中的应用。
教学重点、难点:典型错误的剖析与矫正。
讲评过程:
一、 整体回顾、介绍本次考试情况
1、本次考试平均分87.3分,及格率94.1% ,优秀率68.6%,最高分 110分,最低分21分。
2、根据本次成绩对前五名和进步比较大的学生进行表扬和鼓励。成绩前五名:李俊宁110分,翁睿110分,张蒙丹110分,杨蕾,王烨,石殊凡,赵欣瑶,时若莹,沈建翔,王朝晖107分。进步比较大的前五名学生:张琼月,刘子璇,董志强,吴姝静,张轩。
二、教师分析学生在答题中存在的问题
1、部分学生对基础知识掌握不扎实,没有养成良好的学习习惯 表现在不认真审题,不细心答题,如第6小题结果没有化简,第16小题没有注意x与y的顺序,第五大题的应用题,有的同学没有按题目
的要求解,等。
2、部分学生计算的能力不强,表现为计算速度慢,计算的准确率低,不能灵活的使用运算律及一些运算方法。如第1小题判断四个数能不能成比例的技巧,解比例时的一些运算方法,等。
3、不能运用所学知识灵活解决实际问题,分析问题、解决问题的能力有待提高.例如,解决实际问题的第2题,有部分学生按边长和数量成反比例关系进行计算,解决实际问题的第3题,有的同学先算面积,然后再用比例尺算实际面积,有半数以上的学生对于附加题无从下手,等。
三、学生自我分析试卷
学生的有一些问题是因为一时的疏忽做错;有一些是自己的知识不够牢固,经过自己的学习是可以自己解决的;有一些问题经过学生自己的再思考是可以自己解决的。象这一类的问题肯定可以学生自己处理好,那么就不需要老师来帮忙,只要给以时间和信心就可以了。
四、小组内互帮互助学习
当学生的问题自己解决掉自己能解决的之后,这时转入学生的互帮互助阶段,在小组内由学生提出不会的问题由会做的同学进行讲解。在这个阶段由学生给学生讲解达到学会的目的。组内都不会的问题就由组长记录并交给老师。
五、老师组织讲解
根据各小组的统计,根据各组情况由多到少(不会的小组数)的
顺序来解决。经过了两次纠正(自纠和互纠),学生的问题基本解决,剩下的问题再由老师组织,让会做的小组给同学们讲解。讲解题思路,老师适当补充、引导、评价。
六、老师检查学生的掌握情况
学生自己的学习和相互帮助有没有成效要靠自觉,老师可以检查,拿出一部分比较有意义的,需要老师来讲解的问题检查学生,顺便让学生说出老师要说的话,然后有必要就补充、评价。让学生说出每一道题的考察内容解题技巧。
七、当堂检测
1、用2、4、8、4、写出比例式:( )。
2、行驶的路程一定,则车轮的周长和它的转数成( )比例.
3、一种精密零件长5毫米,把它画图上长6厘米,则比例尺是
( )
4、若5X-7Y=0,X:Y=( ) 5、在比例尺是1:200的图上,一个长方形的长是4㎝,宽是3㎝,
这个长方形的实际面积是( )平方米。
6、一间房子要用方砖铺地,用边长3分米的方砖,需要86块。如果改用边长是2分米的方砖要( )块.
当堂检测:
1、用2、4、8、4、写出比例式:( )。
2、在A×B=C中,当A一定时,B和C 成( )比例.
3、一种精密零件长5毫米,把它画图上长6厘米,则比例尺是
( )
4、若5X-7Y=0,X:Y=( ) 5、在比例尺是1:200的图上,一个长方形的长是4㎝,宽是3㎝,
这个长方形的实际面积是( )平方米。
篇二:数学试卷讲评课教案
数学单元试卷讲评课通用教案
教学目标
1.系统回顾学过的知识,强化知识的薄弱环节;明确试卷存在的错误及原因、解题的方法及拓展。
2.课前学生独立订正——课上教师总体分析——师生互动,重点讲评、拓展。
3:树立严谨的学习态度,自觉查漏补缺,认真订正试卷错误。 教学重点
1、教师根据学生试卷中较为普遍的问题,归纳、整理学生知识上的不足和答题方法、答题思路上的欠缺,使试卷分析更有针对性。
2、要求学生课前独立订正试卷,自己查漏补缺,最后确定自己不能解决的问题。
教学过程
(一)基本情况分析:
与考数40人及格数40,其中成绩较好的有; 杨嘉欣 杨 荷 成绩比较差的有:陈昌裕 曾庆渊 林 鑫
(一)试卷整体分析
分析试卷:
1、检测题的形式与平常要求一致。
2、试卷的知识点分布,基础知识、知识的应用安排较合理。
3、难度系数偏低。
分析学生:
1、答题不够规范,部分学生不会表达自己的意思。
2、填空、选择部分做得较好,拓展部分问题较多。
(二)重点题目分析及知识拓展
第一题,考察知识点为XX的意义,学生存在的问题及原因:审题不清。解题方法:①确定关键词;
②第二题,判一判。考察知识点为是否理清易混淆的概念。
第三题,选一选2。重点是对XX的理解。
第五题,解决问题4。XX情况,对学生有难度,需要帮助。
(三)其余题目,学生讲评,教师适当补充。
小结:希望同学们认真订正,从中汲取经验,使知识和能力再上一个台阶。
(四)跟踪练习
教学反思
试卷讲评是教学中极为关键的一个环节。为避免讲评“简单重复”和“高耗低效”,遵循先“生”后“师”,先“筛”后“讲”,既“点”又“面”,明“路”后“果”的方法来上好单元评析课。
【教学目标】
1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题。
3.能借助数轴初步理解正数、0和负数之间的关系。
【重点难点】
负数的意义和数轴的意义及画法。
【教学指导】
1.通过丰富多彩的生活情境,加深学生对负数的认识。
负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。
2.把握好教学要求。
对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,
而是描述性的定
义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。
3.培养学生多角度观察问题,解决问题的能力。
教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。
【课时安排】
建议共分3课时:
负数的初步认识2课时 在数轴上表示正数、0和负数 1课时
【知识结构】
第1课时 负数的初步认识(1)
【教学内容】
负数的初步认识
(1)(教材第2页例1)。
【教学目标】
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
【重点难点】
体会负数的重要性。
【教学准备】
多媒体课件。
【情景导入】
1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)
2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)
引出课题并板书:负数的初步认识(1)
【新课讲授】
教学教材第2页例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3
)我们来看一下课本上的图,你知道北京的气温吗?最高气
温和最低气温都是多少呢?随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。
【课堂作业】
完成教材第4页的“做一做”第1题。
组织学生独立完成,指名回答。
答案:-18℃温度低。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
第1课时 负数的初步认识(1)
0℃
-3℃
3℃(+3℃)
通过温度的概念,初步学习负数,理解气温高低与温度的关系,是负数学习的第一步。
第2课时 负数的初步认识(2)
【教学内容】
负数的初步认识
(2)(教材第3页例2)。
【教学目标】
通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。
【重点难点】
体会引入负数的必要性,初步理解负数的含义。
【情景导入】
教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的?
组织学生讨论回忆上一课内容。
师:很好,大家都很棒。今天我们继续学习负数知识。
引出课题并板书:负数的初步认识(2)
教学目标:
1、使学生理解并掌握比例的基本性质,学会应用比例的基本性质判断两个比能否组成比例,并能正确组成比例。
2、培养学生的观察能力、判断能力
教学重点:引导学生观察、讨论、试算,探究比例的基本性质。
教学难点:应用比例基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、激趣导入
1、今天老师给大家带来了一件东西,放在口袋里呢,这东西大家平时都玩过,还挺熟悉的,四四方方的,猜猜看是什么?(学生猜)
2、还是让老师给你点提示吧!
课件逐句出示:买来方方一小盒,用时却有几十张,红黑兄弟各一半,还有一对“双胞胎”。
3、现在知道是什么了吧!课件出示:扑克牌
(设计说明:通过一则小小的谜语导入新课,与之后的新授的比赛巧妙衔接,以扑克牌激发学生的兴趣。)
二、探究新知
(一)我们今天这堂课研究的数学问题就跟扑克牌有关。你们都知道扑克牌有四种花色,而每一种花色都有13张。(课件出示)A,2,3,4,5,6,7,8,9,10,J,Q,K
1、同学们你们都学过比例,请同学们用最快的速度从这13个数字中选择你所需要的数字来写出一个比例。
2、学生汇报写出的比例并说明理由。
3、们都是选择4个数字来组成比例。那你们想知道组成比例的4个数叫什么名字呢?(想)那就请同学们自己预习课本43页最后两段(师出示课件预习提纲)。(板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项。中间的两项叫做比例的内项。)
4、就学生汇报的比例,找出内项与外项。
(设计说明:通过一个写比例的小活动,一是复习了比例的意义,二是教学了内项与外项。)
(二)在刚才同学们写比例的过程中,老师发现同学们的脑子转得可真快,王老师想跟你们比一比,比谁能更快地按要求写出比例。怎样?敢接受老师的挑战吗?(生:敢)
1、那我们就开始吧,请同学们先看“冠军攻略”(比赛规则)
课件出示:
冠军攻略
参赛者:王老师,全班同学
规则:迅速判断由电脑随机抽取出来的4张牌面上的数学能否组成比例,如果能,请写下来。(至少写两个)(完成的可先举手示意)
2、第一轮:6、8、9、12
(老师比学生提前写完,并由学生验证,得出老师胜)
第二轮:3、5、4、8
(老师比学生提前判断出不能组成比例,并由学生验证,老师胜)第三轮:4、8、6、3
(老师比学生提前写完比例,并由学生验证,老师胜)
(设计说明:由扑克牌引出三轮比赛,设计都由老师胜出,学生由此产生疑问,为什么老师能这么厉害,这么快地写出8个比例,借此激发学生探究。)
3、同学们一定很好奇,老师为什么能这么快地判断出这4个数能否组成比例,并能很快地写出比例,其中有什么奥秘?其实老师是有冠军秘籍的,而秘密就藏在这些比例中。请同学们仔细观察老师所写的比例的内项与外项,小组交流讨论,看看有什么发现?
4、学生汇报,验证,课件出示“比例的基本性质以及字母公式”
5、师讲解如何很快的判断4个数能否组成比例。
(设计说明:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。)
看样子,同学们对新知掌握的不错,愿意接受挑战吗?
(三)练习运用。
1、应用比例的基本性质,判断下面哪组中的两个比可以组成比例
6∶3和8∶50 2∶2.5和4∶50
2、如果把2.4:1.6=60:40,改写成分数的形式,你会写吗?等号两边的分子和分母分别交叉相乘,所得的积有什么关系?
指出:2.4与40的乘积等于1.6与60的乘积。
三、课堂巩固,练习提升
1、用你喜欢的方法来判断哪组中的两个比能否组成比例。
(1)14:21和6:9 (2)3/4:1/10和15/2:1
(3)9:12和12:15 (4)1.4:2和7:10
2、把图A按比例放大得到图B,按比例缩小得到图C。根据图中的数据组成比例。(课本46页第3题)
3、根据比例的基本性质,在括号里填上合适的数。
8:2=24:( ) ( )/15=4/5 1.5:3=( ):3.4 48:( )=3.6:9
四、实践活动题
8:A=B:1.5,那么A和B可能是( )和( )
如果A是小数,那么A可能是( ),B可能是( )。
如果A-B=1,那么A可能是( ),B可能是( )
如果A+B=7,那么A可能是( ),B可能是( )
(设计说明:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一)
五、全课总结
通过这节课的学习,你有哪些收获?
小学数学被运用到生活的各个方面,作为小学数学教师,为了让学生们更好的找到学习数学的乐趣,每一个老师都不能少了教案这个东西!那么,您是不是不太清楚小学数学教案怎么写呢?为了让您在使用时更加简单方便,下面是小编整理的“六年级数学老师年度工作总结6篇”,希望能为您提供更多的参考。
本学期,我从各方面严格要求自己,结合本班学生的实际状况,勤勤恳恳,兢兢业业,使教学工作有计划、有组织、有步骤地开展,圆满地完成了教学任务。
一、认真学习,认真备课。
本学期我认真学习教育理论,做了超多的学习笔记,提高了自己的业务水平。教学中,我不但做到了备学生,而且备教材、备教法。根据教学资料及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都做了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,课后及时对该课做出反思体会。
二、增强技能,提高质量。
在课堂上个性注意调动学生的用心性,加强师生交流,充分体现学生学得容易,学得简单,觉得愉快,注意精神,培养学生多动口动手动脑的潜力。充分利用信息技术,开展师生活动学习,开辟学习空间,激发学生学习热情,提高教学质量。
三、作业批改,及时认真。
认真批改作业,布置作业有针对性,有层次性。对学生的作业批改及时,认真分析并记录学生的作业状况,将他们在作业过程出现的问题做出分类总结,进行透彻的讲评,并针对有关状况及时改善教学方法,做到有的放矢。
四、了解学生,分层教学。
及时了解学生状况,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,同时加大了对后进生的辅导的力度。对后进生的辅导,并不限于学生知识性的辅导,更重要的是学生思想的辅导,提高后进生的成绩,首先解决他们的心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。这样,后进生的转化,就由原先的简单粗暴、强制学习转化到自觉的求知上来。
五、用心推进素质教育。
为此,我在教学工作中注意了潜力的培养,把传授知识、技能和发展智力、潜力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新潜力。让学生的各种素质都得到有较的发展和培养。
一份耕耘,一份收获。良好的成绩将为我今后工作带来更大的动力。但是也就应清醒地认识到工作中存在的不足之处。教学工作苦乐相伴,我将一如既往地勤勉,务实地工作,我将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好。
本学期,我担任六年级数学教学工作。在一学期的实际教学中,我按照教学大纲的要求,结合本校的实际条件和学生的实际情况,全面实施素质教育,努力提高自身的业务水平和教学能力。为了克服不足,总结经验,使今后的工作更上一层楼,现对本学期教学工作作出如下总结:
六年级我教学六(2)数学兼班主任,一个班37人,这个班是我从二年级带上来的,上课是自己带上来的班级好上,因为学生生会与你配合,有部分人的学习习惯比较好,学习比较用心,但也有部分人由于基础太差而无法接受新知识,学习习惯问题方面也有所欠缺,比如,拖欠作业,老师工作总结做作业过程中偷工减料,数学计算的过程的书写格式不正确等。
六年级学生面临即将毕业,因此,对学习成绩的要求会更高。在数学成绩方面,六(2)班的数学成绩比较好,通过前面的总结使我认识到:教师要严格的要求学生遵守纪律,从而创造良好的学习环境,使教和学能顺利进行,特别是对小学生来讲老师的严格要求就更重要了,教师只有通过加强教育,耐心的辅导,加上在教学中不断探索,总结经验,全部精力投入到教学中。
对于本人来说是第一次接任毕业班的课,所以有点不大适应,感觉学生的高分出不来,低分比较多,所以我有迷茫过,但很快调整过来了,现总结如下:
备课时,我结合教材的内容和学生的实际精心设计每一堂课的教学过程,不但要考虑知识的相互联系,而且拟定采用的教学方法,以及各教学环节的自然衔接;既要突出本节课的难点,又要突破本节课的重点。认真写好教案和教后感。特别是六年级的很多内容都比较容易混淆,如分数的解决问题和百分数的解决问题等,所以课前必须做好充分的准备,才能收到良好的课堂效果。
为了提高教学质量,体现新的育人理念,把“知识与技能,过程与方法,情感态度与价值观”的教学目标真正实施在实际的课堂教学之中.课堂教学以人为本,注重精讲多练,特别注意调动学生的积极性,强化他们探究合作意识.对于每一节课新知的学习,我通过联系现实生活,让学生们在生活中感知数学,学习数学,运用数学;通过小组交流活动,让学生在探究合作中动手操作,掌握方法,体验成功等。鼓励学习大胆质疑,注重每一个层次的学生学习需求和学习能力。从而,把课堂还给了学生,使学生成了学习的主人。如六年级的《圆的周长》我让学生充分在课堂中利用小组的力量去想办法解决,虽然时间用的比较多,但学生兴趣很高,课堂收益良好。
对于学生作业的布置,我本着“因人而异,适中适量”的原则进行合理安排,既要使作业有基础性,针对性,综合性,又要考虑学生的不同实际,突出层次性,坚决不做毫无意义的作业。学生的每次作业批改及时。个别错题,当面讲解,出错率在50%以上的,我认真作出分析,并进行集体讲评。另外,针对六年级即将毕业的事实,我从基础的练习开始抓起,每天都布置一些基础练习和学生容易混淆的题目,如简便计算和解方程,另外还有分数与百分数的解决问题等。
没有认真做好后进行转化工作。上课和批改作业就占用了大部分时间,因此在辅导学生这一方面做的不够。只是一方面的鼓励学生遇到问题一定要及时找老师解决,但毕竟很多学生的玩性比较大,主动性不强,导致没有人自发找老师辅导的局面。另一方面,在发现不好的作业或是出现的问题,只是针对整体强调,忽略了个体的能力和力量。
总之,一学期的教学工作,既有成功的喜悦,也有失败的困惑。本人今后将在教学工作中,汲取别人的长处,弥补自己的不足,力争取得更好的成绩。
精品合同推荐----
学生进行相应的辅导,以满足不同层次的学生的需求,同时加大了对后进生的辅导的力度。对后进学生的辅导,并不限于学生知识性的辅导,更重要的是学生思想的辅导,提高后进生的成绩,首先解决他们的心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。
五、积极提高学生数学素质。为此,我在教学工作中注意了能力的培养,把传授知识、技能和发展智力/华考/、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。六、教学中存在的问题
本学期对学困生的帮扶还不够深入,对学生心理特点了解不够,教学方法还有待于改进,教学成绩还有待于提高。七、今后整改措施
教书育人是塑造灵魂的综合性艺术。在课程改革推进的今天,社会对教师的素质要求更高,在今后的教育教学工作中,我将立足实际,认真分析和研究好教材、课程标准,研究好学生,做好家访工作,争取学生家长的支持,创造性地搞好学校教学各项工作,使我的教学工作有所开拓,有所进取,更加严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为美好的明天奉献自己的力量。
一份耕耘,一份收获。良好的成绩将为我今后工作带来更大的动-
力。不过也应该清醒地认识到工作中存在的不足之处。教学工作苦乐相伴,我将一如既往地勤勉,务实地工作,我将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好。
小学数学六年级下学期教育教学工作总结
六年级数学教育教学工作总结
小学六年级数学教学工作总结
小学六年级教育教学工作总结
小学六年级数学教师教学工作总结
本学年,本人接手担任学校六年级的数学科教学工作。半学年来,我自始至终以认真严谨的治学态度,勤恳、坚持不懈的精神,从事自己心爱的教育教学工作,并取得了一定的成绩。为了不断提高教学质量,促进学生全面发展,现将本学年数学教学工作总结如下:
我根据本班学生的特点,开展一些丰富多彩的数学活动,如讲数学家的故事,搞一些数学小竞赛,等等,努力营造一个学数学的良好氛围,使学生从思想上逐步扭转对数学的枯燥印象,激发学生学习数学的兴趣。最后,我利用各种机会,经常给不同层次学生以成就感,让每一位同学都能体验到学习数学的成功与快乐。
在业务上,本人积极利用各种机会,学习教育教学新理念,钻研教材教法,坚持不懈地进行“自我充电”,以提高自己的业务理论水平。课堂上,我把学到的新课程理念结合本班实际,努力贯彻到课堂教学中去,以期提高课堂40分钟的效率。课余,我经常与同事们一起探讨教学过程中遇到的各种问题,互相学习,共同提高;要充分发挥课堂教学这个“主阵地”的作用,提高课堂40分钟的效率,我们要与时俱进,坚持不懈地学习探究教学新理论新实践。
亲其师,才能信其道。在平时与学生接触的过程中,我不以“师长”自居,尽量与学生平等交往,建立“朋友式”的深厚友谊,努力关爱每一位学生的成长。与学生多谈心,帮助学生解决学习上与生活上的各种困惑。同时,面对个别调皮的学生,也实行严格要求、正确导向的办法,让他们树立起正确的荣辱观。面对各层次的学生,我既要关爱大部分学生,又要面对个别不守纪律的捣蛋分子实行严格要求。课堂上,我尽量做到分层施教与个别辅导相结合;课余,我让优秀学生与“待进生”实行“一帮一”结对子,互帮互助,共同提高。一年来,学生们原本薄弱的基础,逐步得以夯实,学生的学习成绩有了稳步提高。
1、取得的成绩。在本人一个学年的努力带动下,本班学生的精神面貌焕然一新,一改过去的“差、乱”的班级形象,形成了积极向上、乐于进取的新的“班风”、“学风”。这学期以来,本人踏实的工作作风,赢得了领导、同事、学生及其家长的良好口碑。
2、存在的不足及努力方向。班风学风改观明显,学习积极性空前高涨,但部分学生多年来形成的一些不良学习方法和习惯,还有待进一步规范和引导;学习成绩进步显著,但许多方面还有很大的提升空间。今后,本人将继续本着“教到老,学到老”的精神,不断探讨提高学生学习兴趣、促进学生全面发展的有效机制;继续保持与学生家长的紧密联系,共同配合,把我们的下一代教育好,培养好,争取个人成长与学生成长实现双丰收。
本学年,本人参加省级教研课题“开放性问题学习的研究”的子课题及县级课题“开放性教学课型的研究”的子课题的研究工作,积极撰写课题实施方案,撰写个案、教学心得体会,及时总结研究成果,撰写论文,为课题研究工作积累了资料,并积极在教学中进行实践。在课堂教学中,贯彻新课改的理念,积极推广先进教学方法,在推广目标教学法、读书指导法等先进教法的同时,大胆进行自主、合作、探究学习方式的尝试,充分发挥学生的主体作用,使学生的情感、态度、价值观等得到充分的发挥,为学生的终身可持续发展打好基础。
1、在课堂教学中充分利用多媒体课件,调动了学生的积极性,但对学生基础知识的训练不够,致使课堂教学效率不高。
1、进一步加强对新课改的认识,在推广先进教学方法、利用多媒体调动学生学习积极性的同时,努力提高课堂教学的效率。
本学期我担任六(6)班数学科教学工作,适应新时期教学工作的要求,从各方面严格要求自己,积极向老教师请教,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有步骤地开展。立足现在,放眼未来,为使今后的工作取得更大的进步,现对本学期教学工作作出总结,希望能发扬优点,克服不足,总结检验教训,继往开来,以促进教学工作更上一层楼。
通过一学期的辛勤工作以及师生的共同努力,顺利完成了本学期的全部教学内容,并取得了良好的成绩,在小学月考、中考中,我班的学生取得了较好的成绩,平时的考测成绩一般保持在年级前三名。
1、提高备课水平。不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
2、增强上课技能。提高教学质量,使讲解清晰化,条理化,准确化,生动化,做到层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高,现在很多学生都乐于上数学课了。
3、学习优秀经验。在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足,改进工作。
4、批改作业有针对性:布置作业做到精读精练。有针对性,有层次性。为了做到这点,我常常到各大书店去搜集资料,对各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
5、注重课后辅导。本班的学生爱动、好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业,针对这种问题,就要抓好学生的思想教育,并使这一工作落实到学生的学习中,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始,比如,握握他的手,摸摸他的头,或帮助整理衣服。从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重,还有在批评学生之前,先谈谈自己工作的不足。做好测试评估工作。评估不只是看学生学习成绩如何,更重要的是了解学生学习的心理,作为教师改进教学的依据。在测试卷中,增加了体现学生思维过程的试题。测试的结果也不再作为评价学生唯一依据,而是看重学生的知识掌握情况,学习的努力程度。在评讲试卷时,打破按顺序逐题讲解的模式,尝试采用按类讲解。
1、强抓30%的尖子生。日常教学中,在不影响全面教学的基础上,要留出一定时间重点有针对性地辅导30%比例的尖子生,为学校明年的重点中学考取率贡献力量。
2、总结、梳理、分类主要难点、重点题型,加强基本概念的理解与消化,并有层次地、有效地拉升学生的整体学习水平。
总之,一学期的教学工作虽然取得了一定的成绩,但也存在不少的缺点,如对新课改理念的学习和探讨上、信息基础教育上、自己的教学经验及方法等方面有待提高。本人今后将在教学工作中,吸取别人的长处,弥补自己的不足,以高度的责任心,力争取得更好的成绩,力争明年升中重点率有较大的提升,为学校争取更大的荣誉。
一个学年的教学工作马上就要结束了,在学校教科研室的带领下,六年级数学组的老师们积极实践新的教学模式,严格按照“目标导学、质疑探究、当堂反馈”的教学步骤组织教学,当然,在新的教学模式实施的过程中,我们也碰到了许多困难,我们采用了实践——反思——共同探讨——再实践——再反思的方式,想办法让自己的教学更加符合学生的知识水平和认知水平,提高自己的教育教学能力。现将本学期的教学工作总结如下:
六年级是学生转变阶段,除了学生心理的变化外,学习方法也将产生巨大的变化,有自己的想法,对自己学习情况的掌握等等这些变化,六年级数学教师要帮助学生完成这些转变,在老师的指导和要求下,找到适合自己的学习方式。六年级学生精力旺盛,对任何事物充满了好奇,针对学生的特点,教师应该重点培养学生的逻辑思维能力,语言表达能力,符号语言能力和空间想象能力。同时,教师应该注意引导学生形成课前预习、课后复习、课堂上积极思维、主动回答老师的问题、积极思考的学习方法。所以,在教学中应更加关注学生提出问题的能力的培养,应该更加关注学生分析理解问题的方法的培养,以人为本,以发展学生的数学能力为长期目标,为学生的终身发展考虑。
1、小学最后一个学期,形成习惯。良好的学习习惯是学生不断提高和进步的有利保障,也是教师提高课堂效率的前提和基础。所以,六年级的第一个学期,在课堂中教会学生各种“规矩”就非常重要,其中包括课前准备时,将课堂练习本打开;上课读书时,用笔指读;读书结束后,积极质疑;课堂练习时,书写工整、规范;当堂训练时,象考试一样紧张等等,这些习惯的养成需要老师有明确的要求,还需要老师的反复强调和提醒。
2、三清工作,查漏补缺。堂堂清、日日清和周周清是我们的“三清”工作,在还没能熟练运用新的教学模式之前,三清工作的开展让我能更加了解学生对课堂教学的掌握情况,也让我能及时发现课堂中没有解决好的问题,帮助学生和老师查漏补缺,及时订正学生学习的盲点,不断改进教师的教学。
3、课堂教学,提高效率。有三清工作做基础,学生在课堂上学得更加紧张,教师在课堂教学中也会想方设法发现更多学生学习上的漏洞,在后来的探究和总结阶段尽量多的解决学生知识上存在的问题,从而促进三清工作的工作量少一些。所以,高效课堂的实现必须有学生良好的学习习惯;有老师对学生学习情况充分的了解;有教师课堂探究的有效作用;有教师总结提升的方法和思想的提炼等等,总之,高效课堂是学生和教师的完美配合,是一个可以解决不同层次学生学习问题的课堂。
4、课后反馈,有针对性。课堂教学的最后一个环节是当堂反馈,开始时,我总是掌握不好课堂进度,让过多的讲解占用了学生课堂反馈的时间,学生对自己本节课知识的掌握情况估计不准确,教师没有对学生进行堂堂清的依据,课堂效率仍然无法提高。后来,通过对教学模式的进一步熟练掌握,把握好质疑探究阶段时间和效率,即使是5分钟,也要开展当堂反馈,这种反馈有很强的针对性,也为教师课下与学生面对面的辅导提供了有效的依据。
5、引入竞争,激发兴趣。徒弟与徒弟间的竞争,师傅与师傅间的竞争,课堂上回答问题的竞争,课堂反馈速度的竞争,课堂测试对错的竞争,黑板上板演题目的格式、书写、正确性的竞争,对同学们错误纠正情况的竞争,以及学生自己对自己的评价,同学们之间的评价,师徒间的评价,教师对学生的评价,这些竞争的引入可以“比”出学生学习的积极性和主动性,也“比”出了班级中浓厚的学习氛围。
6、不断反思,寻求方法。当然在教学过程中,我遇到了各种各样的问题,例如:学生不会读书;学生为了加快书写速度,致使书写字迹潦草;多次遇到困难的学生,缺乏自信等等问题,对待这些问题我是从每节课的反思中不断总结自己课堂的不足的,从同教研组老师们身上学习方法,运用到自己的教学实践中,不断纠正自己错误的教学行为,让自己的教学更加适合自己的课堂。
总之,本学年的教学工作是在不断的探究和实践中摸索前进的,虽然有困惑,虽然有不熟悉,但新的教学模式的优点越来越多的显现在我的面前,我想,我不会放弃探索,不断完善自己的课堂教学将成为我以后教学工作的主要目标。
引用您的要求编辑为您汇集了一篇“1-6年级数学教案”,阅读完这篇文章后您可以把它分享给您的朋友们让大家都受益。教案课件是老师上课中很重要的一个课件,就需要老师用心去设计好教案课件了。 良好的教案和课件是提高教学质量和效益的保障。
教学目标:
1、使学生能正确数出数量100以内的物体的个数,知道这些数是由几个十和几个一组成的。
2、能根据提供的素材,估计数量在100以内的.物体的个数;通过对100以内的数的认识,进一步培养学生的数感。
3、激发学生学习数学的兴趣,培养学生的合作意识。
教学重点:
认识100以内的数,建立100以内数的数感。
教学难点:
100以内数的“拐弯数”。
教具准备:
小棒、方块、回形针、珠子
教学过程:
一、故事导入--骄傲的青蛙
1、老师讲故事
2、我们以前认识过哪些数?谁能从0数到20?
二、数数活动
1、这节课我们继续来学习数数。老师准备了一些物品,谁来说说你们组都有什么?(小棒、方块、回形针、珠子)
2、数出物体的个数,思考:“怎样摆放,才容易看清楚?”
3、汇报,交流数数的方法。
引导学生总结出“先一个一个地数,10个一是10,在十个十个地数,10个十是100”
4、帮小猪数泡泡。
5、动手摆一摆
同桌合作要求:随意抓一把物品,数一数有多少个?
三、巩固练习
1、说明游戏玩法。
教师:下面我们做个游戏。(教师抓一把糖,放在实物投影下。)请学生先估一估,然后数一数,看谁估得准数得对。
2、学生同桌做游戏。
3、发展游戏。
四、总结:“这节课你学到了什么?”
1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?
2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)
3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.
矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).
矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.
【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.
①随着∠α的变化,两条对角线的长度分别是怎样变化的?
②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?
操作,思考、交流、归纳后得到矩形的性质.
矩形性质1 矩形的四个角都是直角.
矩形性质2 矩形的对角线相等.
如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.
例习题分析
例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.
分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.
解:∵ 四边形ABCD是矩形,
∴ AC与BD相等且互相平分.
∴ OA=OB.
又∠AOB=60°,
∴△OAB是等边三角形.
∴矩形的对角线长AC=BD=2OA=2×4=8(cm).
例2(补充)已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.
分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法
1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.
2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.
重点
通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.
难点
一元二次方程及其二次项系数、一次项系数和常数项的识别.
活动1 复习旧知
1.什么是方程?你能举一个方程的例子吗?
2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.
(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1
3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.
A.0B.1C.2D.3
活动2 探究新知
根据题意列方程.
1.教材第2页 问题1.
提出问题:
(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?
(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?
(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.
2.教材第2页 问题2.
提出问题:
(1)本题中有哪些量?由这些量可以得到什么?
(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?
(3)如果有x个队参赛,一共比赛多少场呢?
3.一个数比另一个数大3,且两个数之积为0,求这两个数.
提出问题:
本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?
4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?
活动3 归纳概念
提出问题:
(1)上述方程与一元一次方程有什么相同点和不同点?
(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?
(3)归纳一元二次方程的概念.
1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
提出问题:
(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
(2)为什么要限制a≠0,b,c可以为0吗?
(3)2x2-x+1=0的一次项系数是1吗?为什么?
3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).
活动4 例题与练习
例1 在下列方程中,属于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.
例2 教材第3页 例题.
例3 以-2为根的一元二次方程是()
A.x2+2x-1=0 B.x2-x-2=0
C.x2+x+2=0 D.x2+x-2=0
总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.
练习:
1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.
2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4页 练习第2题.
4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.
答案:1.a≠1;2.略;3.略;4.k=4.
活动5 课堂小结与作业布置
课堂小结
我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?
作业布置
教材第4页 习题21.1第1~7题.
学习目标
1、通过运算多项式乘法,来推导平方差公式,学生的认识由一般法则到特殊法则的能力。
2、通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。
3、初步学会运用平方差公式进行计算。
学习重难点重点:
平方差公式的推导及应用。
难点是对公式中a,b的广泛含义的理解及正确运用。
自学过程设计教学过程设计
看一看
认真阅读教材,记住以下知识:
文字叙述平方差公式:_________________
用字母表示:________________
做一做:
1、完成下列练习:
①(m+n)(p+q)
②(a+b)(x-y)
③(2x+3y)(a-b)
④(a+2)(a-2)
⑤(3-x)(3+x)
⑥(2m+n)(2m-n)
想一想
你还有哪些地方不是很懂?请写出来。
_______________________________
_______________________________
________________________________、
1、下列计算对不对?若不对,请在横线上写出正确结果、
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________、
2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、
3、计算:50×49=_________、
应用探究
1、几何解释平方差公式
展示:边长a的大正方形中有一个边长为b的小正方形。
(1)请计算图的阴影部分的面积(让学生用正方形的面积公式计算)。
(2)小明将阴影部分拼成一个长方形,这个长方形长与宽是多少?你能表示出它的.面积吗?
2、用平方差公式计算
(1)103×93 (2)59、8×60、2
拓展提高
1、阅读题:
我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算式能用乘法公式计算、解答过程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗?请试试看!
2、仔细观察,探索规律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)试求25+24+23+22+2+1的值;
(2)写出22006+22005+22004+…+2+1的个位数、
堂堂清
一、选择题
1、下列各式中,能用平方差公式计算的是( )
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b)、
教学内容:
义务教育课程标准实验教科书小学数学四年级下册第40~42页
教学目标:
1.使学生理解三角形的概念,知道它各部分的名称,了解它的特性,掌握它的分类。
2.培养学生的探究意识和观察、比较、分析、判断等能力,发展学生的创新思维。
3.在小组合作学习中培养学生的团结合作精神,激发学生良好的数学学习情感,增强学习的自信心。
教学过程:
一、活动一:生活引入,直入主题
谈话:你们喜欢旅游吗?老师就特别喜欢旅游,尤其爱看城市中的建筑,走在繁华的街道上,看着一座座宏伟的建筑,就能感受到这座城市的魅力。不过受时间限制,有些地方我们也只能在书中或网上领略它的风采了。我这里收集了一些建筑物的图片,咱们一起欣赏一下吧。(电脑出示)美吗?这些图片中最基本的图形是什么?(三角形)你知道这其中的高楼大厦是在什么机器的协助下盖起来的吗?(塔吊)(出示信息窗)来看看这幅图,你看到了什么?
学生回答:塔吊上有许多三角形
谈话:为什么饱经风雨的宏伟建筑和结实的塔吊最基本的构造都是三角形呢?
学生回答:具稳定性、牢固
谈话:三角形到底有什么魅力,使人们在生活中处处都离不开它?这节课我们就一起来研究三角形。(板书课题:三角形的认识)
【设计意图】通过从生活中寻找形似三角形的物体,使学生感受到三角形对人们生活的重要性。引导学生提出“为什么要设计成三角形?”这样有价值的问题,从而进一步思考三角形有何种特性。
二、活动二:深入生活,感知特性
谈话:三角形真的牢固吗?让我们动手试一试。每个小组内有一个三角形框架和一个多边形框架,先观察一下,两者间有什么区别?
引导学生观察边和角的数量。
分别拉一拉,比比看,两个框架有什么变化。
学生操作实验并回答发现:三角形框架形状没有发生改变,多边形形状变了。
谈话:这是为什么呢?
学生可能回答:三角形有三条边把它的形状固定住了,所以怎么拉它也不会变形,而四边形不具稳定性,轻轻一拉就变形了。
总结:刚才同学说的很对,三角形是牢固的,也可以说它具有稳定性。(板书:稳定性)我们的生活中常常巧妙的利用了这一点。像这样的小木凳,(课件出示木凳)用得时间久了,经常会不牢固,你们有办法修修它吗?
学生回答:加斜杠,只有构成三角形,凳子才不摇,说明三角形具有稳定性。
谈话:看这两幅图中,哪里用到了三角形的稳定性?(课件出示这些物体的图片)生活中还有哪些应用三角形稳定性的例子?(学生举例)
谈话:三角形的稳定性在生活中的体现无处不在,请看(电脑出示)建筑上的斜拉桥、铁塔、自行车架、照相机三角支架、电线杆、房屋的金字架、上海东方明珠电视塔、吊车的长臂、埃及金字塔、香港中银大厦、晒衣架,太阳能架、大广告牌后面三角支架,相框后三角支架,固定小树用三角形,铁栏杆里外每隔一段有一支斜的铁杆,构成三角形。细心观察你还会发现更多呢!
【设计意图】通过亲自动手操作,验证三角形具有“稳定性”这一特点,并能有条理地把操作过程及呈现结果进行简单的表述。结合生活中物体的直观形象,体会三角形的稳定性及给人们生活带来的方便好处。
三、活动三:自制图形,引导归纳。
谈话:每个小组里都有几根小棒,请你试着用它们摆出三角形,边摆边思考:三角形是怎样构成的?
学生观察讨论:由三条边按顺序围起来(强调解释重点字眼:围成)
谈话:谁能来试着总结一下什么叫三角形?
学生总结:由三条线段围成的图形叫做三角形。(板书)
谈话:三角形除了有三条边,还有什么?你能再试着找找吗?(教学三个角、三个顶点)
【设计意图】通过学生亲自操作,了解三根小棒是一根接着一根连在一起的,明白围成的含义,并能总结出三角形的概念,结合自己摆出的三角形进一步观察了解三角形的各组成部分。
四、活动四:观察分析,按角分类。
1.新授
谈话:每个小组的学具袋里都放着许多三角形,这些大大小小,形形色色的看起来好象各不相同,可细心的人发现有一些三角形放在一起还有不少共同点呢。请大家仔细观察三角形中各角的特点,以小组为单位,将学具袋里的三角形分分类,抓住主要特征为这类三角形起个名字。
(学生操作)
谈话:谁来把你们组的分类结果展示给同学们看看?
(学生分类)
谈话:能给你们分的这几类三角形分别起个名字吗?
学生:三个都是锐角, 叫锐角三角形
一个直角,两个锐角,叫直角三角形 教师板书
一个钝角,两个锐角,叫钝角三角形
2.巩固
谈话:下面我们来做个小游戏,请同学们扮演这三种不同类型的三角形来向大家作以简单介绍。(我是一个三角形,我的特点是……)其他同学根据它的介绍来猜猜它的名字,好吗?
谈话:认识三种三角形,你能根据各自的特征把他们画下来吗?打开书第44页,完成自主练习3.(学生独立完成,教师点评)
【设计意图】给学生足够的思考空间,让学生通过观察,自己总结各种三角形的特点并加以分类,引导学生形成正确的图形表象,发展空间观念。
五、活动五:观察三边,按边分类
谈话:我了解了三角形按角可以分为三类,其实它们的边也可作为分类的依据。(出示等腰三角形、等边三角形)小组讨论一下,它们有什么不同,可以怎样分类。(引导学生用量,对折……的方法验证一下)
(学生讨论)边分类边回答
学生:三条边都不相等: 不等边三角形
两边相等: 等腰三角形
三条边都相等: 等边三角形(也叫正三角形)
有时我们把等边三角形看成是等腰三角形中的一种特殊情况。
谈话:等腰三角形和等边三角形各部分也有名称,请打开书第42页自学。
(学生自读了解)
请同学介绍等腰三角形和等边三角形各部分的名称。
小结:我们通过刚才的学习了解到三角形如果按角分可分为:锐角三角形、直角三角形、钝角三角形,还有两边相等的等腰三角形和三边相等的等边三角形。
老师这里有许多三角形,你能试着给它们找找家吗?请打开书44页,完成自主练习的第2题。
(反馈、订正)
练习:再来看这幅图(课件出示书45页第4题)在地板砖图案中,你能找到哪些三角形?还能找到哪些图形?
【设计意图】知道按边分,三角形可以分为哪几类,丰富三角形分类的知识。了解等腰三角形和等边三角形各部分的名称及特点,以结合名称特点帮助学生理解记忆两个特殊三角形。
六、活动六:结合已知,教学底、高
谈话:我们在上学期学习过如何过直线外一点作这条直线的垂线。还记得怎样画吗?谁来示范一个?
(学生板书)
谈话:今天我们就在这个知识的基础上学习三角形的底和高。(边画边讲解)任选三角形的一个顶点,向它的对边作一条垂线,顶点和垂足之间的线段就叫做三角形的高,这条对边就叫做三角形的底。看清楚了吗?
【设计意图】以旧知带新知,既复习巩固,又使得新知的出现没那么突然,学生自然轻松地掌握,记忆深刻。
七、活动七:回顾整理,拓展延伸
谈话:回忆一下,这节课你都有哪些收获?课后我们可以利用三角形来画一幅画,尽可能多的使用各种类型的三角形,明天我们开个画展,看看谁的画最有特点。
【设计意图】让学生用自己的话回顾本节课学习的重点,最后布置以三角形为素材作画,寓教于乐,让学生边复习三角形的分类边体会数学带给人们生活的乐趣。
课后反思:
三角形是学生们平日里接触较多的一种图形,在低年级就已经直观认识过,因而本课的重点就放在三角形的稳定性、定义和分类上。所学重难点都是由学生在操作中获得的,不是由老师讲出来,硬塞给学生。这样做,学生就会主动参与学习,落到实处,效果也好。在整个课堂里,老师只是充当一个参与者、引导者。课堂总结也是通过老师的引导,由学生做出归纳,这样效果要比由老师包办好。从这节课可以看出
1.有效地激发了学生的兴趣,促进学生主动参与。
从学生的生活入手,让学生感受三角形与生活的密切联系,从而激发学生学习三角形的热情,变“要我学”为“我要学”。
2.改变数学学习方式,引导学生经历过程。
学习不仅是追求一个完美的结论,它更是一种经历,要让学生亲身体验、感知、认识和学习。“三角形的分类”是本课的重点与难点,因而更应给学生充足的时间与空间让学生充分去操作,去感知,去思考、交流,让学生在交流中碰撞思维,促进思维的发展。
3.及时进行科学评价,激励学生全面发展。
评价的主要目的在于:“激励学生的学习热情,促进学生的全面发展。”因而,在评价过程中,我注意了运用多种评价方式,及时对学生的表现进行评价与鼓励,让学生树立自我认同感,明确努力方向。
数学学习应给学生带来快乐。数学其负载的功能不仅仅是让学习者记住它,掌握它,更重要的是要让他们在学习的过程中体验学习它的快乐,感受它的魅力。因此,在教学过程中,不仅要使学生获得知识和技能,更应关注他们的学习过程,特别是学生对数学的感觉,同时应不断给学生“成功”的体验,让学生快乐地学习。
【教学目标】
知识与技能
会推导平方差公式,并且懂得运用平方差公式进行简单计算。
过程与方法
经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。
情感、态度与价值观
通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。
【教学重难点】
重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。
难点:平方差公式的应用。
关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。
【教学过程】
一、创设情境,故事引入
【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事
【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。
【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?
【学生回答】多项式乘以多项式。
【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。
【问题牵引】计算:
(1)(x+2)(x—2);(2)(1+3a)(1—3a);
(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。
【学生活动】分四人小组,合作学习,获得以下结果:
(1)(x+2)(x—2)=x2—4;
(2)(1+3a)(1—3a)=1—9a2;
(3)(x+5y)(x—5y)=x2—25y2;
(4)(y+3z)(y—3z)=y2—9z2。
【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。
【学生活动】讨论
【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?
【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。
【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。
二、范例学习,应用所学
【教师讲述】
平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。
例1:运用平方差公式计算:
(1)(2x+3)(2x—3);
(2)(b+3a)(3a—b);
(3)(—m+n)(—m—n)。
《乘法公式》同步练习
二、填空题
5、幂的乘方,底数______,指数______,用字母表示这个性质是______。
6、若32×83=2n,则n=______。
《乘法公式》同步测试题
25、利用正方形的面积公式和梯形的面积公式即可求解;
根据所得的两个式子相等即可得到。
此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。
26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;
等式左边减数的底数与序号相同,由此得出第n个式子;
教学内容:
P6/例3 P10/例4(含有两级运算或有括号的混合运算)
教学目标:
1. 使学生进一步掌握含有两级运算的运算顺序。
2. 让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,
学会用两步计算的方法解决一些实际问题。
3. 使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、主题图引入
观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
二、新授
就学生提出的问题,出示例3 星期天,爸爸妈妈带着玲玲去"冰雪天地"游玩,购买门票需要花多少钱?
学生在练习本上解答此问题。
同桌两人说说自己是怎样解答的。
汇报:教师根据学生的汇报进行板书。
(1)24+24+24÷2
=24+24+12
=48+12
=60(元)
24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
(2)24×2+24÷2
=48+12
=60(元)
24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?
这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。
这样的综合算式的运算顺序是什么?
学生总结运算顺序。
买3张成人票,付100元,应找回多少钱?
等等。
出示例4 上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?
小组讨论,独立完成。
小组内互相说说你是怎样解答的?
汇报。
(1)270÷30-180÷30
=9-6
=3(名)
270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。
(2)(270-180)÷30
=90÷30
=3(名)
270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。
引导学生观察两个算是的不同点,以及运算顺序的不同。
学生进行小结。
教师根据学生的小结进行板书。
三、巩固练习
P7/做一做1、2
P11/做一做(完成书上的后,可以变化条件,如"买2副手套"等等。)
教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业
P8-9/5-9
板书设计:
四则运算(二)
星期天,爸爸妈妈带着玲玲去"冰雪 上午冰雕区有游人180位,下午有270位。
天地"游玩,购买门票需要花多少钱? 如果每30位游人需要一名保洁员,下午要
(1)24+24+24÷2 (2)24×2+24÷2 比上午多派几名保洁员?
=24+24+12 =48+12 (1)270÷30-180÷30 (2)(270-180)÷30
=48+12 =60(元) =9-6 =90÷30
=60(元) =3(名) =3(名)
运算顺序:在没有括号的算式里,有乘、 运算顺序:算式里有括号,要先算括号里
除法和加、减法,要先算乘、除法。 面的。
课后小结:
21.2.1 配方法(3课时)
第1课时 直接开平方法
理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重点
运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
难点
通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
一、复习引入
学生活动:请同学们完成下列各题.
问题1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接开平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的两根x1=-3+2,x2=-3-2
解:略.
例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材第6页 练习.
四、课堂小结
本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p
五、作业布置
教材第16页 复习巩固1.第2课时 配方法的基本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1 用配方法解下列关于x的方程:
(1)x2-8x+1=0 (2)x2-2x-12=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:略.
三、巩固练习
教材第9页 练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业布置
教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用
了解配方法的概念,掌握运用配方法解一元二次方程的步骤.
通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.
重点
讲清配方法的解题步骤.
难点
对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.
一、复习引入
(学生活动)解下列方程:
(1)x2-4x+7=0 (2)2x2-8x+1=0
老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.
解:略. (2)与(1)有何关联?
二、探索新知
讨论:配方法解一元二次方程的一般步骤:
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q
例1 解下列方程:
(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0
分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.
解:略.
三、巩固练习
教材第9页 练习2.(3)(4)(5)(6).
四、课堂小结
本节课应掌握:
1.配方法的概念及用配方法解一元二次方程的步骤.
2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.
五、作业布置
教材第17页 复习巩固3.(3)(4).
补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.
(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2 公式法
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.
重点
求根公式的推导和公式法的应用.
难点
一元二次方程求根公式的推导.
一、复习引入
1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4 (2)(x-2)2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)
2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)
(学生活动)用配方法解方程 2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0 (2)ax2+bx+3=0
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)
分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+bax=-ca
配方,得:x2+bax+(b2a)2=-ca+(b2a)2
即(x+b2a)2=b2-4ac4a2
∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0
∴(x+b2a)2=(b2-4ac2a)2
直接开平方,得:x+b2a=±b2-4ac2a
即x=-b±b2-4ac2a
∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1 用公式法解下列方程:
(1)2x2-x-1=0 (2)x2+1.5=-3x
(3)x2-2x+12=0 (4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
补:(5)(x-2)(3x-5)=0
三、巩固练习
教材第12页 练习1.(1)(3)(5)或(2)(4)(6).
四、课堂小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.
(4)初步了解一元二次方程根的情况.
五、作业布置
教材第17页 习题4,5.21.2.3 因式分解法
掌握用因式分解法解一元二次方程.
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.
重点
用因式分解法解一元二次方程.
难点
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.
一、复习引入
(学生活动)解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.
二、探索新知
(学生活动)请同学们口答下面各题.
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的条件是什么?
解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)
练习:下面一元二次方程解法中,正确的是()
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,两边同除以x,得x=1
三、巩固练习
教材第14页 练习1,2.
四、课堂小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置
教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系
1.掌握一元二次方程的根与系数的关系并会初步应用.
2.培养学生分析、观察、归纳的能力和推理论证的能力.
3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.
4.培养学生去发现规律的积极性及勇于探索的精神.
重点
根与系数的关系及其推导
难点
正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.
一、复习引入
1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.
2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?
3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1•x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
观察上面的表格,你能得到什么结论?
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1•x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小结:根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1•x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.
即:对于方程 ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1•x2=ca
(可以利用求根公式给出证明)
例1 不解方程,写出下列方程的两根和与两根积:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2 不解方程,检验下列方程的解是否正确?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)
例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.
变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;
变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.
三、课堂小结
1.根与系数的关系.
2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.
四、作业布置
1.不解方程,写出下列方程的两根和与两根积.
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.
3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.
以下是由幼儿教师教育网为您带来的六年级数学教学教案。老师上课前有教案课件是工作负责的一种表现,但教案课件不是随便写写就可以的。教案是教师自我提高与发展的敲门砖。或许在您阅读本文以后有一点收获!
【教学内容】
义务教育课程标准北师大版试验教材六年级上册第一单元第2、3页圆的认识一。
【教学目标】
1、结合生活实际,通过观察、操作等活动认识圆,认识到同一个圆中半径都相等、直径都相等,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。
3、通过观察、操作、想象等活动,发展空间观念。
【教学重、难点】
1、圆的特征。2、画圆的方法。
【教具、学具准备】
1、三角尺、直尺、圆规。
2、教学课件。
【教学设计】
教学过程
教学过程说明
一、观察思考。
1、欣赏生活中的圆:棋子、桌面、钟面、车轮、中国结。
2、观察这些图形与我们以前学过的图形有什么不同?
3、生活中还有哪些物体的面是圆形?
4、做套圈游戏,哪种方式更公平?
二、画一画。
1、你能想办法画一个圆吗?
(1)用手比划着画圆。
(2)用一根线和一支笔画圆。
(3)用圆规画圆。
2、教学用圆规画圆的方法。
三、认一认。
学生用圆规画一个圆。
讨论:圆规的尖、圆规张开的两脚之间的长度所起的作用。
告诉学生半径和圆心。
四、画一画、想一想。
1、要求学生画一个任意大小的圆,并画出它的半径和直径。
观察比较得知:圆有无数条直径,无数条半径。
在同一个圆内直径都相等,半径都相等。
2、以点A为圆心,要求学生以A为圆心画两个大小不同的圆。
3、画两个半径都是2厘米的圆。
五、讨论。
圆的位置与什么有关系?
圆的大小与什么有关?
使学生通过观察日常生活中的圆形物体,建立正确的圆的表象。
使学生在动手操作中体会圆的本质特征。
让学生进一步体会圆的本质特征。
让学生认识到圆心决定圆的位置,圆的半径决定圆的大小。
六、观察与思考。
1、播放课件。
动物王国自行车比赛。分别有圆形、椭圆形、正方形的车轮。
思考:车轮为什么是圆形?
操作:
用硬纸板分别剪一个圆形、正方形、椭圆形。
小组合作描出运动轨迹。
七、练一练。
课本练一练题目。
八、全课小结。
【教学反思】
圆的认识是在学生已有知识的情况下进行的,所以学生很快能找到圆的主要特征,而且能从本节课里掌握圆的特征,掌握圆各部分的名称,以及直径半径等之间的关系。
教学内容:
北师大版小学数学六年级上册第78—79页
教学目标:
1、能正确辨认从不同方向(正面、左面、上面)观察到的立体图形(5个小正方体组合)的形状,并画出草图。
2、能根据从正面、左面、上面观察到的平面图形还原立体图形(5个小正方体组合),进一步体会从三个方向观察就可以确定立体图形的形状。
教学重点:
能正确辨认从不同方向(正面、左面、上面)观察到的立体图形(5个小正方体组合)的形状,并画出草图。
教学难点:
能根据从正面、左面、上面观察到的平面图形还原立体图形(5个小正方体组合),进一步体会从三个方向观察就可以确定立体图形的形状。
教学具准备:
每个学生准备5个棱长5厘米的小正方体纸盒,
教师准备5个棱长是15厘米的立方体纸盒,正方形纸板若干个。
教学过程:
一、创设情境,引入新课
1、师:今天我们要上一节数学课,老师却想到了一首古诗《题西林壁》,能背下来吗?(引导学生齐背)这首诗什么意思,你知道吗?、2、师:大诗人苏轼从不同的角度看庐山,看到的景象是不一样的。
而我们在生活也看过许许多多的物体,从不同的角度去观察,看到的也会是不一样的。
(设计意图:由古诗导入引人入胜,激发学生的学习兴趣,同时让学生认识到从“不同角度观察,结果是不一样的”这一道理,并将此由生活中的现象引入本节课的数学探究中来。)
3、师:老师带来了一个搭好的立体图形,(出示用4个搭好的)(看大屏幕)(仔细观察)从不同的方向看,你能看到什么形状?在题卡上画一画
4、汇报:你是怎么想的?怎么画的?
正面:课件演示(平移情况)
上面、右面,(说说怎么想,怎么画的)
(设计意图:由旧知激发学生已有知识经验,同时分散难点,将不在同一平面上的2个面的画法点拨出来,帮助扫清新知中不必要的知识障碍)
二、探索新知。
活动一:观察立体图形的形状,并画下来。
1、师:现在老师增加了难度,看看你还能画出来吗?
2、先观察:难在哪了?
A认识数量上增多了:(原来是几个,现在是几个?)
师:大家数数是5个吗?(教师鼠标点)指指被谁挡住啦?
(认识到有被遮挡的,课件显示)
师:如果把遮挡的这些立体块变成透明的,那么被遮挡的就能看见了,是吗?我们一起来看看
(看到的立方块透明,感受被遮挡的立方块与其他立方块之间的位置关系。)
B、数量增多,为什么就难了?(教师演示)
(数量上的增多,会引起(带来)形状上的更多变化,就难了)
师:现在是5个,如果是6个,7个,或者摆的更多呢,那么就更复杂了,这节课我们就只研究用5个小立方块来搭物体(揭示课题,板书)[
(设计意图:通过“难“这一切入口,激发学生认清新知的生长点(即增加了一个立体块),通过老师的演示引导,学生的想象,感受到数目上的增加,带来的是形式上更加多样的变化,以帮助学生发展更高的空间想象能力。)
3、师;现在难度增加了,还想解决这个问题,你有什么好办法?(可以借助摆来帮助我们),那好,就借助手中的学具,自己摆一摆,画一画。
(设计意图:本节课的主要目标之一是发展学生的空间观念,而空间观念的发展,要以观察物体为载体,因此,要让学生认识到抽象的东西理解起来有困难时可以把它形象化(即通过实物的摆来观察可以降低难度,帮助解决问题这一手段、方法)
4、汇报:
师:你看见的每个面是什么样的?怎么画的,把它摆在黑板上。
请同学到前面边看边说你怎么想的,其他同学仔细看,认真听。
正面:师:闭上眼睛想象一下,平移后在同一个平面上的形状。
上面:师:谁看到了他在观察的时候和刚才那个同学有个不一样的动作?为什么会有这个动作呢?
师:A我们可以调整观察的角度,使你正对着要观察的面。
B还可以怎么做?也可以转动这个物体,让要观察的面对着你。
左面:学生先说,师:结合你手中的看看,他说的对不对。
师:如果给的不是具体的实物,而是立体图形,看大屏幕上的,这个时候再看左面,,怎么办?
师:看不见的,有难度,就需要我们靠头脑去想象,要想很好的去想象,我们可以通过大量的动手摆,仔细观察,来帮助你丰富你的想象。看来摆也很重要。
(设计意图:在学生自己解决的基础上,引导学生交流‘怎样想的“,即观察方法上的指导,整个过程由抽象————直观经验———抽象的训练,发展学生空间观念,活动一在学生想一想,摆一摆,画一画,再想一想中完成。)
5、现在老师给你2分钟,用5个小立体块自己摆图形,再分别画出这三个面的形状,看谁摆的多?
用手势告诉我,你们都摆了几种?
在这么短的时间内,同学们摆了这么多,相信大家头脑中会有了深刻的印象。你们画的都对吗?
6、师:现在搞个小比赛,同桌之间,你摆一个他摆一个,然后交换过来画出三个面的情况,再交换过来检查,看谁画得准,正确率高。
(都做对的举手)
7、师:老师也搭好了一个,看看你能画出来吗?自己动手画,汇报:
师:刚才老师看到有些同学没有通过摆,直接画出来的,没摆怎么就能画出来?有困难的时候,我们可以借助实物摆帮助画出来,只有通过不断的摆加强印象,才能最终不用摆靠想象就能画出来。
(设计意图:3个练习,各有侧重点,5是通过大量的摆、画增加学生的感性经验,在学生头脑中通过直观形成丰富的表象;6是对学生进行检验,同时强调了不仅要求画的多,还要画的准,也是进一步强化训练;7是逐步由直观—抽象,不通过摆而是通过想象,知道每个面的形状,整个过程,引导学生逐渐发现实物与他们观察到的图形之间的联系,发展学生的空间观念)[
小结;刚才同学们通过看实物,调整你的观察位置或是转动实物来观察,不能转动的图形只能靠自己的想象画出3个面的形状,也就只由立体图形—平面图形,那么给你立体图形3个面的情况,你能知道原来的立体图形是什么样的吗?
活动二:根据给出的三个方向观察到的平面图形还原立体图形
1、出示学生画的3个方向观察到的平面图形,自己动手搭一搭
汇报:(指名到前面边摆边说你是怎么想的)其他同学认真观察。
师:谁看清楚了他是怎么做的?
这个过程也就是根据看到的不同的面的情况进行推理调整的过程。
他是从正面先摆的,有没有摆的方法和他不一样的。也就是先从哪个面入手摆出基本图形都可以,)
(设计意图:在独立完成、订正汇报的基础上引导学生进行归纳总结方法,不仅重结论,更重过程与方法,在经历想一想,摆一摆,再想一想这一过程,着重发展学生的空间观念和推理能力)
2、出示第2组,师:再来摆一个,试试,行不。
师:还有和他摆的过程不一样的吗?比比,哪个简单?
(先摆数量多的,需要调整的就少,比较简单)
这个呢,数量相同的,自己试试。
汇报:你是怎么知道的?还有别的途径知道的吗?(你真了不起)
先摆上面看见的,也就是底层肯定不动,只是在上面进行调整)
(数量上相同的,先摆上面看见的)
(设计意图:优化摆的方法,比较怎么摆简单,进一步加深对知识的理解和深化)
2、师:给2个面,能知道它是什么样的吗?
自己尝试,汇报
3、出示例题;判断
师:说说你是怎么想的?正面什么样的?还有不同想法的吗?
你有什么发现。看来又有新的问题产生了,这是我们下节课要研究的问题。
(设计意图:让学生认识到根据从两个方向看到的图形,不能唯一确定一个物体,发现新问题,结束全课。新课开始是带着问题进入本节课,再带着问题离开课堂,数学课堂就是一个不断发现问题,不断研究解决问题的阵地。另外设计中,也有意识的体现由抽象(图形)————具体(摆实物)———抽象(由图形判断)这样一个通过直观手段来解决问题,再逐步到抽象的想象问题答案这一不断训练过程,引导学生逐渐发现实物与他们观察到的图形之间的联系,发展学生的空间观念)
三、全课总结:这节课你有什么收获?
教学目标
1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法.
2.能正确熟练地解答这类应用题.
3.培养学生运用所学到知识解决生活中的实际问题.
教学重点
理解工程问题的数量关系和题目特点,掌握分析、解答方法.
教学难点
理解工程问题的数量关系.
教学过程
一、复习旧知.
(一)解答下面应用题
1.挖一条水渠100米,用5天挖完,平均每天挖多少米?
列式:1005=20(米)
2.挖一条水渠,用5天挖完,平均每天挖全长的几分之几?
列式:
教师提问:上面这两道题研究的是哪三种的关系?已知什么,求什么?
学生回答:上面两道题研究的是工作总量,工作时间和工作效率的三量关系,已知工作总量和工程时间,求工作效率.
3.挖一条水渠100米,平均每天挖20米,几天可以挖完?
列式:10020=5(天)
4.挖一条水渠,每天挖全长的,几天可以挖完?
列式:(天)
师生小结:上面3、4两题研究的是工作总量、工作效率和工作时间问题.已知工作总量,工作效率求工作时间.
二、探索新知.
(一)教学例9.
例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?
1.教师提问:
(1)用我们学过的方法怎样分析?怎样解答?
30(3010+3015)=6(天)
(2)把上题的一段公路完成60千米、90千米、30千米、24千米等如何分析解答?
60(6010+6015)=6(天)
90(9010+9015)=6(天)
24(2410+2415)=6(天)
(3)通过计算,你发现了什么?(结果都相同)
(4)为什么结果都相同呢?
工作总量的具体数量变了,但数量关系没有变;工作效率是用工作总量工作时间得到的,所以工作效率是随着工作总量的变化而变化的.因此它们的商也就是工作时间不变.)
(5)去掉具体的数量,你还能解答吗?
把这段公路的长看作单位1,甲队每天修这段公路的,乙队每天修这段公路的.两队合修,每天可以修这段公路的()
列式:
2.教师:这就是我们今天学习的新知识.(板书课题:工程问题)
3.归纳总结.
4.小组讨论:工程问题有什么特点?
工作总量用单位1表示,工作效率用来表示数量关系:工作总量工作效率(和)=工作时间
5.练习.
(1)一项工程,甲队单独做20天完成,乙队单独做要30天完成,如果两队合作,每天完成这项工程的几分之几?几天可以完成?
(2)加工一批零件,甲单独用12小时,乙单独做用10小时,丙单独做用15小时.甲、丙两人合作,多少小时完成?甲、乙、丙三人合作多少小时可以完成?
三、巩固练习.
(一)选择正确的算式.
一堆货物,甲车单独运4小时可以完成,乙车单独运6小时可以完成,现在由甲、乙两车合运这批货物的,需要多少小时?正确列式是().
1.
2.
3.
四、归纳总结.
今天我们这节课学习了新的分数应用题工程应用题.其解答特点是什么?(工作总量工作效率和=合作时间)工程应用题的结构特点是什么?(把工作总量看作单位1,工作效率用表示.)工程应用题还有很多变化,以后我们继续学习.
五、板书设计
工程问题
例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?
30(3010+3015)=6(天)
一段公路,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?
(天)
特点:工作总量:1
工作效率:
工作总量工作效率=工作时间
工作总量工作效率和=合作时间
教案点评:
该教学设计的特点是新旧知识联系紧密,重点突出。复习中,通过应用题条件的变化,准确的抓住新知识的生长点。新课中,通过新旧知识的对比,突出了工程问题独特的分析思路和解题方法。
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:如何确定每一条跑道的起跑点。
教学难点:确定每一条跑道的起跑点。
教学过程:
一、提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论
1、看书P76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5)
五、课外延伸
教材分析
1、要求学生认识百分数,理解百分数的意义,会读写百分数;在认识百分数的基础上,会读写百分数;本节内容在教材中是独立的,是学生新认识的,与前后内容无关联。
2、百分数在现实生活中有着广泛的应用,因此认识百分数势在必行。
学情分析
1、本节课的内容是学生初步接触的知识,老师若充分调动学生的积极性,学生会学的很有兴趣的。学生在课后的作业中表现的也不错,都能正确的读、写百分数。
2、学生认知发展分析:由于我们是农村的学生,他们对百分数的了解不是太多,因此在教学百分数的意义时学生理解起来是有难度的。
3、学生认知障碍点:学生对百分数意义的理解有困难。
教学目标
1、知识与技能:
(1)、联系生活实际,理解百分数的意义,能够正确读写百分数。
(2)、了解分数与百分数的区别与联系。
2、过程与方法:
通过观察思考、比较分析、综合概括,经历百分数意义的探索过程,让学生主动参与,学会交流讨论。
3、情感态度与价值观:
通过学习培养学生自主探究的学习欲望,充分感受数学知识在生活中的应用价值。
教学重点和难点
教学重点:
理解百分数的意义。
教学难点:
了解百分数与分数的区别与联系。
相关文章
最新文章