解方程课件教案

解方程课件教案 03-11

解方程课件教案汇总9篇。

请阅读由幼儿教师教育网的编辑为你编辑的解方程课件教案。每个老师上课需要准备的东西是教案课件,因此在写的时候就不要草草了事了。写好教案课件,也能让老师及时去总结和反思教学情况。本网页内容仅为您提供参考!

解方程课件教案(篇1)

学习内容:人教版五年级上册p57-59页

学习目标:

1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。

2、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。

3、在观察、猜想、验证等数学活动中,发展学生的数学素养。

学习重点:用等式的的性质解方程,理解算理

学习过程:

一、创设情境,引出方程

1、研究例1:

猜球游戏:出示一个乒乓球盒,猜里面有几个球?引导学生用字母来表示球数?

x

导语:要想精确知道多少个球?再给大家一些信息(课件出示:天平左边盒子和二个球,右边有七个球)

设问:能用一个方程来表示吗?板书x+2=6

二、探究算理

设问:你们知道x等于多少吗?那这个答案4你们是怎么想出来的吗?说说你们的想法?

预设:a、7-4=2;b、4+2=7,所以x=4,c、左右二边都拿掉二个乒乓球,右边还剩下4个,所以x=4

研究第三种想法:设问:左右同时拿个二个乒乓球天平会怎么样?

学生上台用天平演示

请学生们把刚才的过程用式子表示出来,板书:x+2-2=6-2

追问:你怎么想到是拿到二个乒乓球,而不是拿到一个或者三个呢?

尝试验算:板书:左边=4+2=6=右边,所以我们就说x=4是方程的解,板书方程的解,尝试说说方程的解;刚才我们求方程的解的过程叫做解方程。(可以自学书本)

讲解解方程的书写格式(与天平相对应)

小结:刚才我们用了好多方法来解方程,重点研究了第三种解方程的方法,这种方法我们用到了什么知识?课件再次演示后,得出方程的两边同时去掉相同的数,左右两边仍相等。

尝试:解方程:x-1=3,

想一想:如果要用天平的乒乓球,如何来表示出这个方程?

指名摆一摆,学生尝试解决,并用操作来验证

2、研究例2:3x=18

学生尝试后出示:3x÷3=12÷3

用小棒操作后交流后想法:方程的左右二同时除以一个相同的数(零除外),左右二边仍旧相等。

展示,课件演示后小结:方程的左右二边可以同时除以相同的数(零除外),左右二边仍旧相等,追问得到还可以同时乘以一个相同的数

总结:解方程时,我们都是想使方程的一边只剩下一个x,而且在这个过程中还要使方程保持平衡,我们可以采用……

三、巩固练习:

1、p59页1

2、后面括号中哪个是x的值是方程的解?

(1)x+32=76 (x=44, x=108)

(2)12-x=4 (x=16, x=8)

3、解方程

p59页第2题的前面四题,要求口头验算

四、总结:

五、机动:研究练习2中的第二题,怎么用今天的方法来解方程。

让"天平"植入解方程中

《解简易方程》是数与代数领域中的一个重要内容,是“代数”教学的起始单元,对于渗透与发展学生的代数化思想有着极其重要的作用。本节课教材在编写上为了实现中小学的衔接,改变了以往利用“加减法逆运算和乘除法逆运算”而是利用天平原理即等式的性质来解方程,由于学生在前面已经积累了大量的感性经验(逆运算)来解方程,对于今天运用天平的原理来解方程,造成了极大的干扰,所以在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。

1、在具体情境中理解算理,经历代数的过程。

新课程在数与代数的编排中最大的变化是取消了单独的应用题编排,而是把应用与计算紧密的结合起来编排,每一个内容都是以主题图的形式来呈现,主要的是目的是让学生在具休的情境中理解算理,同时也在计算教学中培养学生的应用意识。本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时加上、减去、乘以或者除以相同的数是本节课的重点。我通过创设情境,通过天平上的乒乓球的移动和补凑,来理解算理,而后利用小棒和棋子自己来解释说明算理,突显出本节课的重点。同时在情境的创设中,通过猜球,与天平的呈现信息,让学生经历由直观的生活抽象为化数化的过程,从中渗透化数化的思想。

2、在直观操作中掌握方法,发展数学素养。

新课程标准指出“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”在本节课中,通过充分的直观,利用学生熟悉的乒乓球、小棒等素材,力图把方程建构于天平之中,通过导入时从直观到抽象,再到尝试时从抽象的式子分别直观的乒乓球与小棒来表示,打通天平与方程之间的关系,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的图画,用自己的操作解释、验证中发展学生的数学素养。

二点困惑:1、纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的冲突,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?

2、教材中回避了a-x=b与a/x=b二种方程,但在实践中经常要碰到,教师如何来解决这个问题?

一点遗憾:这节课在构思加入了大量的操作活动和直观材料,主要的目的是让学生解方程的过程中在学生的头脑中植入天平,并给学生以自我解释与验证的机会,但操作的作用在每一次实践中都没有得到最大化的发挥,如何来提高操作的效性,让操作的目标更明确,是以后这节课研讨中重点商切的问题。

解方程课件教案(篇2)

教学目标:

1、初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、初步理解等式的基本性质,能用等式的性质解简易方程及检验的方法。

3、培养的分析能力应用所学知识解决实际问题的能力。

4、初步学会检验某个数是否是方程的解,培养学生检验的习惯,提高计算能力。帮助养成自觉检验的良好习惯。在教学中渗透环保教育。

教学重点:理解并掌握解方程的方法。

教学难点:理解并掌握解方程的方法。

教学准备:教学课件。

教学流程:

一、复习铺垫:

1、教师:前面我们学了方程的意义,你还记得什么叫方程吗?(含有未知数的等式叫方程。)怎样判断一个式子是不是方程?

2、判断下面哪些是方程吗?

(1)a+24=73(2)4x<36+17(3)234÷a>12

(4)72=x+16(5)x+85(6)25÷y=0.6

3、教师:上节课我们还通过玩天平游戏认识了等式的基本性质,还记得等式的基本性质吗?

4、新课引入:这节课,我们就来应用等式的基本性质去解简易方程。(板书课题:解简易方程)在学习解简易方程前,我们先来认识两个概念----方程的解和解方程。

二、探究新知:

认识方程的解和解方程:

1、看图写方程。

出示上节课用天平称一杯水的情景图。(100+X=250)

2、求方程中的未知数

教师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?

学生交流后汇报:

方法一:根据加减法之间的关系250-100=150,所以X=150

方法二:根据数的组成100+150=250,所以X=150

方法三:100+X=250=100+150,所以X=150

方法四:假如在方程左右两边同时减去100,那么也可得出X=150

3、引出方程的解和解方程的概念。

教师:使方程左右两边相等的未知知数的值,叫做方程的解。像上面,x=150就是方程100+x=250的解。而求方程的解的过程叫做解方程。

4、辨析方程的解和解方程两个概念。

教师:方程的解和解方程这两个概念有什么区别?

5、完成课本57页做一做:X=3是方程5X=15的解吗?X=2呢?

探究例1:

1、出示例1图,让学生说图意后列出方程。

2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。

3、学生独立完成解方程,并板示,着重强调解方程的步骤和书写格式。

x+3=9

解:x+3-3=9-3

x=6

4、引导学生检验方程的解。

探究例2:

1、引入和出示例2:前面我们利用天平保持平衡的道理求出了方程x+3=9的解,下面我们再利用天平保持平衡的道理来求出方程3X=18的解,同学们有信心吗?

2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。

3、学生独立完成解方程。

3x=18

解:3x÷3=18÷3

x=6

方法总结:

1、交流讨论:如果方程两边同时加上或乘以一个数,左右两边会相等吗?

2、总结:利用天平保持平衡的道理(也就是等式的基本性质)等式两边都加上或减去(乘或除以相同的数),可以求出方程的解。

三、应用巩固:

1、完成课本59页“做一做”的第1题,先找到等量关系,再列出方程并解方程。

2、解方程。

x+3.2=4.6x-1.8=4x-2=15

1.6x=6.4x÷7=0.3x÷3=2.1

3、我会选

(1)32+χ=76的解是()

A、χ=42B、χ=144C、χ=44

(2)χ-12=4的解是()

A、χ=8B、χ=16C、χ=23

(3)5χ=60的解是()

A、χ=65B、χ=55C、χ=12

(4)χ÷20=5的解是()

A、χ=15B、χ=100C、χ=4

4、解决问题。

教师:请同学们认真观察图,你能根据题意列出方程并解方程吗?

四、全课小结、课外延伸:

教师:这节课你有什么收获?请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

解方程课件教案(篇3)

解方程教学设计

(一)教学内容

义务教育课程标准实验教科书数学(人教版)小学《数学(第九册)》第57、58页的内容。

(二)教学目标

(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

(2)初步理解等式的基本性质,能用等式的性质解简易方程。

(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

(4)重视良好学习习惯的培养。

(三)教学重、难点

(1) “方程的解”和“解方程”之间的联系和区别。

(2)利用天平平衡的道理理解比较简单的方程的方法。

(四)教学准备

多媒体课件、单行纸一张

(五)教学过程

1.揭示课题,复习铺垫

师:(出示课件)老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

生:(100+X)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。

生:100+X=250(课件显示:100+X=250)

师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

[设计意图:从复习天平保持平衡的道理入手,引出课题,引导学习质疑,有利于激发学生主动探究、深入学习的积极性。]

2.探究新知,理解归纳

(1)概念教学:认识“方程的解”和“解方程”的两个概念

师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:XXX同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。(教师随着学生的回答演示课件)

师:你能根据操作过程说出等式吗?

生:100+X-100=250-100(课件显示:100+X-100=250-100)

师:这时天平表示未知数X的值是多少?

生:X=150(课件显示:X=150)

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:(课件显示X=150的下画线)指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

师:(课件显示:方框)

100+X=250

100+X-100=250-100

指着方框说:“这是求方程的解的过程,叫解方程。(课件显示:方框的左边的箭头与解方程。)

师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)

师:同时还要注意“=”对齐。

师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

师:你们怎么理解这两个概念的?

(学生独立思考,再在小组内交流。)

师:谁来说说你想法?

生1:“解方程”是指演算过程

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]

(2)教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

生:会。

师:请自学第58页的例1的有关内容。

[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]

师:四人小组讨论方程左右两边为什么同时减3?

[学生独立思考,再在小组内交流。]

师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

生:X+3=9(板书:X+3=9)

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。

师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个方块,使天平左边只剩X,天平保持平衡。(教师随着学生的回答演示课件)

师:根据操作过程说出等式?

生:X+3-3=9-3(板书:X+3-3=9-3)

师:这时天平表示X的值是多少?

生:X=6(板书:X=6)

师:方程左右两边为什么同时减3?

生1:使方程左右两边只剩X。

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?

生:验算。

师:对了,验算方法是什么?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

(板书:

验算:方程的左边=6+3=9

方程的右边=9

方程的左边=方程的右边

所以,X=6是方程的解。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

[设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

(3)练习

师:现在老师看看同学们对于解方程掌握得怎么样。(出示课件)

判断题

A.X=3是方程5X=15的解。( )

B.X=2是方程5X=15的解。( )

考考你的眼力,能否帮他找到错误所在呢?

X+1.2=4 X+2.4=4.6

X+1.2-1.2=4-1.2 =4.6-2.4

X=2.8 =2.2

填空题

X+3.2=4.6

X+3.2○( )=4.6○( )

X=( )

将课本59页做一做的第1题的左边一小题写在单行纸上。

[设计意图:游戏练习形式有趣,有利于激发学生的学习兴趣,活跃课堂气氛。让学生在轻轻松松中,及时有效地巩固强化概念。]

(4)小结:解含有加法方程的步骤。(口述过程)

3.拓展延伸。

(1)解方程 X一2=15(课件显示)

师:看来,解加法方程同学们掌握得很好,老师得提高一点难度,敢挑战吗?

生:敢。

师:谁愿意读读这个方程?

[学生都争着读这个方程,可激烈了]

师:这是一个含有减法的方程,你能根据解加法方程的步骤,尝试完成。(指名XXX同学到黑板板演,其他同学在单行纸完成)

[学生试着解方程并进行口头验算]

(2)集体交流、评价、明确方法。

师:XXX同学做对了吗?

生:对。

师:方程左右两边为什么同时加2?

生:方程左右两边同时加2,使方程左边只剩X,方程左右两边相等。(由板演XXX同学面向大家回答)

4. 提炼升华

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)

生:

解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。yJS21.CoM

d)验算。

5.全课小结,评价深化

1、通过今天的学习,同学们有哪些收获?

2、以小组为单位自评或互评课堂表现,发扬优点、改正缺点。

3、对老师的表现进行评价。

[设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。]

[板书设计]

解方程

例1:书本图

X+3=9 验算: X-2=15

解:X+3-3 =9-3 方程左边= 6+3=9 解: X-2+2=15+2

X=6 方程右边= 9 X=17

方程左边=方程右边

所以,X=6是方程的解。

解方程课件教案(篇4)

今天我说课的题目是"解方程(一)"。本节课选自北京师范大学出版社出版的七年级(上)。这一节课是本册书第五章第二节的内容。下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。

一、教材分析

分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

1、解方程在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。解方程是代数中的主要内容之一。一元一次方程有许多直接的应用,最主要的,解一元一次方程是学习其它方程和方程组的“基石”。解各种方程和方程组,通过降次、消元等方法,最后都归纳为解一元一次方程。

2、一元一次方程这一章可以归纳为两个方面:第一方面的内容是等式的有关概念,等式的性质以及方程的有关概念;第二方面的内容是一元一次方程的概念,解一元一次方程的步骤,以及列出一元一次方程解应用题。解方程是列一元一次方程解应用题的基础,本章的学习重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题。学生能否正确的解方程和列一元一次方程解应用题关键是这一节的学习。

从以上两点不难看出它的地位和作用都是很重要的。

3、接下来,介绍本节课的教学目标、重点和难点。

教学大纲是我们确定教学目标,重点和难点的依据。根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:(1)熟悉利用等式性质解一元一次方程的基本过程;(2)通过具体的例子,归纳移项法则;(3)掌握解一元一次方程的基本方法,能熟练求解一元一次方程(数字系数)能判别解的合理性。2、能力目标是:(1)通过学生观察、独立思考等过程、培养学生归纳、概括的能力;(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。;3、情感目标是:激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的'精神,养成按客观规律办事的良好习惯。(2)培养学生严谨的思维品质。由于合并同类项学生已非常熟悉,系数化成一实际是利用等式的性质,而移项是新事物又是解方程的关键,因此本节课的重点是:移项法则及其应用。由于本阶段的学生往往注意不到项的符号及移向后的符号,很容易出现符号错误。因此我确定本节课的难点是;移项的同时要变号。

二、教材处理

本节课是在前面学习了《你今年几岁了》的基础上进行的,学生已经很牢固地掌握了方程、一元一次方程的概念及等式性质并且能利用等式性质熟练的解方程,因此我没有把时间过多地放在复习这些旧知识上,而是通过游戏激发学生的兴趣,这样既巩固了前面所学的知识又培养了学生的创造能力,真是一举三得。进而设疑激发学生的好奇心,为后面的学习做好准备。采用生动形象的事例,在移项法则的得出过程中,我让学生自主观察发现规律并用自己的语言描述规律的内容。然后交流各自所发现的规律及用语言表书的过程,这样通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。由于在移项时,学生常犯一些错误,如移项忘记变号,因此在例题的处理上我采取用两种方法解例1、例2,并将两者加以对照,进而使学生加深对移项法则的理解且自觉改正错误。然后我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

三、教学方法和数学手段

在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

解方程课件教案(篇5)

作为一名专为他人授业解惑的人民教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么优秀的教学设计是什么样的呢?下面是小编为大家收集的五年级数学上册解方程教学设计,希望对大家有所帮助。

教学内容:义务教育课程标准实验教科书数学五年级上册55—57页内容。

教学目标:

1、通过演示操作理解天平平衡的原理。

2、初步理解方程的解和解方程的含义。

3、会检验一个具体的值是不是方程的解,掌握检验的格式。

4、、提高学生的比较、分析的能力;培养学生的合作交流的意识。

教学重点:理解方程的解和解方程的含义,会检验方程的解。

教学难点:利用天平平衡的原理来检验方程的解。

关键:天平与方程的联系。

教具 : 图片,课件

教学过程:

一、 回顾旧知,引出课题(出示课件)

1、实物演示:天平平衡的实验。

师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

生:(100+X)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。

生:100+X=250(课件显示:100+X=250)

2、这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

二、探究新知

1.认识“方程的解”和“解方程”的两个概念

师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:XXX同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:你能根据操作过程说出等式吗?

生:100+X-100=250-100

师:这时天平表示未知数X的值是多少?

生:X=150

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

师:

100+X=250

100+X-100=250-100

指着方框说:“这是求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。

师:同时还要注意“=”对齐。

师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

师:你们怎么理解这两个概念的?

(学生独立思考,再在小组内交流。)

师:谁来说说你想法?

生1:“解方程”是指演算过程

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]

2.教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

生:会。

师:请自学第58页的例1的有关内容。

[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]

师:四人小组讨论方程左右两边为什么同时减3?

[学生独立思考,再在小组内交流。]

师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

生:X+3=9(板书:X+3=9)

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。

师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个方块,使天平左边只剩X,天平保持平衡。师:根据操作过程说出等式?

生:X+3-3=9-3(板书:X+3-3=9-3)

师:这时天平表示X的值是多少?

生:X=6(板书:X=6)

师:方程左右两边为什么同时减3?

生1:使方程左右两边只剩X。

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?

生:验算。

师:对了,验算方法是什么?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

(板书:

验算:方程的左边=6+3=9

方程的右边=9

方程的左边=方程的右边

所以,X=6是方程的解。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

[设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

三、巩固练习

师:现在老师看看同学们对于解方程掌握得怎么样。(课件展示)。

四、课堂小结:解含有加法方程的步骤。(出示课件)

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,显示全过程。)

生:解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

解方程课件教案(篇6)

五年级数学解方程教案篇1

教学内容:

教材第27~28页的内容及练习。

教学目标:

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2.掌握一个数除以分数的计算方法,并能正确计算。

3.培养学生解决简单实际问题的能力。

教学重难点:

1.掌握一个数除以分数的计算方法,并能正确计算。

2.整数除以分数的计算法则推导过程。

教学过程:

一、创设情景 激趣揭题

1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

2.引入并板书课题:分数除法(二)

设计意图:设疑激趣。 明确目标。

二、扶放结合 探究新知

1.分一分,引导感知一个数除以分数的意义。

2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

3.引导完成28页的填一填,想一想,你发现了什么?

4.引导归纳计算方法。

设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。

三、反馈矫正

出示P28的试一试。

1.统一分数除法的计算法则。

2.指导完成P28练一练的1~4题。

四、小结评价 布置预习

1.引导小结:通过这节课的学习,你有什么收获?

2.布置预习: P29 分数除法(三)

板书设计: 分数除法(二)

4÷1/2=4×2=8 ;4÷1/4=4×4=16

一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

五年级数学解方程教案篇2

教学目的:

1.使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2.培养学生观察、比较、抽象、慨括的能力。

3.培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。

教学难点:质数、台数、济数、偶数的区别

教学过程:

课前谈话:

给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小的分类方法。明确:分类的际准很重要。

一、复习旧知

说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。

板书对应的集合图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的集合圈里。

问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找约数的方法来给自然数分类。

复习:什么叫约数?怎样找一个数所有的约数?

同桌合作.找出列举的各数的所有的约数。(同时板演)

引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!

根据学生的回答板书。

自然数

(约数的个数)

(只有两个约数)(有3个或3个以上的约数)

引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

明确合数的概念.提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。

出示例1 下面各数,哪些是质数?哪些是合数?

15 28 31 53 77 89 1ll

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成练一练。

三、练习巩固

1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22 29 35 49 51 79 83

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生操作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

四、全课总结

学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是这样的关系呢?

五、布置作业(略)。

五年级数学解方程教案篇3

教材分析:

本节教学是在学生学习掌握了因数和倍数两个概念的基础上,在教师的引导下,让学生运用乘法算式及除法中的整除自主尝试、探究“求一个数的因数”的方法。同时,通过多种形式的训练,使学生能熟练找全一个数的因数。另外,通过引导学生用集合的形式表示一个数的因数,一方面给学生渗透集合思想,更重要的是为后面教学求两个数的公因数做准备。

教学目标:

1、应用尝试教学法鼓励学生自主尝试探究求一个数的因数的方法及规律特点,并能熟练找全一个数的因数;

2、逐步培养学生从个别到全体、从具体到一般的抽象归纳的思想方法。

教学重点:

探究求一个数的因数的方法及规律特点。

教学难点:

用求一个数的因数的方法熟练找全一个数的因数。

教具准备:

投影仪、小黑板、卡片

教学课时:一课时

教学设想:

运用尝试教学法,从学生已有的知识经验出发,通过教师引导、学生自学例1,自主尝试、探究求一个数的因数的方法方法,并能运用所获得的方法、经验找全一个数的因数。

教学过程:

一、复习旧知

师:同学们,前面学习了因数和倍数的概念,老师很想考考你们学得怎么样,可以吗?

生:(预设)可以!

师:出示小黑板。

1、利用因数和倍数的相互依存关系说一说下面各组数的相互关系。

21和72×7=1430÷6=5

2、判断。

(1)12是倍数,2是因数。 ( )

(2)1是14的因数,14是1的倍数。 ( )

(3)因为6×0.5=3,所以,6和0.5是3的因数,3是6和0.5的倍数。( )

教师根据学生完成练习的情况对学生进行恰当的表扬激励,同时进入新课教学:……

二、新课教学

过程一:尝试训练。

(一)出示问题

师:同学们,老师有一个新问题,想请大家帮助解决,行吗?

生:行!(预设)

尝试题:14的因数有哪几个?

(二)学生解决问题,教师巡视并根据实际适时辅导学困生。

(三)信息反馈。

板书:

1×14

142×7

14÷2

14的因数有:1,2,7,14

过程二:自学课本(P13例1)。

(一)学生自学例1。

教师提出自学要求(投影):

1、18有哪些因数?

2、文中的小朋友是怎样找出18的因数的?他们找完了吗?如果没有,请帮助他们完成。

3、你还有别的找法吗?请试一试,并用自己喜欢的方式写出18所有的因数。

(二)信息反馈

1、反馈自学要求情况;

板书:

1×18

18 2×9

3×6

18的因数有1,2,3,6,9,18。

还可以这样表示: 18的因数

2、知识对比,探索发现规律。

(1)师:同学们,根据求14和18的因数时获得的体验,再思考下面问题:

投影出示问题:

思考一:你用什么方法找出?

(2)学生思考,教师适时引导。

(3)同桌交流思考结果。

(4)师生互动。总结方法、点出课题。

求一个数的因数的方法:用乘法计算或除法计算(整除)

过程三:尝试练习

(一)用小黑板出示练习题

1、找出30的因数有哪些?36的因数有哪些?

2、结合14、18、30、36的因数个数,请你谈谈一个数的因数有什么特点?〖提示:一个数的最小因数是(),的因数是()。〗

(二)信息反馈:师生互动总结特点。

板书:

一个数的因数的个数是有限的。它的最小因数是1,的因数是它本身。

三、课堂作业

练习二第2题和第4题前半部分。

四、课堂延伸

猜一猜:(卡片)只有一个因数的数是谁?

五、课堂小结

师:今天你学会了求一个数的因数的方法吗?你知道一个数的因数特点吗?

生:……

板书设计:

求一个数的因数的方法

1×14

14 2×7 方法:用乘法计算或除法计算(整除)

14÷2

14的因数有:1,2,7,14

1×18

18 2×9

3×6

18的因数有:1,2,3,6,9,18 特点:一个数的因数的个数是有限的。

还可以表示为:

它的最小因数是1,的因数是它本身。

解方程课件教案(篇7)

教学目标:

1、使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、初步理解等式的基本性质,能用等式的性质解简易方程。

3、关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

4、重视良好学习习惯的培养。

教学重点:

1、“方程的解”和“解方程”之间的联系和区别。

2、利用天平平衡的道理会解形如X±a=b的方程,并检验。

教学难点:

理解形如X±a=b的方程原理,掌握正确的解方程格式及检验方法。

教学过程:

一、创设情境,回顾旧知

师:今天在上课前我们来玩一个游戏“我说你答”。以保持天平的平衡

如“我在天平的右边增加一个橘子”;“我在天平的左边增加一个同样的橘子”;“天平的左边排球数量扩大到原数的2倍变成4个排球”,“天平的右边的皮球数量扩大到原数的2倍,变成8个皮球”…

师:同学们有这么多让天平平衡的方法,能概括一下让天平平衡的方法吗?

二、探究新知,引出课题

1.通过解方程,认识“方程的解”和“解方程”的两个概念。

师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。

学生回答教师板书:100+X=250

师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

师:(指着方程)那你猜一猜这个方程X的值是多少?并说出理由。

预设:生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

师:谁能用天平平衡的道理来解呢?

生3:老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:课件探索验证一下。请看天平,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:你能根据操作过程说出等式吗?

师:这时天平表示未知数X的值是多少?

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,(这样方程左边就只剩X)就能得出X=150。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:指着方程100+X=250说:“X=150”是这个方程的解。(板书:方程的解)

100+X=250

100+X-100=250-100

师指着方框说:“刚才我们求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。

师:同时在书写的时候还要注意“=”对齐。

师:你们怎么理解这两个概念的?(课件出示两个概念)

师:谁来说说你想法?

师:“方程的解”和“解方程”的两个解有什么不同?

小结:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演算过程。

2.尝试解X-a=b形的方程。

师:出示X-3=9(板书)

学生尝试,请一人板演

汇报,评价

师:你是怎么想的?

师:是不是这样的,请看屏幕。(请一位学生说,教师用课件演示)

生:天平左右两边同时放上3个方块,使天平左边刚好是X,天平保持平衡。

师:这时天平表示X的值是多少?

师:讨论方程左右两边为什么同时加3?

生:方程左右两边同时加3,使方程左边只有X,方程左右两边相等。

小结:“方程左右两边同时加3,使方程左边只有X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=12一定是这个方程的解呢?

师:对了,验算方法是什么?

自习课本第58页,模仿检验的书写过程

根据学生的回答板书:

验算:

方程左边=X-3

=12-3

=9

=方程的右边

所以,X=12是方程的解。

小结:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

三、巩固练习

(1)判断题

A.X=3是方程5X=15的解。()

B.X=2是方程5X=15的解。()

你是怎么想的?

(2)考考你的眼力,能否帮他找到错误所在呢?

X+1.2=4X+2.4=4.6

X+1.2-1.2=4-1.2=4.6-2.4

X=2.8=2.2

小结:解方程首先要写“解”,X每步都不能离,所有的等号要对齐,检验的习惯要牢记。(课件出示)

(3)填空题

X+3.2=4.6X-3.2=4.6

解:X+3.2○()=4.6○()解:X-3.2○()=4.6○()

X=()X=()

(4)解下列方程,带★的要验算

★X+2.8=7.9X-5=28

(5)完成课本59页做一做的第1题的左边一小题写在书上。

追问:x=2.8带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

小结:解含有加法方程的步骤。

三、巩固延伸

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)

解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

四、全课小结

通过今天的学习,同学们有哪些收获?

[板书设计]

解方程

100+X=250X-3=9

解:100+X-100=250-100解:X-3+3=9+3

X=150…方程的解X=12

验算:

方程左边=X-3

=12-3

=9

=方程的右边

所以,X=6是方程的解。

设计意图:

我对课时安排及教学设计均做了较大调整。原订计划是第一课时完成“方程的解”及“解方程”概念教学,要求学生掌握方程检验的书写格式,第二课时完成加、减、乘、除各类型方程解法的教学。调整后的教案改为第一课时完成“方程的解”及“解方程”概念教学、会解形如X±A=B的方程,掌握检验的格式;第二课时只完成乘除法方程的解法。我上的是第一课时,其次对于教学设计也做了相应处理,将例1的解方程的过程内容适时穿插到57页,又将例1改为X-a=b形式并穿插验算的学习过程之中。

为什么我会做如此改动呢?主要基于以下三点原因:1、考虑到学生一节课内如要掌握加减乘除各种类型方程的解法、理解解方程的原理,规范书写格式,内容太多,怕影响教学效果。2、教材57页做一做中要求学生检验方程的解是否正确,但规范的检验格式却不在本页,而在58页。3、如果能将“解方程”与“方程的解”这两个概念结合规范的解方程书写过程和结果来向学生解释,更利于学生理解掌握。总体思路如下:

1、从复习天平保持平衡的道理入手,引出课题,引导学习质疑,有利于激发学生主动探究、深入学习的积极性。

2、通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。

3、给足够的时间让学生学习,让学生发现。

4、多层次的练习形式,有利于学生对知识进一步的理解与掌握,并及时有效地巩固强化概念。

5、教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。

6、自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。

教后反思:

前一阶段的教学,我发现孩子们还是比较喜欢学习数学的,特别对方程都有一种与生俱来的好奇心。他们总觉得天平能启发着他们去解决这么神奇的方程,真是非常有趣,学得效果也不错。今天在整节课的教学中,引入有序,思路清晰,环节紧扣。可是学生学习十分被动,课堂可以说是死气沉沉,真的有点不习惯孩子们这样,据我对学生的理解利用天平这样的事物原型来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,学生应该比较感兴趣的,原因在哪儿呢?课后查找原因:1、通过与学生的谈话发现学生过于紧张。2、教师缺乏调节课堂气氛手段。今后尽量要注重这方面的调节,兴趣是最好的老师,没有兴趣哪来的教学效果。

解方程课件教案(篇8)

这节课的内容包括两个方面:一是探索并理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”;二是应用等式的性质解只含有加法和减法运算的简便方程。解方程是学生刚接触的新鲜知识,学生在知识经验的储备上明显不足,因此数学中老师要时刻关注学生的学习状态,引领学生经历将现实、具体的问题加以数学化,引导学生通过操作、观察、分析和比较,由具体到抽象理解等式的性质,并应用等式的性质解方程。在这节课的教学中,让学生理解并掌握等式的性质应是解决一系列问题的关键。

一、让学生在操作中发现

课开始,老师出示天平并在两边各放一个50克的砝码,“你能用式子表示出两边的关系吗?”学生写出 50=50;老师在天平的一边增加一个20克砝码,“这时的关系怎么表示?”学生写出50+20>50,“这时天平的两边不相等,怎样才能让天平两边相等?”学生交流得出在天平的另一边增加同样重量的砝码;“你有什么发现吗?”“自己写几个等式看一看。”通过具体的操作为学生探究问题,寻找结论提供了真实的情境,辅以启发性、引领性的问题,让学生经历了解决问题的过程,并在问题的解决中发现并获得知识。

二、让学生在发现中操作

引入了等式的性质,其目的就是让学生应用这一性质去解方程,第一次学生解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的性质解方程,教者先利用天平所显示的数量关系,引导学生发现“在方程的两边都减去100,使方程的左边只剩下x”,通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。

解方程课件教案(篇9)

教学目标

1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高学生比较、分析的能力。

知识重点解方程的规范步骤

教学难点比较方程的解和解方程这两个概念的含义

教学过程教学方法和手段

引入

(1)上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。

(2)学习这些规律有什么用呢?(用于解方程)从这节课开始我们就会逐渐发现到它的重要作用了。

教学过程一、解决问题。

出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(2)利用加减法的关系:250-100=150。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

二、认识、区别方程的解和解方程。

得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

三、方程的检验

P58例1P59例2。

怎么判断X=6是不是方程的解?将x=6代入方程之中看左右两边是否相等,写作格式是:方程左边=x+3

=6+3

=9

=方程右边

所以,x=6是方程的解。

课堂练习独立完成练习十一第4题,强调书写格式。

小结与作业

课堂小结这节课你学到了什么?(1)解方程和方程的解有什么区别(2)解方程要按照什么样的格式来写?(3)如何检验呢?格式又是怎么样的?

课后追记

本课应用方程平衡原理来解方程,要注意的是检验方程的时候,最后一句话,所以××是方程的解(这里的××学生容易写成方程右边的值)

第7课时:解方程(2)

教学内容P58-P59及“做一做”,练习十一第5-7题

教学目标

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

知识重点掌握解方程的方法

教学过程教学方法和手段

引入前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

教学过程新知学习

(一)教学例1

出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

化简,得到x=6

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:方程左边=x+3

=6+3

=9

=方程右边

所以,x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二)教学例2

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

yJS21.com更多精选幼儿园教案阅读

解方程课件(范例十一篇)


我们常说,机会是留给有准备的人。优质课堂,就是幼儿园的老师在讲学生在答,讲的知识都能被学生吸收,为了防止学生抓不住重点,教案就显得非常重要,有了教案才能有计划、有步骤、有质量的完成教学任务。您知道幼儿园教案应该要怎么下笔吗?于是,小编为你收集整理了解方程课件(范例十一篇)。感谢您的参阅。

解方程课件 篇1

教学内容:教材P67例

1、教学目标:

(1)知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。(2)过程与方法:利用等式的性质解简易方程。

(3)情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。

教学重点:理解“方程的解”和“解方程”之间的联系和区别。教学难点:理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。

教学方法:创设情境;观察、猜想、验证.教学准备:多媒体。教学过程 : 一.复习导入:

提问:(1)什么叫做方程?

(2)方程和等式之间的关系是什么?

(3)等式的性质有哪些。

(3)判断下面的是不是方程? 1.4x=9.8

+y<30

21÷7=3

(3x-8y=14 二.新课讲授:并出示教材第67页例1情境图。

问:从图上你知道了哪些信息? 引导学生看图回答:盒子里的球和外面的3个球,一共是9个。

(学生能快速并正确的列出方程,但是今天我们要学习的不仅是列出方程,而是如何求出x的值。同学们自己讨论,交流,最后请同学们来说一说,通过说了以后,让同学把我们刚才的文字语言转换成我们的数学符号和数字。

1.汇报:x +3-3=9-3

x =6 质疑:为什么两边都要减3呢?你是根据什么来求的?(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)你们的想法对吗?出示第3个天平图,证实学生的想法是对的。

4.师小结:刚才我们计算出的x =6,就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)4.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

验算:x =6是不是正确答案呢?我们怎么来检验一下? 引导学生自主思考,并在小组内交流自己的想法。通过学生的回答小结:可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。方程的左边:=x+3

=6+3

=9

=方程的右边

所以,X=6方程的解 让学生尝试验算,并注意指导书写。

5.我们除了用等式的性质来解方程,我们是否还可以用别的方法来解,请同学们思考并回答,还可以根据加数+加数=和。一个加数=和-另一个加数,我们就可以得到

x +3=9

解:

x=9-3 X=6

让学生对比两种解法,对比两种解法那种更好理解,更方便,三:巩固练习

(1)解方程,(用你喜欢的方法解并检验)

3.5+x=10.77 250-x=100(2)小明的妈妈以前买了100千克的大米,现在已经吃了y 千克,还剩下32千克。已经吃了的大米是多少千克?

四.总结这堂课学习了什么? 五.板书设计:

方法一:x +3=9

解:

x +3-3=9-3

x =6

检验:方程的左边 =x+3

=6+3

=9

=方程的右边

所以,X=6方程的解。

方法二:

x +3=9

解:

x=9-3 X=6

使方程左右两边相等的未知数的值,叫做方程的解。求方程的解得过程叫做解方程。

解方程课件 篇2

第五章 一元一次方程

2.解方程(二)

山西省实验中学 贾麟香

一、学生起点分析: 学生在上一节已经掌握了用移项法则解一元一次方程,用等式的基本性质二将方程中未知数的系数化为1,从而转化方程为x=a(a为常数)的形式,也做的很好.

二、学习任务分析:

第一课时要求学生完成用等式基本性质一解方程,分析、观察、归纳出用移项法则,从而简化解方程的步骤.第二课时,让学生体会当方程左右两边含有括号时,如何通过去括号法则将方程化简再运用等式的基本性质一、二使方程变形到“x=a(a为常数)”的形式.

三、教学目标

知识与技能:

1、学习含有括号的一元一次方程的解法.2、进一步体会解方程是运用方程解决实际问题重要环节.过程与方法:通过观察、思考,使学生探索方程的解法,经历和体验用多种方法解方程,提高解决问题的能力.情感态度与价值观:通过对与学生生活贴近的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,体会学习数学的实用性.

四、教学过程设计:

环节一:小组讨论,引入课题

内容:设置问题串,请同学回答

1.上课时解一元一次方程的题型有什么特点? 2.本节课的一元一次方程有什么特点?与上课时的题型差异何在?

1 / 4 目的:因为解一元一次方程不同类型的方程简化方程到“x=a(a为常数)”的手段不同,所以必须培养学生善于分析观察题中所给信息的习惯及能力. 我们知道,一个优秀学生的首要标志就是“不惧生”,即对生面孔的题目总有自己的分 析方式,处理策略,解决办法,那么这些能力的培养是离不开教师在教学过程中,尽可能多地设置让学生自主发现、独立探索思考的机会的.即便错误很多,只要思考就是好的开始. 实际效果:

同学能很清楚地用自己的语言说出自己的看法.认为:

1.课时的内容与课本上的内容有承接关系. 2.本课时增加了方程中含有括号的表达形式,需先去括号,这样就化成上课时所学内容了. 3.去括号要注意括号系数为负系数的问题.

环节二:合作学习

内容:请同学们分析理解156页图解题.1.由同学根据图示编出一道合理的应用题.2.比较此题与本章节第一节引例的实际问题有何区别?

目的:进一步让学生体会数学中问题的提出大都是因人们的生活实践需要,因社会的发展需要,实际问题的“数学化”,数学服务于生活实际随处可见. 在学生由图示内容编题过程中,让学生强化“三种语言”的互话能力.即:文字语言,符号语言和图例语言之间的互相转化.学生着方面能力的培养在教师授课的过程中需要引起关注,将是一个事半功倍的方法,尤其是设法充分利用教材中所呈现内容这一资源,显得尤为重要. 调动学生自主分析及合作学习的积极性,由学生观察分析得出本例与以前北京题目的差

异,发展学生的自主分析能力及强化差异意识,不失为此例的一个功能,即使应给予关注.实际效果:

1、同学完整编出此题:

小林到超市,准备买1听果奶和4听可乐,小明告诉他一听可乐比一听果奶贵5角钱, 小林给了营业员20元钱,找回了3元,大家帮助小林算算一听果奶,一听可乐各是多少钱?

完成的过程体现出学生对图例中已知、未知等相关方面的信息掌握全面,梳理清晰,表达准确.

2 / 4 3、本例及本章节的背景问题,学生们发现设问中的未知量由原来的一个增加到现在的两个,并给出完整的解答过程。这些方面学生都能很完整、准确地给予书面语言的表达,完成得非常好,为后续课程的学习奠定了很好的基础.

环节三:探索交流,深化认识

内容:1.课本157页,例4解方程 -2(x-1)=学生自编一个类似例4的题目,用不同的方法给予解答.目的:一方面让学生继续巩固含括号的一元一次方程的解法;另一方面让学生感受将(x-1)或其他的未知数的代数式看成整体的数学思想.实际效果:

学生在解答此类问题时,总是习惯先去括号,转化成第一课时的方程形式求解,用整体的观念解方程还不够熟练. 编题:解方程:

1、1-(x+1)=、2(2x-1)-1=3(2x-1)+、

32(1?x)?3?(1?x)?有些学生在编题过程中能表现出他们对此类问题理解的准确性与深刻性;知识体系自建的合理性与健全性.知识内化的深入与到位也是非常令人高兴的.

环节四:巩固提高

内容:课本175页随堂练习 方式:条测

实际效果:学生基本能够准确解答此类含括号的一元一次方程,用整体的思想解答问题,这一点学生使用的比较习惯,说明学生对此处渗透的接受程度较高.

环节五:课堂小结

内容:学生之间交流后,将课堂小结誊写在笔记本上.目的:学生的课堂小结看似简单,但是却反映学生知识内化的重要方面,这个过程的实现,通过学生的书面表达完成,更能体现了学生的综合能力.

3 / 4

环节六:布置作业

课后反思: 创造性地使用教材,是教师的主导作用的体现.本课时教材在使用时至少有三处贯穿了这样的思想.教师这个“教练”、“导演”应该引导学生充分利用其课文内在的资源,使其发挥最大的作用.如:

(1)开始引例“图示”的内容,让学生用其素材编题.(2)本例解题过程回答题中两个未知量的解答环节.(3)通过让学生自编用整体思想解答的方程.这些环节的设置,对系统地、全面地培养学生捕捉信息、分析信息和处理信息的能力有非常大的作用,对学生课上反思、课上内化知识的能力提高.作为教师,应该长期坚持与学生在这方面切磋、探索,把课堂充分还给学生,充分尊重学生的个性思维,引导学生构建自己的认知结构,并给予适时调控和指导.

4 / 4

解方程课件 篇3

一、创设情境,以情激趣

师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

学生讨论纷纷。

师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

二、运用教具,探究新知

(一)等式两边都加上一个数

1、课件出示天平

怎样看出天平平衡?如果天平平衡,则说明什么?

学生回答。

2、出示摆有砝码的天平

操作、演示、讨论、板书:

5=5 5+2=5+2

X=10 X+5=15

观察等式,发现什么规律?

3、探索规律

初次感知:等式两边都加上同一个数,等式仍然成立。

再次感知:举例验证。

(二)等式两边都减去同一个数

观察课件,你又发现了什么?

学生汇报师板书:

X+2=10

X+2-2=10-2

X =8

(三)运用规律,解方程

三、巩固练习

1、完成课本68页“练一练”第2题

先说出数量关系,再列式解答。

2、小组合作完成69页“练一练”第3题。

完成后汇报,集体订正。

四、课堂小结

这节课你学到了什么?学生交流总结。

板书设计: 解方程(一)

X+2=10

解: X+2-2=10-2 ( 方程两边都减去2)

X =8

解方程课件 篇4

解方程

襄州四中 肖玉六

教学内容:

新课标人教版小学数学五年级上册第57-59页内容

教学目标:

1.使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2.初步理解等式的基本性质,能用等式的性质解简易方程。

3.关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

重点、难点:

理解并掌握解方程的方法

教学准备:

投影仪

一、导入:揭示课题,复习铺垫

1、谈话提问:

(1)、举例说明什么是方程。(2)、想一想等式有哪些性质。(3)、判断哪些式子是方程

2、师用天平演示再现前面出现过的用天平秤一杯水的情境,引导学生写出方程(100+X=250)

师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

二、互动:探究新知,理解归纳

1.师生互动:概念教学:认识“方程的解”和“解方程”的两个概念 师:那你猜一猜这个方程x的值是多少?并说出理由。学生可能会说出以下几种理由。(1)因为250-100=150,所以X=150。(2)因为100+150=250,所以X=150。

(3)假如方程的两边同时减去100,就能得出X=150。

引导学生将x的值代入方程看看左边是否等于250来验证x=150是正确的。

根据学生的猜测和验证认识新概念“方程的解”和“解方程”。

师: “X=150是这个方程的解。

师: “而求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。师:同时还要注意“=”对齐。师:你们怎么理解这两个概念的?(学生独立思考,再在小组内交流。)

(“方程的解”,它是一个数值,“解方程”,它是一个演变过程。)2.教学例1。

(1).生生互动:解方程过程

a.小组讨论方程左右两边为什么同时减3? b.可以利用天平保持平衡的道理帮助解方程 c.验算过程

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。(2).互动展示:教学例2 3X=18 学生尝试后出示:3X÷3=18÷3 交流想法:方程的左右两边同时除以一个相同的数(0除外),左右两边仍然相等。小结:方程的左右两边可以同时除以相同的数(0除外),左右两边仍然相等。

三、达标检测

1.解方程 x一2=15 x÷7=14 师:这是两个分别含有减法除法的方程,你能尝试完成吗?(指名学生板演,其他同学在练习本上完成)

2.集体交流、评价、明确方法。

总结:如果方程两边同时加上、减去、乘或除以同一个数,方程左右两边仍旧相等

3.达标延伸(见课件)

四、全课小结,评价深化

1、通过今天的学习,同学们有哪些收获?

2、以小组为单位自评或互评课堂表现,发扬优点、改正缺点。

五、板书设计

解 方 程

X + 3= 9 验算:方程的左边=X+3 解:X+3-3=9-3 =6+3 X=6 =9

=方程的右边

所以,X=6是方程的解。

解方程课件 篇5

一、 复习引入

1、填空:

加数=( )-另一个加数 被减数=( )+( )

被除数=( )×( ) 因数=( )÷( )

2、CIA课件出示:根据题中的数量关系,列出方程。

(1)小明有30元钱。买钢笔用了m元,买本子用了10元,刚好用完。

(2)小红家买了50千克的大米,吃了n千克,还剩42千克。

(3)全班a个同学,平均分成个7小组,每个小组8人。

(4)钢笔每支4元,买X支用了24元。

师:刚才我们列出的这些方程,你能求它的解吗?(师板书:4X=24)

这个方程的解是多少呢?(X=6)

今天我们就一起来学习怎样求方程的解——解方程

揭示课题并板书:解方程

二、探究学习

1、学习解方程

(1)自主探究求方程的解。

(2)汇报,抽生板演。

(3)师指导学生看书101页的内容,学习正确的书写格式,动笔勾画出你认为比较重要的地方.

(4)师规范解方程的格式。

第一种:根据四则混合运算各部分之间的关系

4X=12

解: X=12÷4

X=3

第二种:根据等式的性质

4X=12

解: 4X÷4=12÷4

X=3

比较两种方法的优点和缺点,请将刚才的解题过程再按正确的书写格式做一遍。

揭示解方程的含义;区分解方程和方程的解。

2、方程的检验。

3、巩固练习:CIA课件出示(学生独立完成,集体评讲)

三、自主学习

刚才的几个方程,请任选一道用你喜欢的方式求方程的解,并口头检验。

师:大家认为在解方程的时候应该注意些什么?在哪些方面需要提醒同学主义的呢?

四、全课小结。通过这节课的学习,你有什么收获?你还有哪些疑问?或者是不明白的地方吗?

五、课堂练习:

1、解方程

20-X =9 25+ X =80 6.3 ÷X =7

2、做书上104页1、2、3题。

六、板书设计:

解方程

法一:四则混合运算各部分之间的关系 法二:等式的性质

4X=12 4X=12

解: X=12÷4 解: 4X÷4=12÷4

X=3 x=3

七、教学反思:

通过本节课的学习,学生已经基本上掌握了方程的解题的依据以及书写格式,但是很多同学在做a÷x=b这种形式的方程时还是容易搞混淆。需要加强练习和多做相关的题型,特别是在前节内容据题意列方程还得多找相关等量的关系,达到复习以前的知识和巩固现在的新知识的目的。

解方程课件 篇6

一、创设情境,回顾旧知

师:今天在上课前我们来玩一个游戏“我说你答”。以保持天平的平衡如“我在天平的右边增加一个橘子”;“我在天平的左边增加一个同样的橘子”;“天平的左边排球数量扩大到原数的2倍变成4个排球”,“天平的右边的皮球数量扩大到原数的2倍,变成8个皮球”…

师:同学们有这么多让天平平衡的方法,能概括一下让天平平衡的方法吗?

二、探究新知,引出课题

1.通过解方程,认识“方程的解”和“解方程”的两个概念。

师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。

学生回答教师板书:100+X=250

师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

师:(指着方程)那你猜一猜这个方程X的值是多少?并说出理由

预设:生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

师:谁能用天平平衡的道理来解呢?

生3:老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:课件探索验证一下。请看天平,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:你能根据操作过程说出等式吗?

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,(这样方程左边就只剩X)就能得出X=150。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:指着方程100+X=250说:“X=150”是这个方程的解。(板书:方程的解)

100+X=250

100+X-100=250-100

师指着方框说:“刚才我们求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。

师:同时在书写的时候还要注意“=”对齐。

师:你们怎么理解这两个概念的?(课件出示两个概念)

师:谁来说说你想法?

师:“方程的解”和“解方程”的两个解有什么不同?

小结:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演算过程。

2.尝试解X-a=b形的方程。

师:出示X-3=9(板书)

学生尝试,请一人板演

汇报,评价

师:你是怎么想的?

师:是不是这样的,请看屏幕。(请一位学生说,教师用课件演示)

生:天平左右两边同时放上3个方块,使天平左边刚好是X,天平保持平衡。

师:这时天平表示X的值是多少?

师:讨论方程左右两边为什么同时加3?

生:方程左右两边同时加3,使方程左边只有X,方程左右两边相等。

小结:“方程左右两边同时加3,使方程左边只有X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=12一定是这个方程的解呢?

师:对了,验算方法是什么?

自习课本第58页,模仿检验的书写过程

根据学生的回答板书:

验算方程左边=X-3

=12-3

=9

=方程的右边

所以,X=12是方程的解。

小结:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

三、巩固练习

(1)判断题

A.X=3是方程5X=15的解。()

B.X=2是方程5X=15的解。()

你是怎么想的?

(2)考考你的眼力,能否帮他找到错误所在呢?

X+1.2=4X+2.4=4.6

X+1.2-1.2=4-1.2=4.6-2.4

X=2.8=2.2

小结:解方程首先要写“解”,X每步都不能离,所有的等号要对齐,检验的习惯要牢记。

(3)填空题

X+3.2=4.6X-3.2=4.6

解:X+3.2○()=4.6○()解:X-3.2○()=4.6○()

X=()X=()

(4)解下列方程,带★的要验算

★X+2.8=7.9X-5=28

(5)完成课本59页做一做的第1题的左边一小题写在书上。

追问:x=2.8带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

小结:解含有加法方程的步骤。

三、巩固延伸

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)

解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

四、全课小结

通过今天的学习,同学们有哪些收获?

解方程课件 篇7

《用方程解题》教学反思

《用方程解题》教学反思

用方程解题也是小学非常重要的内容。谈到方程,教科书涉及一些用方程求解的简单应用问题。教学的时候,尤其是举例的时候,强调的是方程的方法,但是因为题目比较简单,所以题目中的等价关系也比较简单。学生可以很容易地用算术来解决问题,所以很多学生不愿意用方程来解决问题,因为用方程来解决问题,他们需要写出解决方案的假设。学生想省事,不喜欢用方程解决问题。

但是,在学习稍复杂的方程时,也是通过实际问题来介绍稍复杂的方程,进一步解释稍复杂的方程的解,一般用于求解稍复杂的方程。有很多方法可以将其中的一个视为一个整体。当然,相对而言,课后解题的类型一般都是用稍微复杂一些的方程来解决的。我记得当时教书的时候,孩子们被迫用方程式来解决问题。但是,我总觉得孩子用方程解题的能力比较弱。

比如有两个未知数的问题类型,用方程来解决这个问题是相当不错的。抽象,但方程的方法是前瞻性的,更容易理解。于是,前几天有同学来找我一道济宁外语的数学题,就是有两个未知数的类型,也就是先设一个未知数,用有这个未知数的公式表示另一个未知数,然后找到有两个未知数的类型。题目中的等价关系可以通过列出方程来求解。其实所谓的问题无非如此。

可见,用方程解决复杂的应用问题是很有必要的。

问题解决教学设计

问题解决教学设计

一年级问题解决教学设计

一年级问题解决教学设计

p>

p>

解方程的教学设计

解方程课件 篇8

教学目标:

1、学会利用等式性质1解方程;

2、理解移项的概念;

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?

①    5x+6=9x②3x+5③7+5×3=22④4x+3y=2

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的`(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

①    2x+3=11②y2=16③x+y=2④3y-1=4y

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

解方程课件 篇9

1.教材内容和地位:

《解方程(二)》是  北师大版数学四年级下册第五单元解方程这部分知识,通过天平游戏,让学生发现等式两边都乘一个数(或除以一个不为零的数),等式仍然成立的性质。利用探索发现的等式的性质,解决简单的方程,培养学生分析、推理你能力。学生通过天平游戏,经历了从生活情境的方程模型的建构过程。探究等式的性质,让学生体会数学的价值,激发学生学习数学的兴趣。

2.学情分析:

为了使教学设计更贴近学情,有效的完成教学目标,我在课前对学生的知识基础和学习经验进行调研,从调研结果可以看出学生对解方程是有一定认识的。

3.教学目标:

根据教材和学情我制定以下三个教学目标:

(1)能根据具体情境,灵活运用解决生活中一些简单的问题,使学生感受到数学与生活的.密切联系。

(2)培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

(3)培养学生合作意识和主动探求知识的学习品质和实践能力。

4.教学重点:知道等式两边同时乘以一个数(或除以一个不为0的数),等式仍然成立 。

新课标指出:学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。我采用的教学方法:采用操作和演示、讲练相结合的教学方法。以突破教学的重难点。

新课标明确指出:数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考,教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发和因材施教,为学生提供充分的数学活动机会。教无定法,贵在得法,通过有效的措施,启发学生思考,引导学生自主探索,鼓励学生合作交流,使学生正在理解和掌握基本的数学知识与技能、数学思想与方法,得到必要的数学思维训练,获得广泛的数学活动经验。为让学生能轻松愉快地学,积极主动探索、根据学生实情,我主要选用讨论法、以手动操作,自主探索,合作交流,直观演示等方式为主,再加上老师的适时点拨,学生间的互相补充、评价,完成教学目标。

为有效的落实教学目标、突破教学重点、难点、在本节课中,我共设计了四个环节:

(四)归纳总结,回顾整理,

在课前与学生谈话,通过掌声和笑容来缓解师生的紧张情绪,从而带着愉悦心情走进新课学习,可见教师在努力向幽默型教师转化,为形成良好的师生关系进行自我调整。

“问答式”“师生一问一答”的形式比较多,根据课题研究我以学生为主,在设计教学时,以课堂提问和追问为主,激发学生上课回答问题的兴趣和积极性。如:

师:等式两边都乘一个数(或除以一个不为零的数),等式还成立吗?先独立思考,再在小组内交流自己的想法。

1) 师:既然我们有两种不同的答案,那我们来做个实验验证一下好吗?左侧放的砝码的质量用X表示,右边放5克的砝码,天平两边平衡。

师:左边加2个x克砝码,右边也加2个5克的砝码,你们发现了什么?(平衡)

师:左边加6个x克砝码,右边也加6个5克的砝码,还会平衡吗?(平衡)

师:通过刚才的观察和你所列的算式,谁能用一句话概括出以上的规律?

师:那同学们想一想,如果两边都除以一个数,等式还会成立吗?下面同学们用天平验证一下。

师:左边去掉一半的质量,右边也去掉一半的质量,天平仍然平衡,用算式如何表示变化过程?

小结:追问是老师在学生回答问题的过程中或者回答问题结束之后的进一步引导,它的目的是进一步发现问题、解决问题,使问题的交流走向深入。成功的追问本质上是一种高效点拨。追问是一种教学策略,追问的问题一定是有意义的、有趣的,同时也是有挑战性的。让学生抓住数学的本质,为后续学习打好基础。

“含有未知数的等式叫方程”,这是方程的定义。本节课在通过不断地摆天平中建立方程的模型。在对“未知数”的处理上,教师没有局限于未知数,而是多方式表达,如可以用文字,也可以用图形、符号、字母等等,这样就可以起到良好的建模。学生不再向以往学生那样,认为“含有字母的等式”才是方程。但此处教师能够在几种方式中再进行优化,让学生体验到由于文字不简洁、图形符号具有局限性等因素,而字母更具有优势,于是在通常情况下我们都采用字母来表示未知数。对于这方面,我在课后进行的修补,但能够融入到新授课中就比较合适。

在教学重点难点基本突破后,让学生及时巩固,然后全班交流。

1、基础练习,完成课后1、2题,  习题设计体现层次性、典型性、探究性,突出教学生活化的教学理念。

3、在计算中总结规律并感受学习数学的魅力和价值。

在一节课即将结束时,我引导学生回顾整个学习的过程,学习时运用数学的思想,使学生在一节课的学习中不仅有知识上的积累,还能在学习方法上有多收获,使学生感受到学习数学的快乐和价值。

最后说板书:

为了唤起学生的注意力,增强学生对新知进一步记忆和理解,板书如下:板书设计简洁,抓住重点方程式,简单明了,重点突出,清晰易记。并用不同色彩粉笔标出易错点,引起学生注意。

解方程课件 篇10

今天我说课的内容是人教版五年级上册第四单元解方程第二课时,下面我将从说教材、说教学目标、说重点和难点、说教法、说学法、说教学过程六个步骤来进行说课。

一、 说教材

本节课是在学生学习了用字母表示数、根据信息列方程以及等式的基本性质的基础上进行学习的,它既是对前面学过知识的复习也为后面学习列方程解应用题,学习稍复杂的方程打下基础。

二、 说教学目标

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

三、说重点和难点

本节课的重点是会利用等式的性质解方程,难点是能理解算理。

四、 说教法

根据我班学生的实际情况,我准备在教学过程中,采用导---探---练三步教学法激发学生的学习兴趣,鼓励学生积极发言和敢于质疑,引导学生自己动脑、动手、动 口,重点分析研究解方程的方法,让学生在做题过程中理解算理。

五、说学法

通过本节教学使学生学会利用等式的性质解方程,在老师的引导以及学生的自主交流学习中理解算理,掌握算法。

六、 说教学过程

(一) 导入

上课前先玩一个猜球游戏,目的是调动学生的学习兴趣的同时引导学生说出可以用字母X来表示盒子里面球的个数。接下来又给学生提供一些信息让学生根据信息列方程,既是为了对前面学过的列方程内容的复习回顾,也是引出本节课的课题:解方程。

(二) 教学例1

以例1为例学习X+3=9这种类型的方程的解法,为了更直观形象的让学生明白算理,开始出示课件(课本例1的图片),提问:怎样使得天平的一边只剩下X,并且天平仍然保持平衡?学生会很自然的想到从天平的左右两边同时拿掉三个方格,进而引导学生想出这是利用了等式的性质,接着引导学生说出这个过程的表达式。在学生理解了算理以后,再在黑板上板书X+3=9的解方程的过程:

X+3=9

解:X+3-3=9-3

X=6

检验:方程左边=X+3

=6+3

=9

=方程右边

所以,X=6是方程的解。

边板书边讲解注意事项:1、解得时候先写上解,解要靠前写;2、解得过程每一步都是等式,而不是递等式;3、等号要对齐;4、一定要进行检验。

在解完方程后接着追问学生:X=6应不应该加单位,让学生明白这里的X只是一个数值,因此不带单位。

接下来,提出问题:为什么方程的左右两边是减掉的3而不是其他数?减掉4行不行?2行不行?引导学生去理解减掉3的目的是使方程的一边只剩下X,方程的另一边只剩下数,这也是解方程的实质。

在讲解完X+3=9这种类型的方程的解法后让学生试着自己解一道方程,招一名学生板演,对刚学的知识及时巩固,也让学生初步尝试到学到知识的喜悦。

(三) 教学例2

在学完例1以后学生已经初步掌握了解方程的一些方法,所以例2:3X=18采取的是学生小组讨论交流学习,接着小组汇报结果:方程的两边同时除以3可以使得方程的一边只剩下X另一边只剩下数。这时可能还有些学生不是很明白,所以我又开始出示课件,还是借助天平朋友把这道题的解题过程演示一下,同时也引导学生想出这道题也是利用了等式的性质。然后,让一学生口述解题过程和检验过程老师板书。最后还是让学生通过做一道类似的练习题来进行巩固,同时找一学生进行板演,对表现好的同学予以加分鼓励。

(四) 反馈练习

学完了两种类型的解方程的方法后,先让学生想一下解方程时有哪些注意事项,再让学生进入练习王国进行练习巩固。

(五) 课堂小结

回忆这节课有哪些收获再次对学过的新知进行巩固。

不足:1、课堂上对解方程的步骤讲解重复的次数太多。

2、练习题设计比较单一,使得整堂课比较枯燥,学生学习的积极性降低。

解方程课件 篇11

教学目标

1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高学生比较、分析的能力。

知识重点解方程的规范步骤

教学难点比较方程的解和解方程这两个概念的含义

教学过程教学方法和手段

引入

(1)上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。

(2)学习这些规律有什么用呢?(用于解方程)从这节课开始我们就会逐渐发现到它的重要作用了。

教学过程一、解决问题。

出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(2)利用加减法的关系:250-100=150。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

二、认识、区别方程的解和解方程。

得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

三、方程的检验

P58例1P59例2。

怎么判断X=6是不是方程的解?将x=6代入方程之中看左右两边是否相等,写作格式是:方程左边=x+3

=6+3

=9

=方程右边

所以,x=6是方程的解。

课堂练习独立完成练习十一第4题,强调书写格式。

小结与作业

课堂小结这节课你学到了什么?(1)解方程和方程的解有什么区别(2)解方程要按照什么样的格式来写?(3)如何检验呢?格式又是怎么样的?

课后追记

本课应用方程平衡原理来解方程,要注意的是检验方程的时候,最后一句话,所以××是方程的解(这里的××学生容易写成方程右边的值)

解方程五年级教案9篇


老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“解方程五年级教案”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

解方程五年级教案 篇1

作为一名专为他人授业解惑的人民教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么优秀的教学设计是什么样的呢?下面是小编为大家收集的五年级数学上册解方程教学设计,希望对大家有所帮助。

教学内容:义务教育课程标准实验教科书数学五年级上册55—57页内容。

教学目标:

1、通过演示操作理解天平平衡的原理。

2、初步理解方程的解和解方程的含义。

3、会检验一个具体的值是不是方程的解,掌握检验的格式。

4、、提高学生的比较、分析的能力;培养学生的合作交流的意识。

教学重点:理解方程的解和解方程的含义,会检验方程的解。

教学难点:利用天平平衡的原理来检验方程的解。

关键:天平与方程的联系。

教具 : 图片,课件

教学过程:

一、 回顾旧知,引出课题(出示课件)

1、实物演示:天平平衡的实验。

师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

生:(100+X)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。

生:100+X=250(课件显示:100+X=250)

2、这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

二、探究新知

1.认识“方程的解”和“解方程”的两个概念

师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

师:XXX同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:你能根据操作过程说出等式吗?

生:100+X-100=250-100

师:这时天平表示未知数X的值是多少?

生:X=150

师:是的,XXX同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师:指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

师:

100+X=250

100+X-100=250-100

指着方框说:“这是求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。

师:同时还要注意“=”对齐。

师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

师:你们怎么理解这两个概念的?

(学生独立思考,再在小组内交流。)

师:谁来说说你想法?

生1:“解方程”是指演算过程

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]

2.教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

生:会。

师:请自学第58页的例1的有关内容。

[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]

师:四人小组讨论方程左右两边为什么同时减3?

[学生独立思考,再在小组内交流。]

师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

生:X+3=9(板书:X+3=9)

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。

师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个方块,使天平左边只剩X,天平保持平衡。师:根据操作过程说出等式?

生:X+3-3=9-3(板书:X+3-3=9-3)

师:这时天平表示X的值是多少?

生:X=6(板书:X=6)

师:方程左右两边为什么同时减3?

生1:使方程左右两边只剩X。

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?

生:验算。

师:对了,验算方法是什么?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

(板书:

验算:方程的左边=6+3=9

方程的右边=9

方程的左边=方程的右边

所以,X=6是方程的解。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

[设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

三、巩固练习

师:现在老师看看同学们对于解方程掌握得怎么样。(课件展示)。

四、课堂小结:解含有加法方程的步骤。(出示课件)

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,显示全过程。)

生:解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

解方程五年级教案 篇2

本节课我准备按以下几个环节进行教学:

(一)基础训练,激趣导入。

上节课的学习中,我们探究了哪些规律?

巩固方程及等式的性质,为下面的学习做好铺垫。

(二)认准目标,指导自学。

1、那我们学习解方程就要充分利用等式的两个基本性质。

板书课题:解方程(一)

2、学生自学教材67~68页例1、例2、例3内容,让学生初步掌握用等式的性质解方程的原理,学完后记录疑问。

(三)合作学习,引导发现。

1、出示课件例1,你了解了哪些信息?怎样列方程?

x+3=9

2、如何解这个方程呢?课件出示利用等式的性质分析的图示。

学生观察图画,同桌交流自己的观察结论,并通过讨论明确解方程的方法。

x+3=9

解:x+3-3=9-3

x=6

3、点名学生汇报,其他同学可以补充。

老师归纳:解方程实质就是把方程转化成x=a的形式,要注意解方程步骤的规范书写。

4、认识、区分方程的解和解方程并学会验算方程的解。

5、学生独立完成例2、例3的内容,并相互检验对方的结果。

老师再次强调要注意解方程和验证步骤的规范书写。

(四)变式训练,反馈调节。

课本67~68“做一做”。

强化重点,巩固新知,培养学生良好的学习习惯。

(五)分层测试,效果回授。

随堂练习册36页《解方程(一)》第一、二、四、五大题

(六)课堂小结

梳理知识形成完整知识体系

(七)布置作业

1、课本练习十五第1题。

2、课本练习十五第4题。

解方程五年级教案 篇3

1.某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

2.一条公路长360m,甲乙两支施工队同时从公路两端向中间铺柏油。甲队的施工数度是乙队的1.25倍,4天后纸条公路全部铺完。甲乙两队分别铺白有多少米? 3.甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

4.李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?

5.某班46名同学去划船,一共乘坐10只船,大船坐6人,小船坐4人,全部坐满。问大船和小船各几只?

6.两城相距480千米,甲乙两辆汽车同时从两城相对开出,3小时后两车相遇,已知甲车每小时行85千米,乙车每小时行多少千米?

7.新岭要修一条长3300米的公路,甲乙两个工程队同时施工,15天完成,甲队每天修125米,乙队每天修多少米?

8.甲乙两车同时从相距528千米的两地相向而行,6小时相遇,甲车每小时比乙车快6千米,求甲乙每小时各行多少千米?

9.甲乙两地相距350千米,甲乙两车同时从两地相对开出,经过3.5小时后两车相遇,甲车每小时行49千米,乙车每小时行多少千米?(用两种方法解答)

10.两个施工队开凿一条隧道,甲施工队每天开凿15米,乙施工队平均每天开凿12米,这条长270米的隧道需要多少天开凿?(用两种方法解答)

11.汽车站有480箱货物,一辆货车运了5次,还剩30箱,平均每次运多少箱?(列方程解答)12.有两组学生去采花,甲组采了123朵,乙组采了57朵,问从甲组拿多少朵到乙组会使乙组是甲组的4倍? 13.两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?

14.甲油库存油112吨,乙油库存油80吨,每天从两个油库各运走8吨油,多少天后甲油库剩下的油是乙油库剩下油的2倍?

15.甲贮水池存水40吨,乙贮水池存水66吨,每分钟从乙池中抽出2吨水放入甲池,多少分钟后,两个贮水池存水同样多?

16.甲仓库粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓运出10吨,则两仓库存粮相等,甲乙两仓库原各存粮多少吨? 17.有两袋大米,甲袋大米的重量是乙袋的1.2倍,如果从甲袋中取出10千克,两袋的重量就相等。甲、乙两袋大米原来各重多少千克?

18.两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?

19.鸡兔同笼,共有35个头,94条腿,求鸡兔各有几只? 20.在植树活动中,六年级植树棵数比五年级的2倍少10棵,五年级比六年级少62棵。两个年级各植树多少棵

21.利民学校合唱团有100人,比舞蹈队人数的3倍少5人,舞蹈队有学生多少人?

22.用48分米铁丝,做一个长方形框架,要使长是宽的2倍,这个长方形框架的长和宽分别是多少?

23.甲乙两辆汽车分别从相距800千米的两城相向开出,8小时相遇,已知甲车每小时行驶45千米, 乙车每小时会驶多少千米? 24.A,B两城相距150千米,甲乙两人同时骑自行车从两地相对出发,甲每小时行16千米,4小时后,两人还相距30千米, 乙每小时行多少千米? 25.两辆汽车从相距400千米的两地同时相对开出,3小时后还相距10千米,已知一辆汽车每小时行驶55千米,求另一辆汽车速度?(26.AB两城相距720千米,一列客车从A城开往B城,行2小时后,另一辆货车从B城开往A城,4小时后与客车相遇,已知客车每小时行80千米,货车平均每小时行多少千米? 27.师徒两人共同加工一批零件,师傅每小时加工60个,徒弟每小时加工50个,两人共同加工275个零件要多少小时?

28.某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计 划,这9天中平均每天生产多少个?

29.新岭要修一条长3300米的公路,甲乙两个工程队同时施工,15天完成,甲队每天修125米,乙队每天修多少米?

30.小军有邮票的张数是小林的3倍,他们一共有邮票240张,求小军和小林各有邮票多少张?

31.某植物园有松树和榕树120棵,已知松树是榕树棵数的2倍,问榕树,松树各有多少棵? 32.果园里有苹果树和梨树共3600棵,苹果树是梨树的3倍,苹果树和梨树各有多少棵? 33.小红和小军一共储蓄了235元,已知小红储蓄的是小军的1.5倍,小红和小军各储蓄多少元? 34.一根绳子长13.4米,第一次剪去3.2米,第二次剪去多少米才能使剩下的长度刚好是第一次剪去的2倍? 35.食堂买来大米和面粉共595千克,其中大米是面粉的2.5倍,买来大米、面粉各多少千克?

36.一套餐桌椅有一张桌子和6张椅子组成,桌子价格是椅子的8倍,总价是2100元,求桌子和椅子的单价是多少元?

37.3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

38.学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

39.食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克? 40.果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵? 41.某班有男生30人,比女生的2倍少10人,这个班有女生多少人?

42.小明和哥哥的年龄和是23岁,哥哥比小明大5岁,问小明和哥哥各多少岁?

43.一个图书馆有儿童读物2.5万册,其它读物是儿童读物的3倍少0.2万册,其它读物有多少册?

44.一张桌子125元,是一张凳子的5倍还多15元,一张方凳多少元?

45.饲养场有公鸡和母鸡480只,母鸡比公鸡的2倍还多30只,这个饲养场公鸡和母鸡各有多少只?

46.小青家今年养了50只鸡,比鹅的3倍还多5只,小青家今年养鹅多少只? 47.果园里有桃树和杏树一共1080棵,已知杏树比桃树的棵数多180棵,杏树和桃树各有多少棵? 48.同学们植树,一班比二班多植63棵,一班42人,平均每人植8棵,二班39人,平均每人植多少棵?(用方程解答)49.甲乙丙三数之和是183,甲数比乙数的2倍多7,丙数比乙数的3倍少4,求甲乙丙三数各是多少? 50.学校第一次买来200盒粉笔,第二次买来150盒,第一次比第二次多付100元,每盒粉笔多少元?

51.大车每次运1.3吨,小车每次运1.2吨,运多少次后,大车比小车多运2.4吨? 52.某机械厂今年每月生产机床150台,比去年每月产量的3倍少30台,去年每月生产机床多少台? 53.师徒合做180个零件。师傅每小时做18个,徒弟每小时做12个,几小时做完? 54.某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好?

55.幼儿园小朋友分糖,每人分5块就多出13块,每人分6块就还少7块,请问有多少小朋友,有多少块糖?

56.四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?

57.小芳买了2本笔记本和5枝圆珠笔,共用去7.5元,每枝圆珠笔0.5元,每本笔记本多少元?

58.水果店运来4箱苹果和6箱梨,共用去244元,已知苹果每箱28元,梨每箱多少元 59.面粉每千克1.9元,大米每千克1.8元,买面粉和大米各10千克,付出50元,应找回多少元?(用两种方法解答)

60.香蕉每千克4.50元,梨每千克4元,小红的妈妈买了4千克香蕉,给了营业员30元,剩下的钱去买梨,能买梨多少千克? 61.买3张桌子和4把椅子一共用了308元,每把椅子32元,每张桌子多少元?(62.一枝钢笔的价钱是一枝圆珠笔的2.5倍,现各买2支,一共用了10.5元,每支钢笔和圆珠笔各是多少元? 63.小明买了1元一张和2元一张的邮票共33张,这些邮票的面值共48元,每种邮票各买了多少张?

64.一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 65.一块三角形地的面积是840平方米,底是140米,高是多少米? 66.一个平行四边形面积是125平方厘米,底是50厘米,高是多少厘米? 67.一个三角形高是18厘米,面积是180平方厘米,底是多少厘米? 68.一个梯形面积是126平方米,上底是13米,下底是17米,这个梯形的高是多少米? 69.一个三角形面积是24.8平方米,底是12.4米高是多少米? 70.一个长方形操场周长是348米,宽是69米,它的面积是多少平方米? 71.一个长方形周长和一个正方形周长相等,已知长方形长24厘米,宽16厘米,求正方形面积? 72.一块长方形地,长是宽的4倍,周长是120米。这个长方形的面积是多少平方米?

73.有三个数,它们的平均数是8.6,其中第一个数是9.1,第二个数比第三个数小0.1,求第三个数

74.三个连续自然数之和153,这三个自然数分别是多少?

75.三个数的平均数是120,甲数是乙数的2倍,丙数比甲数多5,甲, 乙,丙三个数各是多少? 76.甲数是x,乙数是甲数的3倍少0.2, 乙数是5.8,甲数是多少?(列方程解答)77.一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

78.甲乙两地相距300千米,一辆汽车由甲地开出5小时后,距离乙地还有74.5千米,这辆汽车平均每小时行多少千米?

79.龟兔赛跑,全程200米,龟每分钟跑2.5米,兔每分钟跑32米,兔自以为是,在途中睡了一觉,当龟到达终点时,兔子离终点还有40米,兔子在途中睡了几分钟? 80.运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车 运。还要运几次才能运完?

81.一堆煤重20吨,一辆货车运了4次,还剩一半没有运,这辆货车平均每次运多少吨?

解方程五年级教案 篇4

1、华山小学三年级栽树56棵,四年级栽树是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵。五年级栽树多少棵?

2、机床厂原计划每天制造机床40台,实际每天制造50台,结果16天就完成了任务。机床厂实际比原计划提前几天完成任务?

3、小胖骑车郊游,前2小时共行驶了17千米,后3小时平均每小时行驶了10千米,小胖平均每小时骑多少千米?

4、小学五年级数学家庭练习作业:小亚的'体重乘3,再减去19千克,就和爸爸的体重一样,爸爸的体重是78.5千克。小亚的体重是多少千克?

5、一间课室,长7.5米,长是宽的1.25倍,里面坐48个学生,平均每个学生占地多少平方米?(得数保留两位小数)

6、学校购买每张单价是140元的课桌,买了30张还多480元。如果用这笔钱买椅子,可以买40把。每把椅子的单价是多少元?

解方程五年级教案 篇5

解方程试讲稿

一、教材:人教版小学五年级上册解方程

二、试讲稿

导入:

师:上课,同学们好,请坐

师:大家看一下我手里的盒子,猜一猜里面有几个小球。学生踊跃发言。

师:大家说什么的都有,那我们现在就借助天平来测量一下吧。师:同学们现在看一下讲桌上的这个天平,大家可以得到什么信息呢? 生(众):两边平衡了,右边有9个小球,左边是盒子和3个小球 师:很好,我们已经学习了方程,大家可以就此列一个等式吗? 生:x+3=9 师:非常棒,那x是多少呢?带着这个问题,我们今天来学习解方程。(板书—解方程)新授

师:x是多少呢?大家四人小组讨论一下

师:我见大家讨论的差不多了,来靠窗的那组同学来回答一下 学生:x=6 师:说一下理由

学生:6+3=9,所以x肯定是6.师:非常好,请坐,其实我们还可以用等式的性质来解决这个问题。大家再回忆一下等式的性质

学生(众):等式的两边同时加上或减去同一个数,等式左右仍然相等。

师:好,大家上节课学的都很扎实。现在看讲台上的天平,我把左边去掉三个球,根据等式的性质,那右边应该去掉几个 学生:3个

师:大家试着将刚才的过程用式子写出来。我们请两个学生在黑板上写。X+3-3=9-3 师:大家和这个同学写的一样吗?很好,大家完成的都非常好,师:大家现在观察天平,可以发现了什么? 生:盒子里有6个球

师:对,盒子里有6个球,也就是x等于(教师停顿,学生回答)6,大家把它写在本上。师:通过这样的过程,我们就求出了x=3。老师,现在有个问题,刚才我们两边同时减去了3,减去3有什么好,大家思考一下,来穿白色上衣的那位同学回答一下

生:根据等式的性质,可以知道减去3和减去2等式都成立,但是减去3后,就可以直接得到x的值了。

师:请坐,回答的非常好,我们要记得我们的目的是要求未知数x的值。师:我们把x=3叫做这个方程的解,而刚才求方程的解x=3的过程叫做解方程。师:大家看一下课本上对方程的解和解方程的概念,好,现在来一块说一下 生:使方程两边相等的未知数的值叫做方程的解

求方程解的过程叫做解方程。

师:结合刚才我们学的题目,同桌之间讨论一下方程的解和解方程 师:好,现在我们一块来答一下。非常好,方程的解为x=3 师:那解方程呢,嗯嗯,非常好,整个求解的过程的就叫做解方程

师:那老师有一个问题方程的解和解方程都有一个解字,他们之间有什么区别呢,同桌讨论一下

师:好,你来回答一下

生:方程的解,是一个值,解方程的解代表的是一个过程。师:回答的很利索,很好,请坐。

师:那大家观察一下大屏幕上这3个解方程的过程,看一下他们的格式有什么共同点 生:所有的等号都对齐了。

师:大家观察的很细致,这也是我们书写时需要注意的。

师:按x=3是不是这个方程的解呢?这个需要大家检验一下,同桌之间讨论一下,如何检验呢

学生:可以把x=3带入,看看等号左边和右边是否相等。师:很好,思路很清晰,大家是这检验一下,这个解正确吗? 生:正确

师:好,同学们看一下大屏幕上的书写过程,看看和你的一样吗?非常好,接下来,我们做一下做一做的三道题,老师请3个同学来黑板上做,好,就靠墙的这三位同学吧,其它的同学在下面做。巩固练习

师:大家和它们做的一样吗?来,你来说 生:第二个同学没有检验 小结

师:对,我们得到方程的解后要检验一下,我们这节课就快接近尾声了,那大家说一下这节课你们有哪些收获呢?

师:嗯,学会了解方程,对,解方程就是求未知数x的值,还有吗?嗯,需要检验......。作业

师:同学们下去以后给自己写一个方程,并求出这个方程的解,下节课咱们讨论,好,同学们下课。

解方程五年级教案 篇6

人教五年级音乐上册教案

五年级音乐教学计划

一、本学期教学目标与任务:

结合音乐作品的欣赏,了解一些旋律的初步知识(如旋律进行的方式、特点和一般的表现意义),以进一步加强情感体验的能力,加深对音乐形象的感受,进入比较深入的欣赏。

这个阶段我会注重作好以前和今后知识的衔接工作。我会采取多种方式策略,帮助学生自己熟练的应用所学过的知识。并要注意避免学生厌烦枯燥的乐理知识的学习,采取游戏的方式让学生边玩边学。

二、教学分析:

1、唱歌是学习一些适合小学生延演唱的中外优秀歌曲。注重学生用力度、速度的变化手段表现歌曲情感,能够独立、自信地唱歌。

2、欣赏教学是培养学生音乐感受、欣赏和审美能力的有效途径。中外优秀音乐作品对于开阔学生视野,提高文化素养,丰富情感具有重要意义。

3、识谱教学是学生学习音乐的必要环节。教学要符合学生的认知规律,把知识融入音乐实践中去学习。避免单纯而枯燥的讲授,要从感性入手,深入浅出,逐步提高。

4、综合训练为本课本的重要特色之一,旨在通过某一种形式(如歌唱发声、节奏、律动、乐器演奏、音高听辨、节奏与旋律的排列和音乐创作等)的练习、达到多种技能训练或知识运用的要求,依照各课教学目的、既抓住训练重点,又要有所兼顾,充分发挥每一条练习中所包含的训练作用。

三、提高教学质量措施:

1、认真备课,做好前备、复备工作,为能使学生上好课做好充分的准备工作,备课时注意与新课标结合,并注意备学生。

2、因材施教,对不同的学生要注意采用不同的教学手法,使学生能够充分发展。

3、设计好每堂课的导入,提高学生的学习兴趣。

4、课堂形式设计多样,充满知识性、趣味性、探索性、挑战性以及表演性。最大限度的调动学生的积极性。并使他们最大限度地学到知识,掌握技能。并注意在课堂上采取一定的形式,培养学生的团结协作能力及创新能力。

5、积极和其他学科沟通,积极研究学科整合。响应新课标要求。

6、多看多听其他学校的课程,在本校多实施,使学生开阔眼界。教师从中总结经验。

一、西部风情

第一、二课时(拉萨谣)教学目标:

1、通过学习歌曲《拉萨谣》体验西藏民族风情。

2、通过歌曲练习表现质朴自然、高远深邃的感情。

3、注意歌唱的发声和吐字。课时:共两课时。

教学过程:

1、导入新课

(1)复习演唱前面学习过的歌曲。注意引导表达歌曲的情绪,力求做到有感情地歌唱。

(2)通过与以前学习过的歌曲情绪的联系或对比引入本课将要学习的歌曲。(3)听歌曲范唱录音(合唱)。在聆听之前,提示学生注意歌曲演唱形式和情绪。听后引导学生简单讨论。

2、学习新歌

(1)进一步体验歌曲的情感和了解歌曲的背景。

A、学生朗诵歌词。教师纠正、解释歌词中的个别字词。

B、请学生谈这首歌曲的时代背景和对歌曲情感的理解。C、再听歌曲的范唱演唱(最好是教师范唱,也可听独唱录音)。

D、调查了解学生对这首歌曲的熟悉程度(可用举手统计方法,也在可课前进行)。

(2)随琴视唱歌曲歌词(为了体验歌曲的情感,也为了实际检验一下学生对歌曲的熟悉程度)。

A、指导学生分析歌曲的节奏特点。

B、学生读节奏(可用“哒”或其他读法)。提示读节奏时要注意节奏的乐句。

C、在教师弹奏歌曲曲调的“伴奏”下,再读一遍节奏。

(3)学习歌曲的曲调。

A、学生随着教师的琴声试着视唱曲谱(只唱一遍,以便确定下面的练习方式)。

B、请学生分析一下歌曲的“旋律线”(可用手势来表示,注意一个乐句用一个动作)。然后一边作“用手势表现旋律线”的动作,一边进行视唱曲谱练习。(4)学习歌曲的歌词。

A、联系前面分析过的歌词和情绪唱歌词。

B、在练习中提示要注意运用气息的控制唱好连音。(5)用乐器演奏整首歌曲的曲调或其中的几个乐句。

3、小结

(1)再听一遍歌曲录音,请学生对比一下,自己的演唱还有哪些不足。(2)了解一下用乐器演奏这首歌曲的情况。(3)指出下一节课的任务或课下的乐器练习任务。

第三课时(欣赏 北京喜讯到边寨)

一、教学内容:

1、欣赏《北京喜讯到边寨》

2、复习唱好《拉萨谣》

3、聆听《东北秧歌》

4、练习东北秧歌的基本动作

二、教学目标 :

1、让学生感情丰富唱好《拉萨谣》

2、通过聆听《北京喜讯到边寨》感受民族管弦乐,体会苗族、彝族音乐风格

3、学跳秧歌的基本舞步,培养学生热爱生活、热爱祖国的情感

三、教材分析:

这是一首以苗族、彝族音调改编的管弦乐曲,曲调欢快、热烈。

四、教学过程 :

(一)导入

1、师:“上节课我们学习了一首藏族歌曲《拉萨谣》,今天我们一起复习复习,要唱得更好一点。”

2、学生齐唱。

(二)开始上课

1、跟录音演唱。

2、难点指导,跟伴奏带让学生有表情、有感情演唱。

3、过渡聆听《北京喜讯到边寨》。师:“演唱完畲族歌曲,接下来我们来欣赏一首以苗族、彝族音调改编的曲子《北京喜讯到边寨》。”

4、让孩子看着简谱聆听,感受三部分七个主题的音乐旋律。

5、让学生谈谈听后感,教师总结。

6、完成听听想想问题。

7、聆听《东北秧歌》,让学生猜猜此音乐的舞种。

8、引出“秧歌舞”。

9、教师示范跳“秧歌舞”,学生喊口令。

10、动作分解教学……

11、结束。

第四、五课时(三峡的孩子爱三峡)教学目的:、让学生初步了解和感受中国音乐的品种及其基本风格。

2、能够用圆润而有弹性的声音、轻快活泼的情绪演唱《三峡的孩子爱三峡》。

3、教育学生应热爱祖国大家庭,努力学习,将来把我们祖国建设的更美丽。课时:共两课时。教学过程: 一、导入:

首先我们来做一 个游戏:播放一 段“少数民族服饰展”片断,请同学们抢答他们分别属

哪个少数民族?将学生说的各种答案总结归纳,并对积极举手发言的同学以充分地肯定、鼓励 表扬。

二、引入新课:

1、由学生的回答引入:

师:我们的祖国是一 个历史悠久、文化灿烂、幅员辽阔、民族众多的国家,那么谁知道三峡在哪儿呢?

2、学生发言引入教学。

三、激情参与(视唱):

1、播放歌曲。

2、接下来就请同学们轻声哼唱: 注意:(1)强调正确坐姿。

(2)可先放慢速度练习,较熟练后将速度还原。

(3)老师将其有休止符的地方用连音来弹奏,请学生感受效果有何不同?因此,演唱时应把握好连音与休止符的细致要求。

(4)唱“啦”,演唱时注意声音的弹性及气息的支持。

四、学唱歌曲:、师:除了我们以前了解过的汉族歌舞音乐之外,还有许许多多的少数民族歌舞音乐等待着我们去了解,那么首先我们就来完整欣赏一 首歌曲《三峡的孩子爱三峡》,想不想听老师为大家演唱一 遍啊?

(1)歌曲的演唱形式:领唱、齐唱(2)歌曲的风格特点:少数民族音调、师:请同学们试着跟琴轻声哼唱一 遍(或者二到三遍),可分为三部分哼唱,注意:a、休止符b、装饰音。、引导学生发现前面的发声练习就在歌曲之中,由此分析此首歌曲的结构。4、教唱《三峡的孩子爱三峡》一 歌(1)完整视唱旋律。

(2)根据感觉分析的歌曲结构特点,分段学习此歌,特别注意B段衬词的演唱。(3)全体学生完整演唱此歌,(4)完全熟练以后,三段作对比,进行力度、表情、速度变化。让学生感觉力度、表情、速度变化。对音乐表现的影响。

(6)通过学习《三峡的孩子爱三峡》对学生进行爱国主义教育。

第二单元 古诗新唱

第一、二课时 梅花 教学目标:

1、用气息支持唱歌,学习浮点音符的唱法。

2、有感情地背唱歌曲。教学过程:

一、发声练习: 1=D2/4

222 55┃66 5┃02 56┃6?2 ┃5 —┃5—║

二、学唱新歌

1、听录音

2、问:内容情绪是什么?此歌适合在何重情况下唱?

3、找出曲中的浮点音符节奏,并作上记号,哪个同学来试唱一下,(注意X?X中附点四分音符的时值。)

4、第二次听录音,要求学生轻声哼唱。

1、“开火车”,听一句旋律,唱一句歌词,唱的好的同学予以表扬。2、放慢速度跟琴唱第一段 3、请个别视唱第二段 4、分组唱 5、练习齐唱。

第三课时 静夜思 教学目标:

1、学会歌曲《静夜思》,能有气息支持、有感情地唱歌。2、能唱好歌曲中的圆滑音。

3、学习4/4拍节奏特点,学会4/4拍指挥式,能变作指挥式边唱歌。教学过程:

一、发声练习: 1=C-F 2/4 ▼▼▼▼ ▼▼▼▼ ╭——╮ 5555┃6531┃3 2┃1 —║ lalalala lalalala la

二、学唱新歌

1、听录音

2、问:内容情绪是什么?此歌适合在何重情况下唱?

3、学唱曲谱

4、看谱,并听琴音

5、找出旋律特点。

6、听琴音,学唱歌曲。

7、“开小火车”将全曲分为11个乐句,每个学生唱一句,先听后唱,不妥之处其余同学补充。

8、分段唱:第一乐段——男生。第二乐段——女生,副歌——男女生齐唱

9、练习齐唱歌曲。

10、学习了解4/4拍节奏特点,“强、弱、次强、弱”。

11、学习4/4拍指挥式。

12、练习边做指挥式,边唱歌曲。

13、小结。

第四课时 古诗朗诵演唱会 教学目标

1、欣赏歌曲《读唐诗》。

2、通过朗诵演唱古诗,激发学生对古诗的兴趣,知道诗与歌的联系。教学设计:

一、发声练习: 1=C-F 2/4

▼▼▼▼ ▼▼▼▼ ╭——╮ 5555┃6531┃3 2┃1 —║ lalalala lalalala la

二、学唱新歌

1、听录音欣赏歌曲《读唐诗》。

2、再次欣赏找一找歌曲的特点。

3、根据标题,用自己的话来描绘场景。

4、第三次欣赏,要求跟谱轻哼,以加深印象。

5、组织学生进行古诗朗诵演唱活动。

6、小结。

第三单元 美丽的草原

第一课时 欣赏 《天堂》、《牧民的一天》 教学目的:

1、欣赏音乐,学习用点、线和色彩画感受,培养学生想象力和创造力。

2、通过听音乐,画感受,提高学生审美能力。教学过程:

一、听音乐进教室

二、师生问好

三、听记:(简单的旋律)1=F2/4

1 12┃(32 3)┃5653┃2 —┃(2532)┃(12 3)┃2161┃5 -║

方法:A、师奏F大调音阶(上引、下行)生仔细聆听,并分析拍号。

B、师旋律奏一遍,生随音乐用手指划拍(学生应规定速度)

C、师重复弹,生记下各音

D、师再次弹奏,生同时默唱、校正、纠错

E、将听记内容唱一唱

四、念念拍拍:

导入:刚才老师测查了同学们的听音导入:刚才老师测查了同学们的听音考考大家。

(出示小黑板)

(1)X XX┃XXX┃XXX XX┃X -║(2)X?X XX┃XX X┃XXXX XX┃X -║ A、分析拍号后,生自行准备,1-4组第一条,其余的第二条。

B、请个别生念念拍拍,(注意:XXX,XXX XXXX较难),后集体评议

C、要求匀速进行节奏练习,整体的可由慢到快。

对照下面三组节奏,按老师所拍的先后次序,把序号填写在括号里:()XXX XX┃X -║()X XX┃X X X║

()XXXX XX┃X

-║

方法:A、请个别学生上面拍打,其余评议是否正确。

B、生自由练习

C、听老师打节奏,将序号填在相应的小括号中。

D、按序号连起来练习

五、欣赏歌曲《天堂》。

1、播放歌曲。

2、讨论:这首歌曲表达了怎样的情感?你从歌曲中感受到了什么?

3、第二次播放歌曲,讨论:A、歌曲具有哪个民族特色?

B、歌曲曲调由两部分第一部分优美、深情表现了对家乡的赞美,第二部分高亢、充满激情,表现了对家乡的无比热爱,这种变化是怎么表现出来的?

4、第三次播放音乐,让学生边听边用曲线画,感受音乐的起伏变化。

5、完成17页填空练习,并练习唱一唱。

六、欣赏歌曲《牧民的一天》。方法同上。

七、小结。

第二课时 美丽的夏牧场 教学目标:

1、通过学唱《美丽的夏牧场》培养学生富有表情地演唱歌曲、学会采用不同的形式表现歌曲的美。

2、了解哈萨克相关的音乐文化。

教学过程:

一、了解新疆哈萨克族风情

1、播放歌曲《美丽的夏牧场》

2、第二遍听赏,同时出示歌词师:我们一起看看这首歌曲的歌词,唱到了什么山,什么河,哪些景色,你觉得这是哪个地方?

3、结合这些景致,你觉得是哪个民族?

4、介绍新疆哈萨克族师:哈萨克族生活在天山脚下,以游牧为生,是个能歌善舞的民族,民族乐器主要有冬不拉、手鼓(出示图片)

5、边听音乐边打节奏 聆听音乐,说说这是哪个民族的歌曲。听赏并说说歌曲中唱到的景致。学生欣赏画面学生拍打铃鼓(随意的)跟随老师的节奏打一打铃鼓。4/4 0 x 0 x 0 xx x x | 通过学生听一听、看一看,直切本课主题。多媒体课件的播放视听结合,使学生产生好奇。结合民族音乐文化(手鼓等演奏),让学生走进哈萨克族的神奇土地,使学生在了解歌曲的同时培养了审美情趣。激发学生学习兴趣。

二、新歌教学

1、师:我们今天就来学习歌曲《美丽的夏牧场》,请同学们一起来哼唱旋律,同时观察旋律中哪个音出现的最多。

2、师:是的,在歌曲中,以“6”音为主的旋律都给我们感觉比较优美,再加上中速的演唱速度,让歌曲更加抒情了。

3、我们一起来唱第一段歌词,找出你认为最难唱的地方。

4、师:请大家跟着老师的琴声再把第一段歌词完整地唱一遍,你能找出你觉得最抒情的一句吗?为什么?讲述音乐知识“⌒”

6、单独哼唱“啊”(第三乐句)指导声音。

7、师:同学们,这段歌词中出现了“阿肯”一词,你知道是什么意思吗?

8、解释“阿肯”、相关音乐文化。

三、分析处理歌曲

1、总结旋律结构特点,出示图谱。(1)师:我们完整的把歌曲演唱一遍,找出歌曲中旋律相同的乐句,你能用自己的图谱来表示吗?(2)老师出示图谱 ○ ○

2、采用不同的形式表现歌曲。

3、二度范唱师:我们的这首歌也可以用这种形式来演唱,请听。

4、师:如果加快速度,又会带给我们怎样的感受呢?

5、放歌曲《玛依拉》(课件)师:我们再来欣赏一首哈萨克民歌《玛依拉》,与《美丽的夏牧场》作一下比较。

四、总结。

第四单元 欢快的舞步

第一课时

欣赏 大河之舞 教学目标

1、欣赏乐曲《大河之舞》,感受爱尔兰民族的热情奔放。

2、结合相关资料,了解爱尔兰民族特色和踢踏舞。教学过程

1、播放歌曲。

2、讨论:这首歌曲表达了怎样的情感?你从歌曲中感受到了什么?

3、第二次播放歌曲,介绍爱尔兰民族音乐舞蹈传统特色。

4、播放《大河之舞》音像资料,进一步感受爱尔兰音乐、舞蹈的热情奔放。

5、跟着电视学跳踢踏舞。

6、再听音乐,感受乐曲节奏的变化。并让学生用踢踏的形式表现出来。

7、小结。

第二课时

活动:稍息 立正 站好 教学目标:

1、在听赏中感受歌曲的热烈,激发学生表现音乐的兴趣。

2、能根据音乐的节奏,自编韵律操,表现音乐。教学过程:

1、复习上节课相关内容。

2、听赏范晓萱翻唱的歌曲《稍息 立正 站好》。初步感受乐曲的热烈和强烈的节感。

3、说一说歌曲的特点。

4、跟着录音学唱歌曲第二段。

5、学生根据歌曲内容、节奏分组自编动作。

6、各组表演。

7、在教师指导下,学生编排动作。

8、跟着音乐表演韵律操。

9、小结。

第三课时

大家一起来 教学目标:

1、在听赏中感受歌曲的热烈,激发学生表现音乐的兴趣。

2、能根据音乐的节奏,自编韵律操,表现音乐。教学过程:

1、复习上节课相关内容。

2、听赏孙悦演唱的歌曲《大家一起来》。初步感受乐曲的热烈和强烈的节感。

3、说一说歌曲的特点。

4、跟着录音学唱歌曲。

5、学生根据歌曲内容、节奏分组自编动作。

6、各组表演。

7、在教师指导下,学生编排动作。

8、跟着音乐表演韵律操。

9、小结。

第五单元 绿色的畅想

第一、二课时 教学内容:学唱歌曲《手拉手,地球村》。教学目标:

1、初步理解“地球村”的含义,关注世界和平事业和绿色事业,理解歌曲所表达的思想情感,教育学生热爱世界和平保护绿色环境。

2、学会《手拉手,地球村》。教学过程:

一、导入新课

1、同学们谁知道“地球村”是什么意思?

2、复习演唱前面学习过的歌曲。注意引导表达歌曲的情绪,力求做到有感情地歌唱。

3、通过与以前学习过的歌曲情绪的联系或对比引入本课将要学习的歌曲。

4、听歌曲教唱录音(合唱)。听后引导学生简单讨论。

二、学习新歌《手拉手,地球村》。

1、进一步体验歌曲的情感和了解歌曲的背景。

2、随琴视唱歌曲歌词。

3、学习歌曲的曲调。

三、小结

第三课时 教学内容:歌曲《绿色的歌谣》。教学目标:

1、学会歌曲《绿色的歌谣》,能有气息支持、有感情地唱歌。能唱好歌曲中的圆滑音。

2、学习拍节奏特点,学会打拍指挥式,能变作指挥式边唱歌。教学过程:

一、教师谈话导入。

二、学唱新歌《绿色的歌谣》

1、听录音

2、问:内容情绪是什么?此歌适合在何重情况下唱?

3、学唱曲谱,找出旋律特点。

4、听琴音,学唱歌曲。

5、分段唱:第一乐段——男生。第二乐段——女生,副歌——男女生齐唱

6、练习齐唱歌曲。

三、展示

第四课时 教学内容:欣赏小乐队合奏《森林狂想曲》。教学目标:

1、、初步熟悉《森林狂想曲》的音乐,能用竖笛或口风琴吹奏A段主题。

2、通过听《森林狂想曲》感受民族管弦乐,体会藏族、音乐风格。

3、初步进行合奏《森林狂想曲》提高演唱的质量,培养学生热爱生活、热爱祖国大好河山的思想情感。教学过程:

一、教师谈话引入:

二、初步欣赏《森林狂想曲》。

1、初听音乐。(教师简介)

2、让学生熟悉A、B、C各段的旋律。

3、教师分别用电子琴或竖笛演奏A、B、C各段的旋律。使学生听到音乐就能知道是A段还是B段或C段。

4、复听完成课本上的第一个练习。

5、这首乐曲有许多地方运用了“音效”即实地录制的声音,加强了真实感,使人身临其境。(分小组共同探讨、创造、分工)。

三、选择两或三个小组与教师合作,共同演绎《森林狂想曲》。

四、在口风琴或竖笛上学习吹奏“mi”,“fa”,“sol”三个音。

五、随教师用较慢的速度学习吹奏《森林狂想曲》A段的旋律。

第五课时

教学内容:复习唱好《绿色的歌谣》;演绎《森林狂想曲》 教学目标 :

1、让学生感情丰富唱好《绿色的歌谣》 教学过程:

一、谈话导入:

二、复习歌曲《绿色的歌谣》

1、跟录音演唱。

2、难点指导,跟伴奏带让学生有表情、有感情演唱。

3、过渡聆听《绿色的歌谣》。”

三、复习歌曲《手拉手,地球村》

四、合奏练习《森林狂想曲》。

五、教师放录音,共同欣赏,评价。

第六单元 欢乐的鼓声

第一课时 教学内容:欣赏乐曲《龙腾虎跃》。教学目标:

1、了解鼓的作用,激发学生对鼓文化的兴趣。

2、欣赏鼓乐《龙腾虎跃》。体验、感受作品的情感,增强民族自尊心、自信心、自豪感。教学过程:

一、模拟激越的鼓声,为音乐伴奏。

二、教师谈话:出示实物(儿童玩具拨浪鼓、铃鼓、小军鼓、大鼓)指导学生认识乐器的名称及作用。

三、欣赏引子部分。

1、教师播放音乐的引子。

2、学生交流听到的乐曲

四、欣赏第一部分。

1、体会音乐的情绪是怎样的?(学生回答)

2、教师引导学生学唱主题。

3、学习鼓的节奏为主题伴奏(拍手、拍腿、用铃鼓或小军鼓)

五、欣赏第二、三部分。

六、完整欣赏全曲。

七、简要介绍曲作者——鼓乐大师李民雄。

八、补充欣赏《丰收锣鼓》(民乐合奏)。

第二、三课时 教学内容:学唱歌曲《木鼓歌》。教学目标:

1、学会歌曲《木鼓歌》,能有气息支持、有感情地唱歌。能唱好歌曲中的休止音。

2、学习拍节奏特点,学会打拍指挥式,能变作指挥式边唱歌。

3、熟练地演唱歌曲。教学过程:

一、教师谈话导入课题。

1、教师播放《木鼓歌》的录音。

2、简介歌曲表现的内容。

二、学习歌曲《木鼓歌》

1、初听歌曲,感受歌曲欢快活泼的情绪。

练习节奏:XX、XX┃X 0║XX、XX┃X 0┃

XX、XX┃XX X║XX、XX┃X 0┃

2、学习歌曲第1—4小节的旋律:注意歌曲中的休止符(第2、4、8、小节)用听唱法慢速练习。

3、学习歌曲第9—12小节旋律。

三、熟练地演唱歌曲的第一段歌词。

四、分组练习。

五、小组汇报展示。

第四课时

教学内容:继续学唱歌曲《木鼓歌》;欣赏小乐队合奏《森林狂想曲》。教学目标:

1、继续学唱歌曲《木鼓歌》能理解歌曲的意思。

2、进一步熟悉《木鼓歌》的音乐,熟练地演唱歌曲第二段歌词。

3、以快乐、活泼的情绪、饱满而富有弹性的歌声,表现佤族人民对美好生活的热爱之情。教学目标:

一、教师谈话:

二、学习歌曲《木鼓歌》

1、学习第13—18小节的旋律:注意节奏的变化:出现了后十六分节奏、弱拍上出现的八分符点音符、前十六分音符。其中有重复的地方。

2、反复练习9—18小节的旋律。

3、学习第19—21小节的旋律,注意两个重复出现的乐节。

4、第23—28小节总是出现四度的音程跳跃6—

2、2—

5、下滑音记号的唱法。

6、完整地演唱歌曲《木鼓歌》的第二段歌词

三、欣赏歌曲《木鼓歌》。

1、教师播放歌曲木鼓歌》。

2、学生欣赏音乐,加深印象。

3、分组练习展示。

第五课时 教学内容:音乐活动“鼓声传情” 教学目标:

1、进一步了解不同民族的鼓文化,激发学生对祖国民族音乐的热爱之情。

2、小组竞赛活动:哪个小组知道的带“鼓”的词语多。采用合作学习的方式,制作简易的鼓并创编“鼓的对话 教学过程:

一、导入部分。

二、了解不同民族的鼓文化。

1、看录像,内容反映了不同民族的鼓文化。

2、教师播放录像(汉族秧歌舞、维吾尔族的手鼓舞、朝鲜族的长鼓舞、傣族的象脚鼓舞)

3、学生分成小组活动。把商量的结果告诉大家。

4、学生进行合作学习,教师到各组指导

三、展示活动。

四、教师进行小结

第七单元 音乐中的故事

第一、二课时 教学内容:欣赏交响童话《彼得与狼》。教学目标:

1、鼓励学生积极参与,体验各项音乐活动。

2、通过实践活动——欣赏、摸唱、摸奏、再创造等方式,牢固地运用已学过的乐器知识。

3、通过此活动培养学生大胆的想象力和勇敢的表演力。教学过程:

一、谈话导入:

1、西洋乐器可以分为哪几大类?每一分类各举两种乐器。弓弦乐器:大提琴、中提琴、小提琴。木管乐器:长笛、双簧管、大管、单簧管。铜管乐器:小号、长号、圆号 打击乐:定音鼓、大鼓、小军鼓

2、揭示课题。

3、故事梗概。问:有谁知道这个故事的内容?

4、人物介绍。

二、分段欣赏。作品中每个人物和动物的主题是用什么乐器演奏的?

1、片段一,彼得出场。

5、老爷爷出场

2、片段二,小鸟出场

6、狼出场

3、片段三,鸭子出场

7、动物们的反映

4、片段四,猫出场

8、智斗

9、放绳

10、捉狼、11、猎人出场

三、总结人物的个性与音乐的关系 彼得—弦乐四重奏——勇敢坚定 小鸟——长笛——灵巧活泼 鸭子——双簧管——笨拙 猫——单簧管——狡猾的 狼——、圆号——穷凶极恶的 老爷爷——大管——絮叨 猎人——定音鼓和大鼓——枪声、四、分角色进行表演

五、根据每个小组的表演情况进行评奖。

第八单元 美好的祝福

第一、二课时 教学内容: 学习歌曲《平安夜》。教学目标:

1、用优美、和谐的声音演唱歌曲,感受宁静,祥和的气氛,了解歌曲的创作经历。

2、欣赏不同形式的《平安夜》。教学过程:

一、导入。

1、播放歌曲《铃儿响叮当》设问:什么节日能听到这首歌?

2、与圣诞节有关的音乐你们还知道哪些?

二、学习歌曲。

1、教师带领学生有感情地朗读歌词。

2、学习高声部旋律,学习用口琴吹奏歌曲《平安夜》

3、学习低声部的旋律,学习用口琴吹奏歌曲《平安夜》。

4、练习合奏

三、分组用各种形式演唱歌曲

四、各组汇报展示

五、欣赏吉他演奏《平安夜》和电子琴演奏《平安夜》。

第三课时 教学内容:欣赏民乐合奏《花好月圆》。教学目标:

1、从音色、速度、力度、节奏、旋律、情绪等方面感受、体验音乐,加深对民族音乐的喜爱之情。

2、根据乐曲的情绪分段。

3、设计节奏型用打击乐为音乐伴奏。教学过程:

一、谈话导入:

1、教师出示民族乐器的课件,介绍乐曲主奏乐器的音色(笛子、二胡、扬琴)揭示课题。

二、欣赏乐曲

1、欣赏引子部分:这段音乐使人联想到了什么?伴奏乐器中出现了什么声音?

2、欣赏第一主题。

3、欣赏第二段音乐

(1)教师指导学生唱第二段主题。(2)指导学生体会第一乐段的不同。

4、欣赏最后一部分音乐。

5、完整欣赏乐曲。

三、指导学生分组设计节奏型为音乐伴奏

四、教师播放影音资料,学生再次欣赏音乐看画面。

五、各组汇报展示。

第四、五课时 教学内容:学习歌曲《难忘今宵》。教学目标:

1、用满怀深情的歌声表达祝福祖国的心愿,激发学生对美好幸福生活的热爱之情。

2、了解歌曲创作的背景,激励学生加强学习,提高文化底蕴。教学过程:

一、导入部分;

1、教师播放李谷一演唱的歌曲片段。

二、学习歌曲旋律。

1、指导学生朗诵歌词。学生分组朗读歌词。

2、教师给学生介绍歌曲创作的故事,激发学生平时不断的学习

3、学生听音乐朗诵歌词。

4、指导学生轻声哼唱旋律

三、分组学习歌词。

1、指导学生有感情地演唱歌曲。

2、学生用不同的形式演唱(女声、男声、领唱、齐唱)

四、汇报展示

第六课时 教学内容:音乐活动“新年音乐会” 教学目标:

1、用满怀深情的歌声表达祝福祖国的心愿,激发学生对美好幸福生活的热爱之情。

2、进一步了解不同民族的音乐文化,激发学生对祖国民族音乐的热爱之情。

3、以班级召开一次“迎新年音乐联欢会”表达同学们对未来的美好祝福。教学过程:

一、导入:新年快要到了大家想用怎样的方式迎接“新年”的到来呢?

二、分小组进行准备。

1、看音乐录像,内容反映了不同民族的音乐文化。

2、教师检查学生准备的节目及资料。

3、学生分成小组活动,把自己准备的节目表演给大家,让小组同学进行审议,评定。

4、学生进行合作排练,教师到各组指导

三、展示活动。

1、请各组同学把自己最好的节目与大家进行交流。

2、用不同的方式进行“迎新年音乐联欢会”。

四、教师进行小结

五、根据音乐会顺利进行的情况,评选“最佳组织奖”让学生很有自信的展示自己创作,编导的节目。

解方程五年级教案 篇7

这节课你都学会什么?什么是方程的解?什么是解方程?解方程时要注意些什么?

课后反思:

在进行了一次试讲后,我上了《解方程》这节课。因为试讲过一次,对学生容易出现的问题已有所了解,所以再次上这节课时,就知道了侧重点在哪,这也是我没有教过五年级教材的一个弊端吧,总是对学生的情况不了解,把握不好学生容易在哪出问题,总是等学生出现了问题后才知道侧重点。通过上同一节课,通过老师评课和课后反思,对这节课的教学思路清晰了。

这节课与我试讲时相比,我觉得其中一个环节在教学中有所突破。就是让学生认识什么是“方程的解”,在试讲时,这部分教的不扎实,对学生来说印象不深刻。再次讲这节课时,我是这样处理的:通过100+X=250,让学生找出当X的值是∏时,方程的左右两边才相等,当学生用各种不同的方法算出X=150时,方程左右两边相等,这时我指出,X=150就是这个方程的解,然后问,X=100是这个方程的解吗?为什么?什么才是方程的解?通过这样的反复强调,学生很清晰地明白了,使方程左右两边相等的未知数的值才是方程的解。这样处理,我觉得学生对这个概念理解的比较清楚,印象也比较深刻。如果再将“解方程”和“方程的解”进行区分,效果可能会更好些。

但是这节课还有很多不足的地方,如利用天平平衡的算理来解方程时,有些知识点处理的不够主次分明,如,在结合一道题来讲时,重点根据天平平衡的道理来讲,学生明白了其中的道理后,在接下来的进一步练习巩固中,只要结合等式的性质让学生明白只要在方程两边同时加几或者同时减几即可,不需要再讲算理了。也就是说,教学层次不是很分明,应该是有主有次,多放些空间给学生。

解方程五年级教案 篇8

解方程

【学习内容】人教版小学数学五年级上册第五四单元67——68页例

1、例2 【课程标准描述】

能用等式的性质解简单的方程。【学习目标】

1.通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。2.能结合解方程的过程,正确表达“方程的解”和“ 解方程”的含义,知道解方程是求方程的解的一个过程,而方程的解是一个数。【学习重、难点】

通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。【评价活动方案】

1.通过练习十五第1题,关注学生是否能正确判断括号中哪个X的值是方程的解,以评价目标1。

2.通过做一做P68第1题(前两栏)和练习十五第3题,关注学生是否能正确求出方程的解,能否自觉检验,以评价目标2。【学习活动方案】

一、通过演示操作,根据等式的性质解方程(X±a=b)(评价目标1)1.出示一个不透明盒子,学生猜测里面小球的数量。

引导:能准确说出小球个数吗?我们可以用什么来表示?(引导学生用字母X表示)

(课件出示例1)根据图中信息,列出方程。

2.通过演示操作,理解天平平衡的原理。独立思考:盒子里有几个球?X的值是多少? 小组内交流:你是怎样想的?

全班汇报:X的值是多少?你是怎样想的? 预设一:利用加减法的关系计算:9-3=6。预设二:想6+3=9,所以x=6。

预设三:把9分成6和3,想x+3=6+3,所以x=6。

预设四:在方程两边同时减去3,就得到x=6。

思考:前三种都是利用的加减法的关系得到的答案,第四种有什么不同?明确第四种 是根据等式的性质。

引导:他的想法正确吗?我们来验证一下。同时拿走3个球,天平会怎么样?

一名学生借助天平(左边是一个不透明盒和3个球,右边是一个透明盒里9个球,天平平衡)演示操作,两边同时拿走3个球,天平平衡。学生看到左边盒子里确实和右边盒子一样也有6个球。学生复述刚才的操作过程,教师用课件演示。

思考:天平的两边为什么要同时拿走3个球呢?难道同时拿走1个、2个不平衡吗? 明确:只有同时拿走3个,才能让天平的左边只剩下X,这样右边刚好就是X的值。3.规范解方程的书写格式。

学生尝试用算式表示刚才的操作过程。

教师边示范边强调:⑴第二行要写个“解“字;⑵为了清晰美观,每一步的等号都要对齐。

4.思考:在以前计算加减乘除的算式后,我们都要验算。那方程该怎样检验算地对不对呢?

学生交流后汇报,教师根据学生的回答板书检验过程。

二、结合解方程的过程,理解“方程的解”和“解方程”的含义(评价目标2)结合例1明确:像上面x=6这样使方程左右两边相等的未知数的值,叫做方程的解。而求方程的解的过程叫做解方程。(括起解方程的过程,板书:解方程)

(课件出示“方程的解”和“解方程”的定义)说一说这两个概念有什么不同。

小结:方程的解是使方程左右两边相等的未知数的值,是一个数;而解方程是求方程的解过程,是一个计算过程。

三、根据例1的方法,使用等式的性质解方程(形如aX=b、X ÷a=b)(评价目标1)出示例2(3X=18),学生尝试解方程。

一名学生板演到黑板上讲解,并与其他同学进行交流。交流的内容是:

解这个方程的依据是什么? 两边为什么要同时除以3?

(课件演示例2的操作过程,帮助理解为什么要同时除以3)全班口述检验过程。

四、通过练习,进一步巩固解方程的方法(评价目标1、2)1.练习十五第1题。独立判断括号中哪个X的值是方程的解。

2.做一做P68第1题(前两竖栏)。独立解方程,并书面检验第二竖栏。3.练习十五第3题。独立列方程并解答。

五、回顾总结

今天是利用什么知识来解方程的? 解方程大体有几个步骤?应该注意什么? 步骤:1.写“解“;

2..等式的性质求方程的解; 3.检验。

注意:1.“=”要对齐;2.X表示一个数值,后面不写单位名称。

解方程五年级教案 篇9

为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:

(一)引“典”激趣,诱发思考。

引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。

(二)探究新知,建立概念。

1、借助天平,启发思考。

我将教材情境动态化,通过FLANSH课件,让学生充分感知当天平两端都没放物品的时候天平左右两边是平衡的。当我们往天平的一端放上物品而另一端不放的时候,或者两端放的物品质量不等的时候,天平的两臂不平衡,表示两边物体的质量不相等。这时候左边大于右边,或右边大于左边。当我们经过调整,天平两臂再次平衡时,表示两边的物体质量相等,即左边=右边。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。同时,对情境中数据也进行了分批给出的处理。先给出了左边鱼食和小砝码的重量,让学生用一个数学表达式来表示天平左边的质量,再给出天平右边的质量,让学生列出等式。这样就较好地避免了学生习惯性的使用算术的思维方式,同时也顺利地进行了用数字表示向用符号表示的转化。在这一情境的教学中,借助天平这一载体,启发学生理解了平衡,认识了等式。

第二个主题图是本节课教学的核心内容。首先,我引导学生在情境中找出文字信息“4块月饼的质量一共是380克”。然后引导学生结合情境图,把这一信息转化为等量关系。4块月饼的质量是如何表示的呢?用数量关系“每块月饼的质量×4”来表示,“每块月饼的质量×4”表示的是4块月饼的质量,380克也表示4块月饼的质量,所以他们相等。从而完成数量关系向等量关系的转化,算术思想向代数思想的转化,改变学生的长达4年的惯性思维方式。

3、变换角度,深入思考。

第三幅情境图隐含着多样的等量关系,也正是引发学生数学思考的最佳情境。根据学生认识的深入程度,可适当让学生体会到等式的“值等”和“意等”,并放手让学生探究,根据不同的认识找到不同的等量关系,列出等量关系不同的同解方程。在教学中,先引导孩子发现情境中的基本相等关系:2瓶水的水量+一杯水的水量=一壶水的水量,并且列出等式2z+200=2000,在此基础上,再引导孩子发现其他的等量关系。在这一过程中,充分激发孩子探求知识的欲望,调动孩子思考的主动性和灵活性,从而找到多样化的等量关系,并进一步提高孩子解决数学问题的能力。

4、建立概念,判断巩固。

在前面教学的基础上总结、抽象出方程的含义。通过三道例题的简洁数学式子表达,让小组合作寻找他们的共同特点,从而建立方程的概念。“含有未知数”与“等式”是方程概念的两点最重要的内涵。并通过“练一练”让学生直接找出方程。

(三)生活应用,提高能力。

数学应该服务于生活,紧接着我让同学们根据直观图象列方程。这些题目都来自于生活实际,并且分别以现实情境图、线段、文字叙述、综合拓展为顺序,层层递进。学生在用方程表示直观情境里的相等关系后,他们在写方程时会更加关注方程的本质属性,从而巩固方程的概念。练习强调学生在按照“数量关系—等量关系—方程”这样一个过程,通过想一想,找一找,说一说,写一写等不同的形式学会用方程来表示生活中的实际问题,并体会到方程的作用,为以后运用方程解决实际问题打下坚实基础。

解一元一次方程课件教案(精选10篇)


编辑现在向你推荐解一元一次方程课件教案。在给学生上课之前老师早早准备好教案课件,而现在又到了写课件的时候了。 学生反应可以帮助教师制定更适合学生的教学计划。欢迎大家阅读,希望对大家有所帮助!

解一元一次方程课件教案 篇1

一、内容与内容分析

内容

一元一次方程—数学活动(人民教育出版社《义务教育课程标准实验教科书`·数学》七年级上册第三章第四节第五课时)。

内容解析

通过前一阶段“再探实际问题与一元一次方程”的学习,学生基本掌握了销售中的盈亏、用哪种灯节省以及球赛积分表问题。在现实生活中还会有由于各方面的原因,需要选择解决问题的最佳方案,例如顾客在购买某种商品时有几种打折的方法,顾客如何选择最佳的优惠方法;在各种工程的招标中,如何选择最佳的投标方案,用较少的投资取得最佳的效益等等,这些问题有的可以应用一元一次方程的知识加以解决。因此,本课既是对前一阶段学习的巩固,又是新的应用和引伸,同时本课作为“数学活动”,这就为数学拓展了空间,可引导学生到生活中实际了解有关数学问题,尝试应用数学知识解决问题,从而使学生在学习中兴趣盎然,获得真知,培养求异思维和创新的精神。

数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,便会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在知识潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。

教学重点

经历探索具体情境中的数量关系,体会一元一次方程与实际问题之间的数量关系,会用方程解决实际问题.

二、目标和目标解析

1.目标

(1)运用一元一次方程解决现实生活中的`问题,进一步体会“建模”思想方法.

(2)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断.

(3)运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力.

(4)通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度.

2.目标解析

(1)通过活动一,让学生以新闻播报的形式引出本节课的活动1,创设问题情境,调动学习兴趣,学生进一步体会一元一次方程和实际问题的关系;

(2)通过活动二,通过查阅资料,小组交流讨论,探究了解未知的领域与知识!运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法,激发学生学习数学兴趣,增强自信心;

(3)通过活动三,把事先借的报刊、图书拿出来,再收集一些数据,分析其中的等量关系,编成问题,看看能不能用一元一次方程解决这些问题,使学生运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力;

(4)通过活动四,了解了杠杆平衡规律,并运用规律求杠杆平衡时的支点位置;另一方面体会了数学实验对学习的帮助与启发,进一步认识到方程在实际中的广泛应用,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

三、教学问题诊断分析

在本节课的教学过程中,老师只是起到一个组织者,引导者,合作者的作用,所有结论由学生通过动手实验、合作交流、主动发现,这对学生的分析问题,解决问题,表达能力等各方面能力要求较高。本节课两个活动学生生活中的经验不多,大多属于陌生领域与知识,需要学生在实验交流过程中动脑、动口、动手,需要边学习,边应用,有一定难度。由于生活中的数据较大,在计算上也会给学生带来困难。

教学难点

明确问题中的已知量与未知量间的关系,寻找等量关系.

四.教学支持条件分析

ppt、白板交互、微课、实物投影

五、教学过程设计

1.数学活动1 创设情境,导入新课

播报员播报新闻报道:统计资料表明,山水市去年居民的人均收入为11664元,与前年相比增长8%,扣除价格上涨因素,实际增长6.5%.

你理解资料中有关数据的含义吗?如果不明白,请通过查阅资料或请教他人弄懂它们,根据上面的数据,试用一元一次方程求:

(1)山水市前年居民的人均收入为多少元?

(2)在山水市,去年售价为1000元的商品在前年的售价为多少元?(精确到0.1元)

(学生先独立思考、再小组讨论,几分钟后展示成果。本题学生对提议的理解有一定的困难,先理解本题不懂的数据含义)

师引导:说说“增长8%”和“扣除价格因素,实际增长6.5%”的意思;

生回答:通过查阅资料或其他方式解释.

师指明:你能利用这些数据之间的关系从中再计算出一些新的数据吗?

生回答:(1)增长率的公式:(去年人均收入-前年人均收入)前年人均收入=8%,即去年人均收入=前年人均收入(1+8%)

(2)去年价格上涨率=8%-6.5%=1.5%

生独立做,后展示结果.

(1)解:设山水第前年居民人均收入为x元

列方程(1+8%)x=11664

解得x=10800

答:山水市前年居民的人均收入为10800元.

(2)解:设前年的售价为x元

(1+1.5%)x=1000

解得x≈985.2元

答:在山水市,去年售价为1000元的商品在前年的售价为985.2元.

师生共同解决问题.

练习:数据表明:从19xx年至20xx年,虽然国有企业的户数减少了,但国有及国有控股工业企业完成的工业增加值在不断增长,到20xx年底已经升到14652亿元,比上一年增长11.67%,比全国各行业的增加值年均增长高出2.37个百分点。

你能算出20xx年国有控股工业企业的工业总产值吗?还能算出全国其它行业的工业产值的增长百分比吗?经调查,20xx年全国其它行业的工业产值是18895亿元,你能计算出20xx年的总产值吗?

【设计意图】把生活中的新闻报道的内容为问题,一方面锻炼学生运用方程解决问题的能力,另一方面引导学生关注新闻中隐含的数学问题,进一步体会数学在生活中的应用.这种形式也激发了学生自主学习,深入探究的热情,也有利于提高分析问题和解决问题的能力。

活动二.动手实践、探索新知

播报员播报新闻报道:阿基米德曾说过:“假如给我一个支点,我就能撬动整个地球!”进而介绍阿基米德的杠杆原理.

用一根质地均匀的木杆和一些等重的小物体,做下列实验:

(1) 在木杆中间处栓绳,将木杆吊起并使其左右平衡,吊绳处为木杆的支点;

(2) 在木杆两端各悬挂一重物,看看左右是否保持平衡;

(3) 在木杆左端小物体下加挂一重物,然后把这两个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;

(4) 在木杆左端两小物体下再加挂一重物,然后把这三个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;

(5) 在木杆左边继续加挂重物,并重复以上操作和记录.

想想可以怎样替代实验?根据记录你能发现什么规律?

师引导:没有木杆,重物等实验用具,我们可以设计替代实验。

生:小组交流设计,几分钟展示:1.支点不动,重物移动. 2.支点移动,重物不动

师介绍:展示两种试验方法,及数据.

师问:根据记录你能发现什么规律?

生:思考回答。

师问:1.(支点不动,重物移动)如图,在木杆右端挂一个重物,支点左边挂n个重物,并使左右平衡.设木杆长为l cm,支点在木杆中点处,支点到木杆左边挂重物处的距离为x cm,把n,l作为已知数,列出关于x的一元一次方程. x

l

2.(支点移动,重物不动)如果直尺一端放一枚棋子,另一端放n枚棋子,支点应在直尺的哪个位置?设直尺长为L,用一元一次方程求解。

【设计意图】

活动2是动手实验与动脑分析相结合,通过简单实验发现杠杆的平衡条件,并根据这个条件,列一元一次方程,解决问题。问题中有字母n,l作为已知数,进行推导计算,为物理学科的公式推导积累经验.

说明:本节课的教学是以创设情景——活动探究——展示交流——反思评价的方式展开。突出一个“活”字,重在一个“动”字,落实一个“用”字。通过活动,让学生感受数学存在于生活又服务于生活。

布置作业。

请收集一些重要问题(例如气候、节能、经济等)的有关数据,经过分析后编出可以利用一元一次方程解决的问题,并正确的表述问题及其解决过程.

六、目标检测设计

小明和小红到公园玩跷跷板游戏,可是他们俩坐在跷板上怎么也平衡不了。现在知道小明的体重是30千克,小红的体重是27千克,跷板长3.8米。你能帮他俩解决这个问题吗?

【设计意图】

对本节重点内容进行现场检测,及时了解教学目标的达成情况。

解一元一次方程课件教案 篇2

学习目标

1. 会设未知数,并利用问题中的相等关系 列方程,且正确求解

2. 会用一元一次方程解决工程问题

重点难点

重点:建立一 元一次方程解决 实际问题

难点:探究实际问题与一元一次方程的关系

教学流程

师生活动 时间

复备标注

一、 复习:

解下列方程:

1.9-3y=5y+5

2.

二、新授

例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?

分析:这里可以把总工作量看做1。思考

人均效率(一个人做1小时完成的工作量)为 。

由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的工作量为 。

这项工作分两 段完成,两段完成的'工作量之和为 。

解:设先安排x人工作4小时。

根据两段工作量之和应是总工作量,得

.

去分母, 得 4x+8(x+2)=-1701

去括号,得 4x+8x+16=40

移项及合并同类项,得

12x=24

系数化为1,得 X=-243.

所以 -3x=729

9x=-2187.

答:这三个数是-243,729,-2187。

师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决

例4 根据下面的两种移动电话计费方式表,考虑下列问题。

方式一 方 式二

月租费 30元/月 0

本地通话费 0.30元/月 0.40元/分

(1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?

(2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?

解:(1)

方式一 方式二

200分 90元 80元

350分 135元 140元

( 2)设累计通话t分,则按方式一要收费(30+0.3t)元,按方式二要收费0.4t元。如果两种计费方式的收费一样,则

0.4t=30+0.3t

移项,得 0. 4t -0.3t =30

合并同类项,得 0.1t=30

系数化为1,得 t=300

由上可知,如果一个月内通话300分,那么两种计费方式相同。

思考:你知道怎样选择计费方式更省钱吗?

解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.

归纳:用一元一次方程分析和解决实际问题的基本过程如下

三、巩固练习:94页9、10

四、达标测试 :《名校》55页1.2.3.

五、课堂小结:

(1) 这节 课我有哪些收获?

(2) 我应该注意什么问题?

六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:

(1)每一步的依据分别是什么?

(2)求方程的解就是把方程化成什么形式?

先让学生读题分析规律,然后教师进行引导:

允许学生在讨论后再回答.

在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数

学生独立解方程方程的解是不是应用题的解

教师强调解决 问题的分析思路

学生读题,分析表格中的信息

教 师根据学生的分析再做补充

学生思考问题

教师根据学生的解答,进行规范分析和解答

解一元一次方程课件教案 篇3

一、教学目标

(一).知识与技能

会利用合并同类项解一元一次方程.

(二).过程与方法

通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.

(三).情感态度与价值观

开展探究性学习,发展学习能力.

二、重、难点与关键

(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.

(二).难点:会列一元一次方程解决实际问题.

(三).关键:抓住实际问题中的数量关系建立方程模型.

三、教学过程

(一)、复习提问

1.叙述等式的两条性质.

2.解方程:4(x- )=2.

解法1:根据等式性质2,两边同除以4,得:

x- =

两边都加 ,得x= .

解法2:利用乘法分配律,去掉括号,得:

4x- =2

两边同加 ,得4x=

两边同除以4,得x= .

(二)、新授

公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.

问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?

分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台.

题目中的相等关系为:三年共购买计算机140台,即

前年购买量+去年购买量+今年购买量=140

列方程:x+2x+4x=140

如何解这个方程呢?

2x表示2x,4x表示4x,x表示1x.

根据分配律,x+2x+4x=(1+2+4)x=7x.

这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.

下面的框图表示了解这个方程的具体过程:

x+2x+4x=140

合并

7x=140

系数化为1

x=20

由上可知,前年这个学校购买了20台计算机.

上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.

例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.

分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.

问:本题中相等关系是什么?

答:甲组人数+乙组人数+丙组人数=60.

解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:

2x+3x+5x=60

合并,得10x=60

系数化为1,得x=6

所以2x=12,3x=18,5x=30

答:甲组12人,乙组18人,丙组30人.

请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.

(三)、巩固练习

1.课本第89页练习.

(1)x=3.

(2)可以先合并,也可以先把方程两边同乘以2.

具体解法如下:

解法1:合并,得( + )x=7

即 2x=7

系数化为1,得x=

解法2:两边同乘以2,得x+3x=14

合并,得 4x=14

系数化为1,得 x=

(3)合并,得-2.5x=10

系数化为1,得x=-4

2.补充练习.

(1)足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?

(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)

解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个.

列方程 3x+2x=32

合并,得 8x=32

系数化为1,得 x=4

黑色皮块为43=12(个),白色皮块有54=20(个).

(2)设全书共有x页,那么第一天读了( x+2)页,第二天读了( x-1)页.

本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数.

列方程: x+2+ x-1+23=x.

四、课堂小结

初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.

合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.

五、作业布置

1.课本第93页习题3.2第1、3(1)、(2)、4、5题.

2.选用课时作业设计.

合并同类项习题课(第2课时)

一、解方程.

1.(1)3x+3-2x=7; (2) x+ x=3;

(3)5x-2-7x=8; (4) y-3-5y= ;

(5) - =5; (6)0.6x- x-3=0.

二、解答题.

2.育红小学现有学生320人,比1995年学生人数的 少150人,问育红小学1995年学生人数是多少?

3.甲、乙两地相距460千米,A、B两车分别从甲、乙两地开出,A车每小时行驶60千米,B车每小时行驶48千米.

(1)两车同时出发,相向而行,出发多少小时两车相遇?

(2)两车相向而行,A车提前半小时出发,则在B车出发后多少小时两车相遇?相遇地点距离甲地多远?

4.甲、乙二人从A地去B地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达B地,求A、B两地之间的距离.

5.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米;乙练习长跑,平均每分钟跑250米,两人同时、同地、同向出发,经过多少时间,两人首次相遇?

答案:

一、1.(1)x=4 (2)x=4 (3)x=-5 (4)x=- (5)x=30 (6)x=11

二、2.705人,设育红小学1995年学生人数为x人,列方程320= x-150.

3.(1)4 小时,设出发后x小时相遇,列方程60x+48x=460.

(2)3 小时,设B车开出后x小时两车相遇,列方程60 +60x+48x=460.

4.3千米,设A、B两地间的距离为x千米, - = .

5.1 分钟,设经过x分钟两人首次相遇,列方程550x-250x=400.

解一元一次方程

──移项(第3课时)

一、教学内容

课本第89页至第91页.

二、教学目标

(一).知识与技能

理解移项法,并知道移项法的依据,会用移项法则解方程.

(二).情感态度与价值观

鼓励学生自主探索与合作交流,发展思维策略,体会方程的应用价值.

三、重、难点与关键

(一).重点:运用方程解决实际问题,会用移项法则解方程.方程的各项应包括前面的符号

(二).难点:对立相等关系.

(三).关键:理解移项法则的依据,以及寻找问题中的等量关系.

四、教学过程 (一)、复习提问

1.运用方程解决实际问题的步骤是什么?

2.解方程: + =10.

(二)、新授

问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系.

1.每人分3本,那么共分出多少本?(3x本)

2.共分出3x本和剩余的20本,可知道什么?

答:这批书共有(3x+20)本.

根据第二种分法,分析已知量与未知量之间的关系.

3.每人分4本,那么需要分出多少本?(4x本)

4.需要分出4x本和还缺少25本那么这批书共有多少本?

答:这批书共有(4x-25)本.

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可以作为列方程的依据?

这批书的总数是一个定值(不变量)表示它的两个式子应相等.

根据这一相等关系,列方程:

3x+20=4x-25

本题还可以画示意图,帮助我们分析:

从示意图中容易得到这批书的总数与分出书、剩下书的关系是:

这批书的总数=3x+30

这批书的总数与需要分出的书的数量、还缺少书的数量关系是:

这批书的总数=4x-25

根据两种分法,这批书的总数是相等的.

所以,列方程3x+20=4x-25.

注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:表示同一个量的两个不同式子相等.

思考:方程3x+20=4x-25的两边都含有x的项(3x与4x),也都含有不含字母的.常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?

要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即

3x+20 -4x-20 =4x-25 -4x-20

即 3x-4x=-25-20

将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.

像上面那样,把等式一边的某项变号后移到另一边,叫做移项.

方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.

下面的框图表示了解这个方程的具体过程.

3x+20=4x-25

移项

3x-4x=-25-20

合并

-x=-45

系数化为1

x=46

由此可知这个班共有45个学生.

思考:上面解方程中移项起了什么作用?

答:移项使方程中含x的项归到方程的同一边(左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为x=a形式.

在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?

解方程时经常要合并和移项,前面提到的古老的代数书中的对消和还原,指的就是合并和移项.

如果把上面的问题2的条件不变,这个班有多少学生改为这批书有多少本?你会解吗?试试看.

解法1:从原问题的解答中,已求的这个班有45个学生,只要把x=45代入3x+20(或4x-25)就可以求得这批书的总数为:

345+20=135+20=155(本)

解法2:如果不先求学生数,直接设这批书共有x本,又如何布列方程?这时该用哪个相等关系列方程呢?

这批书共有x本,余下20本,共分出(x-20)本,每人分3本,可以分给 人,即这个班共有 人.

这批书有x本,每人分4本,还缺少25本,共需要(x+25)本,可以分给 人,即这个班共有 人.

这个班的人数是一个定值,表示它的两个式子应相等,根据这个相等关系列方程.

= (你会解这个方程吗?)

即 - = +

移项,得 - = +

合并,得 =

系数化为1,得x=155.

答:这批书共有155本.

(三)、巩固练习

1.课本第91页练习.

(1)解:移项,得6x-4x=-5+7

合并,得 2x=2

系数化为1,得x=1

(2)解:移项,得 x- x=6

合并,得- x=6

系数化为1,得x=-24

2.补充练习.

下列移项对不对?如果不对,错在哪里?应当怎样改正?

(1)从3x+6=0得3x=6;

(2)从2x=x-1得到2x-x=1;

(3)从2+x-3=2x+1得到2-3-1=2x-x.

解:(1)错,移项忘了要变号,应改为3x=-6.

(2)错.原方程中的-1仍然在方程右边,并没有移项,所以不要变号,应改为2x-x-=-1.

(3)正确.

四、课堂小结

1.列一元一次方程解决实际问题的关键是审题、读懂题意和找相等关系,今天解决的这个问题的相等关系不明显,隐含在问题中,表示同一个量的两个式子是相等.这个相等关系可以作列方程的依据.

2.正确理解移项法则,移项中常犯的错误是忘记变号,还要注意移项与在方程的一边交换两项的位置有本质区别,移项的依据是等式性质,在方程的一边交换两项的位置是根据交换律.

五、作业布置

1.课本第93页至第94页习题3.2第2、3(3)(4)、6、7、8题.

2.选用课时作业设计.

移项习题课(第4课时)

一、填空题.

1.在方程的两边加上或减去同一项,相当于把原方程中的项______后,从方程的一边移到另一边,这种变形叫做________,其依据是________,移项要注意_____.

2.在方程的一边交换两项的位置______改变项的符号,而移项______改变符号.

3.解方程x+21=36得x=________;由10x-3=9得x=______.

二、判断题.(对的打,错的打)

4.移项就是把方程中的某一项移到等号的另一边.( )

5.从6x=1,移项,得x=1-6,x=-5. ( )

6.由方程-4+x=7移项得x=7-4. ( )

三、解方程.

7.(1)8=7-2y; (2) = - ;

(3)5x-2=7x+8; (4)1- x=3x+ ;

(5)2x- =- +2; (6)- x+6=4x+1;

(7) -x=0.5x-3.

四、解答题.

8.设m=3x-2,n=-2x+3,当x为何值时m=n?

9.甲粮仓存粮1000吨,乙粮仓存粮798吨,现要从两个粮仓中运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨?

答案:

一、1.合并 移项 合并同类项 变号 2.不 要 3.15 1.2

二、4. 5. 6.

三、7.(1)y=- (2)x= (3)x=-5 (4)x=-

(5)x=1 (6)x= (7)x=3

四、8.x=1 9.207,5,设从甲粮仓运出x吨,1000-x=798-(212-x)

解一元一次方程课件教案 篇4

一、课题名称:3.3解一元一次方程(二)——去括号与去分母

二、教学目的和要求:

1、知识目标

(1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;

(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

2、能力目标

(1)通过学生观察、独立思考等过程,培养学生归纳、慨括的能力;

(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

3、情感目标

(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

(2)培养学生严谨的思维品质;

(3)通过学生间的相互交流、沟通,培养他们的协作意识。

三、教学重难点:

重点:去分母解方程。

难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。

四、教学方法与手段:

运用引导发现法,引进竞争机制,调动课堂气氛

五、教学过程:

1、创设情境,提出问题

问题1:我手中有6,x,30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快有对。

学生思考,根据自己对一元一次方程的理解程度自由编题。

问题2:解方程5(x-2)=8

解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少20xx度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

2、探索新知

(1)情境解决

问题1:设上半年每月平均用电x度,则下半年每月平均用电____度;上半年共用电____度,下半年共有电_____度。

问题2:教室引导学生寻找相等关系,列方程。

根据全年用电15万度,列方程,得6x+6(x-20xx)=150000.

问题3:怎样使这个方程向x=a的形式转化呢?

6x+6(x-20xx)=150000

↓去括号

6x+6x-12000=150000

↓移项

6x+6x=150000+12000

↓合并同类项

12x=162000

↓系数化为1

x=13500

问题4:本题还有其他列方程的'方法吗?

用其他方法列出的方程应怎样解?

设下半年每月平均用电x度,则6x+6(x+20xx)=150000.

(学生自己进行解决)

归纳结论:方程中有带括号的式子时,根据乘法分配率和去括号法则化简。(见“+”不变,见“—”全变)

去括号时要注意:

(1)不要漏乘括号内的任何一项;

(2)若括号前面是“—”号,记住去括号后括号内各项都变号。

(2)解一元一次方程——去括号

例题、解方程:3x—7(x—1)=3—2(x+3)。

解:去括号,得3x—7x+7=3—2x—6

移项,得3x—7x+2x=3—6—7

合并同类项,得—2x=—10

系数化为1,得x=5

3、变式训练,熟练技能

(1)解下列方程:

(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);

(2)3(2-3x)-3[3(2x-3)+3]=5;

(3)2 (x+1)+3(x+2)-3=-4(x+3).

(2)学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

(3)学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?

4、总结反思,情意发展

(1)本节课你学习了什么?

(2)本节课你有哪些收获?

(3)通过今天的学习,你想进一步探究的问题是什么?

可以归纳为如下几点:

①本节主要学习用去括号的方法解一元一次方程。

②主要用到的思想方法是转化思想。

③注意的问题:括号前是“—”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项;在实际问题中,要会找等量关系。

5、布置作业

(1)必做题:课本第98页习题3.3第

1、2题。

(2)选做题:

①解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)。

②杭州新西湖建成后,某班40名同学划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?

六、课后小结:

本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开

思考、讨论,进行学习。

强调学生主体意识的体现,在设计中,教师始终把学生放在主体的地位,让学生通过尝试得到解决,归纳出去括号解方程的特点,让学生通过合作与交流,得出问题的不同解答方法。

从设计上体现学生思维的层次性。教师首先引导学生尝试列出含未知数的式子,寻找相等关系列出方程。

解一元一次方程课件教案 篇5

一、目标:

知识目标:能熟练地求解数字系数的一元一次方程( 不含去括号、去分母)。

过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。

情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。

二、重难点:

重点:学会解一元一次方程

难点:移项

三、学情分析:

知识背景:学生已学过用等式的性质来解一元一次方程。

能力背景:能比较熟练地用等式的性质来解一元一次方程。

预测目标:能熟练地用移项的方法来解一元一次方 程。

四、教学过程:

(一)创设情景

一头半岁蓝鲸的体 重是22t,90天后的体重是30.1t,蓝鲸的体重平均每天增加多少?

(二)实践探索,揭示新知

1.例2.解方程: 看谁算得又快:

解:方程的两边同时加上 得 解: 6x ? 2=10

移项得 6x =10+2

即 合并同类项得

化系数为1得

大家看一下有什么规律可寻?可以讨论

2 .移项的概念: 根据等式的基本性质方程中的某些项改变符号后,可以从方程的一边移到另一边 ,这样的. 变形叫做移项。

看谁做得又快又准确!千万不要忘记移项要变号。

3.解方程:3x+3 =12,

4.例3解方程: 例4解方程 :

2x=5x-21 x- 3=4-

5.观察并思考:

①移项有什么特点?

②移项后的化简包括哪些

(三)尝试应用 ,反馈矫正

1.下列解方程对吗?

(1)3x+5=4 7=x-5

解: 3x+ 5 =4 解:7=x-5

移项得: 3x =4+5 移项得:-x= 5+7

合并同类项得 3x =9 合并同类项得 -x= 12

化系数为1得 x =3 化系数为1得 x = -12

2解方程

(1). 10x+1=9 (2) 2—3x =4-2x;

(四)归纳小结

1.今天学习了什么?有什么新的简便的写法?

2.要注意什么?

3. 解方程的 一般步骤是什么?

4.. (1) 移项实际上 是对方程两边进行 , 使用的是

(2)系数 化为 1 实际上是对方程两边进行 , 使用的是 。

(3)移项的作用是什么?

(五)作业

1.课堂作业:课本习题4.2第二题

2.家作:评价手册4.2第二课时

解一元一次方程课件教案 篇6

教学目标:

1、 使学生会列一元一次方程解有关应用题。

2、 培养学生分析解决实际问题的能力。

复习引入:

1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:

(1)__________ (2)_________ (3)_________

人们常规定工程问题中的工作总量为______。

2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的`工作效率是_______。

讲授新课:

1、例题讲解:

一件工作,甲单独做20小时完成,乙单独做12小时完成。

问:甲乙合做,需几小时完成这件工作?

(1)首先由一名至两名学生阅读题目。

(2)引导

Ⅰ:这道题目的已知条件是什么?

Ⅱ:这道题目要求什么问题?

Ⅲ:这道题目的相等关系是什么?

(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

2、练习:

有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?

此题的处理方法:

Ⅰ:先由一名学生阅读题目;

Ⅱ:然后由两名学生板演;

解一元一次方程课件教案 篇7

教学目标

1.在具体情境中,进一步体会方程是刻画现实世界的重要数学模型。

2.知道什么是一元一次方程的标准形式,会通过移项、合并同类项把方程化为标准形式,然后利用等式的性质解方程。

教学重、难点

重点:把方程转化为标准形式。

难点:解方程的应用。

教学过程

一激情引趣,导入新课

1解方程:9x+3=8+8x

2(1)上面解方程的过程中,每一步的依据是什么?

(2)什么叫移项?移项要注意什么?

(3)2-4x+6+5x=8,变形为:-4x+5x+2+6=8,是不是移项?

二合作交流,探究新知

1动脑筋:

某实验中学举行田径运动会,初一年级甲班和丙班参加的人数的.和是乙班参加的人数的3倍,甲班有40人参加,乙班参加的人数比丙班参加的人数少10人,你能算出乙班参加校运会的人数吗?

观察你解方程的过程,原方程做了哪些变形?

形如ax=b(a≠0)的方程叫一元一次方程的_____形式。

2训练

(1)解方程:①11x-2=8x-8,②

(2)下列方程求解正确的是()

A-2x=3,解得:x=,B解得:x=

C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1

三应用迁移,巩固提高

1方程的转化

例1已知x=-2是方程的解,求m的值。

例2若方程2x+a=,与方程的解相同,求a的值。

2实践应用

例3甲仓库有某种粮食120吨,乙仓库有同样的粮食96吨,甲仓库每天卖出粮食15吨,乙仓库每天卖出粮食9吨,多少天后,两仓库剩下的粮食相等?

例4百年问题:我们明代数学家程大为曾提出过一个有趣的问题,有一个人赶着一群羊在前面走,另一个人牵着一头羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊人回答“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊

也给我,我恰好有一百只羊”,请问这群羊有多少只?

四冲刺奥赛

例5当b=1时,关于x的方程a(3x-2)+b(2x-3)=8x-7,有无穷多个解,则a=()

A2B–2CD不存在

例6解方程:3x+=4

例7用一队卡车运一批货物,若每辆卡车装7吨货物,则尚余10吨货物装不完,若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有多少吨?

五课堂练习,巩固提高

P1121

六反思小结,拓展提高

1什么叫一元一次方程的标准形式?解一元一次方程一般要转化成什么形式?

解一元一次方程课件教案 篇8

第一课时

教学目的

1.了解一元一次方程的概念。

2.掌握含有括号的一元一次方程的解法。

重点、难点

1.重点:解含有括号的一元一次方程的解法。

2.难点:括号前面是负号时,去括号时忘记变号。

教学过程

一、复习提问

1.解下列方程:

(1)5x-2=8 (2)5+2x=4x

2.去括号法则是什么?“移项”要注意什么?

二、新授

一元一次方程的概念

如44x+64=328 3+x=(45+x) y-5=2y+l 问:它们有什么共同特征?

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程

x= 3x-2 x-=-l

5x2-3x+1=0 2x+y=l-3y =5

例2.解方程(1)-2(x-1)=4

(2)3(x-2)+1=x-(2x-1)

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x-[3(x+1)-(1+4)]=l

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习

教科书第9页,练习,l、2、3。

四、小结

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业

1.教科书第12页习题6.2,2第l题。

第二课时

教学目的

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。

重点、难点

1、重点:掌握去分母解方程的方法。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

教学过程

一、复习提问

1.去括号和添括号法则。

2.求几个数的最小公倍数的.方法。

二、新授

例1:解方程(见课本)

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

补充例:解方程 (x+15)=- (x-7)

三、巩固练习

教科书第10页,练习1、2。

四、小结

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

五、作业

教科书第13页习题6.2,2第2题。

第三课时

教学目的

使学生灵活应用解方程的一般步骤,提高综合解题能力。

重点、难点

1、重点:灵活应用解题步骤。

2、难点:在“灵活”二字上下功夫。

教学过程 :

一、 一、 复习

1、一元一次方程的解题步骤。

2、分数的基本性质。

二、新授

例1.解方程(见课本)

分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。

例2.解方程(见课本)

例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)

分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。

三、巩固练习。

根据公式V=V0+at,填写下列表中的空格。

VV0at02848314155476137

四、小结。

若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。

五、作业 。

解一元一次方程课件教案 篇9

一、学习目标

1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

二、重点:

解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

难点:去分母法则的正确运用。

三、学习过程:

(一)、复习导入

1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

2、回顾:解一元一次方程的一般步骤及每一步的依据

3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。

(二)学生自学p99--100

根据等式性质,方程两边同乘以,得

即得不含分母的方程:4x-3x=960

X=960

像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是

(三)例题:

例1解方程:

解:去分母,得依据

去括号,得依据

移项,得依据

合并同类项,得依据

系数化为1,得依据

注意:1)、分数线具有

2)、不含分母的项也要乘以(即不要漏乘)

讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。

(1)方程去分母,得

(2)方程去分母,得

(3)方程去分母,得

(4)方程去分母,得

通过这几节课的学习,你能归纳小结一下解一元一次方程的一般步骤吗?

解一元一次方程的一般步骤是:

1.依据;

2.依据;

3.依据;

4.化成的形式;依据;

5.两边同除以未知数的系数,得到方程的'解;依据;

练一练:见P101练习解下列方程:(1)(2)

(3)思考:如何求方程

小明的解法:解:去百分号,得同学看看有没有异议?

四、小结:

谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。

五、课堂检测:

1、去分母时,在方程的左右两边同时乘以各个分母的_____________,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有

2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1

(4)=+1(5)

六、作业

P102:3,10.

解一元一次方程课件教案 篇10

教学目标:

1.知识目标

(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。

(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

2.能力目标

(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;

(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

3.情感目标:

(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

(2)培养学生严谨的思维品质;

(3)通过学生间的互相交流、沟通,培养他们的协作意识。

教学重点:

1.弄清列方程解应用题的思想方法;

2.用去括号解一元一次方程。

教学难点:

1.括号前面是-号,去括号时,应如何处理,括号前面是-号的,去括号时,括号内的各项要改变符号。

2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。

教学过程:

一、 创设情境,提出问题

问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。

学生思考,根据自己对一元一次方程的理解程度自由编题。

问题2:解方程5(x-2)=8

解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的`奥秘。

问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少20xx度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

(教学说明:给学生充分的交流空间,在学习过程中体会取长补短的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)

二、 探索新知

1. 情境解决

问题1 :设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。

问题2:教师引导学生寻找相等关系,列出方程。

根据全年用电15万度,列方程,得6x+6(x-20xx)=150000.

问题3:怎样使这个方程向x=a的形式转化呢?

6x+6(x-20xx)=150000

去括号

6x+6x-12000=150000

移项

6x+6x=150000+12000

合并同类项

12x=162000

系数化为1

x=13500

问题4:本题还有其他列方程的方法吗?

用其他方法列出的方程应怎样解?

设下半年每月平均用电x度,则6x+6(x+20xx)=150000.(学生自己进行解题)

归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是+号,把+号和括号去掉,括号内各项都不改变符号;括号前面是-号,把-号和括号去掉,括号内各项都改变符号。)

去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是-号,记住去括号后括号内各项都变号。

2. 解一元一次方程去括号

例题:解方程3x-7(x-1)=3-2(x+3)

解:去括号,得3x-7x+7=3-2x-6

移项,得 3x-7x+2x=3-6-7

合并同类项,得 -2x=-10

系数化为1,得x=5

三、 课堂练习

1.课本97页练习

2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其它年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

四、总结反思

1.本节课你学习了什么?

2.通过今天的学习,你想进一步探究的问题是什么?

( 由学生自主归纳,最后老师总结)

四、 作业布置

1. 课本102页习题3.3第1、4题

2. 配套资料相关练习

教学反思:本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出答案。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习

解一元一次方程课件集合十篇


老师在正式上课之前需要写好本学期教学教案课件,现在着手准备教案课件也不迟。老师上课时应以教案课件为依据,如何写优质课的教案?无法理解“解一元一次方程课件”幼儿教师教育网小编来给您讲讲,本文仅供阅读参考切勿抄袭!

解一元一次方程课件(篇1)

教学目标:

知识与技能:

1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:

在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用

新知识解决实际问题的能力。

情感态度和价值观:

让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,

认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。

教学过程与方法:

在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

情感态度和价值观:

让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。

教学难点:根据具体问题中的相等关系,列出方程。

教学准备:多媒体教室,配套课件。

教学过程:

设计理念:

数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。课程标准的建议要求教师不再是“教教材”而是“用教材”。本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。

一、游戏导入,设置悬念

师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

生1:24,师:2,3,9,10生2:84师:17,18,24,25

师:同学们想学会这个魔术吗?生:想!

师:通过这节课的学习,同学们一定能学会!

【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。】

二、突出主题,突出主体

1、师:看大屏幕,独立思考下列问题,根据条件列出式子。

(1)x的2倍与3的差是5,

(2)长方形的的长为a,宽比长少5,周长为36,则=36

(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180

生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180

师:这些式子小学学习过,它们是()?生:方程。

师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)

【这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。】

2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:

(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?

(2)什么叫一元一次方程?

(3)什么是的解?你找到验证的方法吗?

师:在阅读P/80例题1时老师做出友情提示:

(1)选择一个未知数x

(2)对于这三个问题,分别考虑:

用含x的未知数分别表示正方形的边长;

用含x的未知数表示这台计算机的检修时间;

用含x的未知数分别表示男、女生人数。

(3)找一个问题中的相等关系列出方程

学生讨论出上述答案后

师:大屏幕显示上述问题的答案

【以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!】

三、体现新时代教师是学生学习的合作者

在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。

师:(强调)(1)方程两边表示的是同一个数;

(2)左右两边表示的方法不同。

【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】

四、给学生一个展示自己精彩的舞台

师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?

设任意框出的四个数字的第一个为x,则:

生1:x+(x+1)+(x+7)+(x+8)=24;

生2:x+(x+1)+(x+7)+(x+8)=84

师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。

解一元一次方程课件(篇2)

一。教学目标:

1。知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

2。能力目标:培养学生的运算能力与解题思路。

3。情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。

二。教学的重点与难点:

1。重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。

2。难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。

三。教学方法:

1。教 法:讲课结合法

2。学 法:看中学,讲中学,做中学

3。教学活动:讲授

四。课 型:新授课

五。课 时:第一课时

六。教学用具:彩色粉笔,小黑板,多媒体

七。教学过程

1。创设情景:

今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的她

心里想一个数

将这个数+2

将所得结果

最后+7

将所得的结果告诉老师

(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)

老师:同学们知道老师是怎样猜到的吗?

同学:不知道。

老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。

2。探究新知:

一元一次方程的概念:

前面我们遇到的一些方程,例如 3

老师:大家观察这些方程,它们有什么共同特征?

(提示:观察未知数的个数和未知数的次数。)

(抽同学起来回答,然后再由老师概括。)

只含有一个未知数,并且含有未知数的式子都是整式,未知数的'次数是l,像这样的方程叫做一元一次方程。

老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?

再次强调特征:

(1)只含一个未知数;

(2)未知数的次数为1;

(3)是一个整式。

(注意:这几个特征必须同时满足,缺一不可。)

3。例题讲解:

例1判断如下的式子是一元一次方程吗?

(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由。)

① ② ③

④ ⑤⑥

准确答案:①③

下面我们再一起来解几个一元一次方程。

例2。解方程

(1)

解法一:解法二:

提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号

(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)

(2)

解:

提示

1)。在我们前面学过的知识中,什么知识是关于有括号的。

2)。复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。

3)。问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。

4)。问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。

5)。一起回顾合并同类项的法则:未知数的系数相加。

6)。系数化为1,运用了等式的性质。

(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式。)

方程(1)该怎样解?由学生独立探索解法,并互相交流。

解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1。

4。巩固练习

(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)

5小结:和同学们一起回顾我们这节课学习了什么?

解一元一次方程

概念

含括号的一元一次方程的解法的解法

作业:1。P12 。1

2。预习下一节课的内容,

3。复习此节课的内容,并完成一下两道思考题。

思考:(1) 解方程: 。

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

(2) 该怎么求解?

解一元一次方程课件(篇3)

一、教材分析

1、教材地位和作用

本节课是预初第二学期第六章《一元一次方程及其解法》中第一节课的内容。是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解。并在前一章刚学过有理数的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。

2、教学目标

综上分析及教学大纲要求,本课时教学目标制定如下:

⒈会运用等式的两条基本性质对等式进行变形;运用等式的性质和移项法则解一元一次方程;

⒉会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念。

⒊体会解决问题的一种重要的思想方法----尝试检验法。

3、情感目标:

培养学生由算术解法过渡到代数解法的`解方程的基本能力,渗透化未知为已知的重要数学思想。

4、教学重点和难点

1.运用等式的基本性质对等式进行变形。

2.移项法则及方程解的检验。

二、教法与学法分析

教法方法与手段:

本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。采用教师引导,学生自主探索、观察、归纳的教学方式。利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。

学法指导:

根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。

三、教学设计

根据以上综合分析,这节课的教学流程为:

联系实际,创设情境——观察归纳,建构新知——交流对话,自我探索——理解性质,应用巩固——总结反思,布置作业。

解一元一次方程课件(篇4)

教学目标:

1、能说出什么叫一元一次方程;

2、知道“元”和“次”的含义;

3、熟练掌握最简一元一次方程的解法及理论依据;

能力目标:

1、培养学生准确运算的能力;

2、培养学生观察、分析和概括的能力;

3、通过解方程的教学,了解化归的数学思想。

德育目标:

1、渗透由特殊到一般的辩证唯物主义思想;

2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;

3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;

重点:

1、一元一次方程的概念;

2、最简方程的解法;

难点:正确地解最简方程。

教学方法:引导发现法

教学过程

一、旧知识的复习:

1、什么叫等式?等式具有哪些性质?

2、什么叫方程?方程的解?解方程?

二、新知识的教学:

(1)只含有一个未知数;

(2)未知数的次数都是一次。

想一想:

(1)你认为最简单的一元一次方程是什么样的?

(2)怎样求最简方程(其中是未知数)的解?

三、巩固练习

1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。

2、检测:

3、课堂小结:

四、本节学习的主要内容

1、一元一次方程定义;

2、最简方程(其中是未知数);

3、解最简方程的主要思路和解题的关键步骤及依据。

五、课堂作业。

解一元一次方程课件(篇5)

教学目标:

知识与技能目标:

会从实际问题中抽象出数学模型;会用一元一次方程解决一些实际问题。

过程与方法目标:

通过观察、实践、讨论等活动经历从实际中抽象数学模型的过程。

情感与态度目标:

在积极参与教学活动过程中,初步体验一元一次方程的使用价值,形成实事求是地态度和独立思考的习惯。

教学重点:弄清题意,用列方程的方法解决实际问题。

教学难点:寻找实际问题中的等量关系,建立数学模型。

教辅工具:多媒体课件

教学程序设计:

程序

教师活动

学生活动

设计意图

前面我们学习了:解方程时有括号一般要先去括号,请问去括号时要注意什么要点?

问题1:解下列方程

(1)5X+2(3X-3)=11-(X+5)

(2)10x-4(3-x)-5(2+7x)=15x-9(x-2)

请学生回答之后就5分钟练习

复习回顾有括号的方程的解法。

例2:出示问题:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。已知水流的速度是3千米/时,求船在静水中的速度?

出示幻灯,学生先独立思考

通过解决生活中的实际问题来进一步学习有括号的方程的解法

1.情境解决

问题1:一般情况下可以认为这艘船往返的路程相等,由此可填空:顺流速度________顺流时间________逆流速度_________逆流时间

问题2:教师引导学生寻找相等关系,列出方程。

设船在静水中的速度为x千米/时,则顺流速度为(x+3)千米/时,逆流速度为(x-3)千米/时,列方程,得

2(x+3)=2.5(x-3).

问题3:同学们自己解之后,请一位同学出来展示自己的计算情况

2(x+3)=2.5(x-3)。

去括号,得2x+6=2.5x-7.5

移项,得2x-2.5x=-7.5-6

合并同类项,得-0.5x=-13.5

系数化为1,得x=27

答:船在静水中的速度为27千米/时。

例3:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?

分析:解决问题的关键:

1.如果设x名工人生产螺钉,则_______名工人生产螺母;

2.为了使每天的产品刚好配套,应使生产的螺母恰好是螺钉数量的________.

解:设分配x名工人生产螺钉,其余(22-x)名工人生产螺母,根据螺母数量与螺钉数量的关系,列方程,得

2脳1200x=2000(22-x)

去括号,得2400x=44000-2000x

移项及合并同类项,得4400x=44000

系数化为1,得x=10

生产螺母的人数为22-x=12.

答:应分配10名工人生产螺钉,12名工人生产螺母。

小组讨论后回答问题,并找出等量关系,作出解答

师生共同归纳出解题的方法,抓住合适的等量关系

出示幻灯,学生先独立思考,老师提问

小组讨论后回答问题,并找出等量关系,作出解答

教师边教边引导,让学生明白需找出哪些关键量,建立怎样的等量关系

教师边教边引导,让学生明白需找出哪些关键量,建立怎样的等量关系

巩固

练习

1、1、一架飞机在两城之间航行,风速为24千米/时,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离?

2、2、某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?

学生动手自行解决问题,个别学生展现解答并讲解

加强对于数量关系的理解和应用

巩固提高这类问题的阅读理解能力和解题能力。

应用提高

1、两个水池共贮有水50吨,甲池用去水5吨,乙池注进水8吨后,这时甲池的水比乙池的水少3吨,甲、乙水池原来各有水多少吨

3、2、某车间每天能生产甲种零件120个,或者乙种零件100个。3个甲种零件和2个乙种零件才能配成一套,要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?

学生自行思考,解答出来

学生小组探讨,教师给予适当的指导

展示学生的答案

巩固提高这类问题的阅读理解能力和解题能力。

小结

1、本节课你学习了什么?

水流问题,顺水的速度=静水中的速度+水流的速度

逆水的速度=静水中的速度--水流的速度

一个螺钉要配两个螺母鈥澥锹菽傅母鍪锹荻じ鍪牧奖?/p>

我还学会了用一元一次方程去解决水流问题和配对问题

2、通过今天的学习,你想进一步探究的问题是什么课?还想学习有分母的方程的解法

师生共同小结

让学生自主发现学习配套问题应注意的方面

布置

作业

1.本102页习题3.3第5、7题

2、预习问题和例4、例5

课后

反思

解一元一次方程课件(篇6)

学习目标

1. 会设未知数,并利用问题中的相等关系 列方程,且正确求解

2. 会用一元一次方程解决工程问题

重点难点

重点:建立一 元一次方程解决 实际问题

难点:探究实际问题与一元一次方程的关系

教学流程

师生活动 时间

复备标注

一、 复习:

解下列方程:

1.9-3y=5y+5

2.

二、新授

例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?

分析:这里可以把总工作量看做1。思考

人均效率(一个人做1小时完成的工作量)为 。

由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的工作量为 。

这项工作分两 段完成,两段完成的'工作量之和为 。

解:设先安排x人工作4小时。

根据两段工作量之和应是总工作量,得

.

去分母, 得 4x+8(x+2)=-1701

去括号,得 4x+8x+16=40

移项及合并同类项,得

12x=24

系数化为1,得 X=-243.

所以 -3x=729

9x=-2187.

答:这三个数是-243,729,-2187。

师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决

例4 根据下面的两种移动电话计费方式表,考虑下列问题。

方式一 方 式二

月租费 30元/月 0

本地通话费 0.30元/月 0.40元/分

(1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?

(2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?

解:(1)

方式一 方式二

200分 90元 80元

350分 135元 140元

( 2)设累计通话t分,则按方式一要收费(30+0.3t)元,按方式二要收费0.4t元。如果两种计费方式的收费一样,则

0.4t=30+0.3t

移项,得 0. 4t -0.3t =30

合并同类项,得 0.1t=30

系数化为1,得 t=300

由上可知,如果一个月内通话300分,那么两种计费方式相同。

思考:你知道怎样选择计费方式更省钱吗?

解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.

归纳:用一元一次方程分析和解决实际问题的基本过程如下

三、巩固练习:94页9、10

四、达标测试 :《名校》55页1.2.3.

五、课堂小结:

(1) 这节 课我有哪些收获?

(2) 我应该注意什么问题?

六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:

(1)每一步的依据分别是什么?

(2)求方程的解就是把方程化成什么形式?

先让学生读题分析规律,然后教师进行引导:

允许学生在讨论后再回答.

在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数

学生独立解方程方程的解是不是应用题的解

教师强调解决 问题的分析思路

学生读题,分析表格中的信息

教 师根据学生的分析再做补充

学生思考问题

教师根据学生的解答,进行规范分析和解答

解一元一次方程课件(篇7)

兰州城市学院

《一元一次方程 》

的教学设计

[2014/4/10]

数学学院112本 马保清

《一元一次方程》教学设计

一. 教材:人教版七年级数学(上册). 二. 课时安排:45分钟(一节课).三. 教学对象:七年级学生.

四. 授课老师:数学学院112本 马保清.

五. 教学目标:

1、知识与技能:了解方程和方程的解以及一元一次方程的概念,从而会判断一元一次方程

2、过程与方法:使学生从简单的实际问题中建立一元一次方程的模型;

3、情感态度价值观:经历把具体问题转化成一元一次方程的过程。 七.教学重点和难点:

重点:一元一次方程的概念,正确列出一元一次方程。 难点:正确列出一元一次方程。

八.教学过程:

1. 创设情境,引入新课:

课始,老师问学生:“你们知道前段时间很多市民抢购纯净水吗?你们有没有抢购纯净水呢?”这样一问引起学生极大的兴趣,学生各抒己见纷纷举手争抢发言。

生1:我买了三瓶升的康师傅矿泉水,一瓶要5元钱。 生2:我没有买,但我听说周围的同学买了一箱纯净水花了一百多元钱呢。 生3:学校通知完后,我去超市没有买到水.生4:大家抢购纯净水都是受了有些传谣,是骗人的。 师:同学们,你们知道为什么会出现这种造谣吗?

生5:因为兰州水质的问题,大家都但心饮水问题,所以进行了抢水,其实政府在发现水质出现问题之前已经有了解决方案,不知道的人都在盲目的抢购纯净水。

师:这位同学回答的非常好。因为人们听信谣言,盲目抢购纯净水,使得本地区的纯净水供不应求,一些商贩乘机哄抬纯净水价格,使得一时纯净水的价格暴涨。政府对这个问题非常重视,一方面通过媒体向人们宣传不要听信谣言;一方面加紧市场整治,维护消费者的利益,同时紧急从其他地方调运纯净水,满足人们日常生活的需求。

师:同学们,现在我们一起探讨如下问题。(教师将事先准备好的题目贴

于黑板上。)

问题1:甲地纯净水紧缺,现有3万瓶,乙地还有纯净水27万瓶,为了调解市场,问从乙地调运多少纯净水到甲地,才能使两地的纯净水数量相等。

师:请同学们讲出自己的想法。 生1:(273)2312(万瓶) 生2:(273)212(万瓶)

273271512(万瓶) 生3:272生4:(272)(32)15,15312(万瓶) 生5:(272)(32)12(万瓶) 师:请同学们判断一下,这几位同学的做法正确吗?他们采用了什么方法。 生:答案都正确,他们用小学学过的的直接列算式求出答案的。

师:回答的非常好,同学们都是用小学学过的的直接列算式求出答案的。那同学们有没有什么其他方法呢?

生:设未知数。

师:对,这位同学很聪明。接下来我们就看怎样通过设未知数,求解这个问题。

这时提出方法的概念:含有未知数的等式叫方程。

注:等式的分类:

1.等号两端总是相等,这类等式叫做绝对等式,也叫恒等式。如:5=5 2.只有当x等于某个数时,两端才相等,这种等式叫做条件等式。如:x35

3.等号两端总不相等,这种等式叫做假等式。如:5=3 练一练:

判断下列各式是不是方程,并讲明理由。

(1)-2+5=3 (2)3x17

(3) xy8 (4)2ab 继续进入问题1 1.设从乙地应调水x万瓶到甲地。 (设未知数)

2.乙地水的瓶数= 甲地水的瓶数 (找出等量关系) x3x(万瓶) (列出方程) 2.建立一元一次方程模型:

根据下列问题,设未知数并列出方程: 章节图中的汽车匀速行驶经王家庄、青山、秀水三地的时间表如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。王家庄到翠湖的路程有多远?

解:设王家庄到翠湖的路程为x千米。 (设未知数)

万家庄到青山的速度=万家庄到秀水的速度。(找出等量关系)

x50x70

(km/h) (列出方程) 35师:老师接着继续给大家写出三个例子请同学们按照我们解问题1的方法列出等式。(小组讨论) ① 用一根长24cm的铁丝围成一个正方形,正方形的边长是多少? 解:(1)设未知数:设正方形的边长为xcm (2)等量关系:4*边长=24 (3)列出方程:4x24

② 一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

解:(1)设未知数:设x月后这台计算机的使用时间达到规定的检修时间2450小时。

(2)等量关系:这台计算机的使用时间。 (3)列出方程:1700150x2450

③某校的女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

解:(1)设未知数:设这个学校的学生人数为x人,则女生为人,男生人数为(1)x人。

(2)等量关系:女生人数-男生人数=80 (3)列出方程:(1)x80 3.一元一次方程的认识:

请同学们比较一下刚才你们列的三个方程,有什么样的特点? x24 1700+150x=2450 (1)x80 注意:方程两边都是整式;

只含有一个未知数(元);

未知数的指数(次数)是一次。

给出定义:只含有一个未知数(元),未知数的次数是1,这样的方程叫做一元一次方程

问题①:一元一次方程中元指的是什么?次指的是什么?

②判断下列成员是否是一元一次方程家庭成员,能否进入家庭聚会之门?若不行,请说明理由。

第一组: 1).5x0 (2).13x

3).y24y (4).3m21n

第二组: 若2xb4,(a1)x2x3也想参加聚会,a,b应满足什么条件?

九、巩固练习:

(1)-1=4是方程吗?(是) 1x

(2)列式表示a与3的差等于-2。(a32)

(3)上题列出的式子是方程吗?如果是,未知数是什么?并说明自己的理由。 (4)综合题:天平的两个盘A、B分别盛有51g,45g盐,应该从盘A内拿出多少g盐到盘B内,才能使两者所盛盐的质量相等? 解:设应该从盘A内拿出a克盐到B盘内。 51a45a

十.教学方法:教练结合,讨论交流,引导探究。 十一.教学手段:ppt,计算机,板书。

解一元一次方程课件(篇8)

一元一次方程的复习

复习目标:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)会解一元一次方程。

(3)会根据具体问题中的数量关系列出一元一次方程并求解。

重点、难点:

1. 重点:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

会用一元一次方程解决实际问题。

2. 难点:

一元一次方程的解法的灵活应用。

寻找实际问题中的等量关系。

【典型例题】

例1.

分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

解:

例2.

分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

解:

将m=1代入关于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.

分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:

例5.

分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:

注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:

例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m

解一:设车的速度为x m/s

经检验,符合题意。

答:车的速度为20m/s。

解二:设车身的长度为x m

经检验,符合题意。

答:车的速度为(1000+200)/60=20m/s

例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

解:设团体票共2a张,零售票共a张,零售票价x元

经检验,符合题意。

答:零售票价为19.2元。

【模拟试题】

一。 填空题。

1. 已知方程 的解比关于x的方程 的解大2,则 _________。

2. 关于x的方程 的解为整数,则 __________。

3. 若 是关于x的一元一次方程,则k=_________,x=_________。

4. 若代数式 与 的值互为相反数,则m=_________。

5. 一元一次方程 的解为x=0,那么a、b应满足的条件是__________。

二。 解方程。

1.

2.

3.

4.

三。 列方程解应用题。

1. 一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

2. 分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

【试题答案】

一。 填空题。

1.                     2.

3. 1,1                     4.                   5.

二。 解方程。

1.                      2.

3.                    4.

三。 列方程解应用题。

1. 买364个鸡蛋

2. 戴红帽子4人,黄帽子3人

一元一次方程的复习

复习目标:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)会解一元一次方程。

(3)会根据具体问题中的数量关系列出一元一次方程并求解。

重点、难点:

1. 重点:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

会用一元一次方程解决实际问题。

2. 难点:

一元一次方程的解法的灵活应用。

寻找实际问题中的等量关系。

【典型例题】

例1.

分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

解:

例2.

分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

解:

将m=1代入关于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.

分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:

例5.

分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:

注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:

例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m

解一:设车的速度为x m/s

经检验,符合题意。

答:车的速度为20m/s。

解二:设车身的长度为x m

经检验,符合题意。

答:车的速度为(1000+200)/60=20m/s

例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

解:设团体票共2a张,零售票共a张,零售票价x元

经检验,符合题意。

答:零售票价为19.2元。

【模拟试题】

一。 填空题。

1. 已知方程 的解比关于x的方程 的解大2,则 _________。

2. 关于x的方程 的解为整数,则 __________。

3. 若 是关于x的一元一次方程,则k=_________,x=_________。

4. 若代数式 与 的值互为相反数,则m=_________。

5. 一元一次方程 的解为x=0,那么a、b应满足的条件是__________。

二。 解方程。

1.

2.

3.

4.

三。 列方程解应用题。

1. 一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

2. 分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

【试题答案】

一。 填空题。

1.                     2.

3. 1,1                     4.                   5.

二。 解方程。

1.                      2.

3.                    4.

三。 列方程解应用题。

1. 买364个鸡蛋

2. 戴红帽子4人,黄帽子3人

解一元一次方程课件(篇9)

课题

一元一次方程与实际问题——配套问题

课型

习题课

教材

人教版

对象

初一学生

执教者

教材分析

作为实际问题中的重要部分,配套问题是学生进入实际问题的关键环节。在对一元一次方程的解法进行了充分学习之后,如何将刚学到的知识投入到学习中是至关重要的过程,这决定了学生的学习质量与思维拓展。尽管在方程解法的学习中学生已经思考并尝试将其投入到实际问题的解决中,但往往这样的投入是在为学习方程解法服务。在这一部分,学生将进一步练习如何将实际问题转化为数学模型,利用方程将其合理解决。

学情分析

对于学生而言,尽管已经学习了方程的解法,但是在面对一些实际问题时,很多学生依然不习惯使用方程方法,而是依然使用小学的算数方法,虽然在一些简单的问题中,算数方法更有优势,计算更简便,但是在本节课以及之后的一些实际问题中,使用算数方法将无从下手或非常复杂,因此学习如何使用一元一次方程来解决实际问题成为本阶段的重点。

教学目标

1、基本会用一元一次方程解决配套问题;

2、培养学生运用一元一次方程分析和解决实际问题的能力;

3、体现一元一次方程与实际生活的密切联系,渗透建模和转化的数学思想。

教学重点

用一元一次方程解决配套问题

教学难点

分析配套问题数量关系,寻找等量关系列出方程

教学过程

教学环节

教学内容

预设意图

创设情景

提出问题

复习巩固:解此方程:x-

问题1:思考解决实际问题的步骤应该是什么?

审题(抓信息)-找关系(等量关系)-列方程(用含未知数的式子)-解决问题

问题2:在此题目中,每天生产的螺钉数量与每天生产的螺母数量该怎么表示?

(每天生产的螺钉数量=生产螺钉的工人数量×每人每天可以生产的螺钉数量,同理每天生产的螺母数量=生产螺母的工人数量×每人每天可以生产的螺母数量)

问题3:根据题目,每天生产的螺钉和螺母如果想刚好配套,它们之间应该满足怎样的数量关系?

(每

问题4:总结以上关系,思考我们应该设怎样的未知数才更方便于解决这个问题?

(由问题

问题5:根据以上分析,此方程可以如何列出?

从解方程开始,复习巩固方程的解法,并引出实际问题的解决方法,在此过程中,将问题逐步拆解,分解为一个个小的问题,再层层递进,得出最后的答案,在此过程中逐步感受配套问题乃至实际问题的基本思路。

探究归纳

变式探究:(仅需列出方程)

1、若每1个螺钉与3个螺母配成一套,则需要怎么安排生产螺钉和螺母的工人?

2、若每2个螺钉与3个螺母配成一套,则需要怎样安排生产螺钉和螺母的工人?

思考:解决配套问题中,我们应该怎样寻找数量关系?

从已有的知识结构出发,不让学生在思维上出现跳跃,逐层递进,通过刚思考过的例子作为依据,进行相同类型题目的变式联系,将探究作为切入点,再对一般的情况进行归纳总结,从具体的数字到一般的情况,逐步推进,体会将未知化为已知的数学探究的乐趣。

跟踪练习

例桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)

思考:等量关系是什么?如何设未知数并列出方程?(

解:设用x立方米的木材做桌面,则用(10-x)立方米的木材做桌腿。

根据题意,得4×50x = 300(10-x),解得x =6,所以10-x = 4,可做方桌为50×6=300(张)。

答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300张方桌。

例(

解:设用x米布料生产上衣,那么用(米布料生产裤子恰好配套。

根据题意,得:

x=。

答:应该用360米布料生产上衣,用240米布料生产裤子恰好配套。

在得出一般化的方法后,再利用学到的知识对问题进行解决,这是数学学习的一般办法,也是解决问题的重要手段,在实际问题这一部分的学习中,这样的思考尤为重要。

课堂小结

课外作业

总结:本节课你有哪些收获?(

1、思路上,对解决实际问题的一般方法有了大致的感受,对于配套问题的等量关系的寻找有了方向,体会了用方程解决实际问题的便利性。

2、方法上,体会如何利用题目给的信息并分析题目的含义,合理地设未知数来解决实际性的问题。

当堂检测:(

完成《课堂小练习》

作业:

限时作业一张

让学通过自己的语言表达学习的收获,在本节课即将结束的时候,让学生自我总结,加深印象,培养学生的自我总结能力,也帮助学生重新回顾重点知识和数学思想。

板书设计

一元一次方程与实际问题——配套问题

例1:

解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母

依题意,得

20xx(22-x)=2×1200x

解方程,得x=10.

所以22-x=12

答:应安排10名工人生产螺钉,12名工人生产螺母

配套问题数量关系:若每n个螺钉与m个螺母配成一套,则m×螺钉数量=n×螺母数量

解一元一次方程课件(篇10)

教学目标

1.在具体情境中,进一步体会方程是刻画现实世界的重要数学模型。

2.知道什么是一元一次方程的标准形式,会通过移项、合并同类项把方程化为标准形式,然后利用等式的性质解方程。

教学重、难点

重点:把方程转化为标准形式。

难点:解方程的应用。

教学过程

一激情引趣,导入新课

1解方程:9x+3=8+8x

2(1)上面解方程的过程中,每一步的依据是什么?

(2)什么叫移项?移项要注意什么?

(3)2-4x+6+5x=8,变形为:-4x+5x+2+6=8,是不是移项?

二合作交流,探究新知

1动脑筋:

某实验中学举行田径运动会,初一年级甲班和丙班参加的人数的.和是乙班参加的人数的3倍,甲班有40人参加,乙班参加的人数比丙班参加的人数少10人,你能算出乙班参加校运会的人数吗?

观察你解方程的过程,原方程做了哪些变形?

形如ax=b(a≠0)的方程叫一元一次方程的_____形式。

2训练

(1)解方程:①11x-2=8x-8,②

(2)下列方程求解正确的是()

A-2x=3,解得:x=,B解得:x=

C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1

三应用迁移,巩固提高

1方程的转化

例1已知x=-2是方程的解,求m的值。

例2若方程2x+a=,与方程的解相同,求a的值。

2实践应用

例3甲仓库有某种粮食120吨,乙仓库有同样的粮食96吨,甲仓库每天卖出粮食15吨,乙仓库每天卖出粮食9吨,多少天后,两仓库剩下的粮食相等?

例4百年问题:我们明代数学家程大为曾提出过一个有趣的问题,有一个人赶着一群羊在前面走,另一个人牵着一头羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊人回答“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊

也给我,我恰好有一百只羊”,请问这群羊有多少只?

四冲刺奥赛

例5当b=1时,关于x的方程a(3x-2)+b(2x-3)=8x-7,有无穷多个解,则a=()

A2B–2CD不存在

例6解方程:3x+=4

例7用一队卡车运一批货物,若每辆卡车装7吨货物,则尚余10吨货物装不完,若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有多少吨?

五课堂练习,巩固提高

P1121

六反思小结,拓展提高

1什么叫一元一次方程的标准形式?解一元一次方程一般要转化成什么形式?

相关文章

最新文章

推荐访问