老师在开学前需要把教案课件准备好,每天老师都需要写自己的教案课件。设计教案需要注重课堂效果的反馈和评估。深入了解“多边形内角和课件”并理解它的背景接下来请阅读,欢迎你阅读与收藏!
教学目标
知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;
过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力.
情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.
教学重点:多边形外角和定理的探索和应用.
教学难点:灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.
教学准备:多媒体课件
教学过程
第一环节 创设情境,引入新课(5分钟,学生理解情境,思考问题)
问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。
(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?
(2)他每跑完一圈,身体转过的角度之和是多少?
(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的?
第二环节 问题解决(10分钟,小组讨论,合作探究)
对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。
小亮是这样思考的:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.
这样,∠1+∠2+∠3+∠4+∠5=360°
问题引申:
1.如果广场的形状是六边形那么还有类似的结论吗?
2.如果广场的形状是八边形呢?
第三环节 探索多边形的外角与外角和(10分钟,全班交流,学生理解识记)
1.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。
2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。
探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?
鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。
方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;
方法Ⅱ:由n边形的内角和等于(n-2)180°出发,探究问题。
结论:多边形的外角和等于360°
(1)还有什么方法可以推导出多边形外角和公式?
(2)利用多边形外角和的结论,能否推导出多边形内角和的结论?
第四环节 巩固练习(10分钟,学生利用知识独立解决问题)
例1一个多边形的内角和等于它的外角和的3倍,它是几边形?
随堂练习
1.一个多边形的外角都等于60°,这个多边形是几边形?
2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?
挑战自我:
1.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?
2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?
挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。
第五环节 课时小结(3分钟,学生加深记忆)
多边形的外角及外角和的定义;
多边形的外角和等于360°;
在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想.
第六环节 布置作业:
习题4.11
A组(优等生)第1,2,3题
B组(中等生)1、2
C组(后三分之一生)1
课题
探索多边形内角和
教学目标
知识目标
1、探索多边形内角和定义、公式
2、正多边形定义
能力目标
1、发展学生的合情推理意识、主动探索的习惯
2、发展学生的说理能力和简单的推理意识及能力
德育目标
培养用多边形美花生活的意识
教学重点
多边形内角和公式的推导
学难点
多边形内角和公式的简单运用
教学方法
探索、讨论、启发、讲授
教学手段
利用学生剪纸、投影仪进行教学
教学过程:
一、引入:
1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。
2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。
二、多边形内角和公式:
1、三角形的内角和是多少度?任意四边形的内角和是多少度?怎样得到的?那么五边形的内角和怎样求呢?要求学生剪纸或画图找出五边形可剪成多少个三角形求内角和?六边形可怎样剪成三角形?n边形呢?
2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)
(1)量出每个内角度数然后相加为540°;
(2)从五边形的任一顶点出发,连结不相邻的两个顶点,将五边形分割成三个三角形,得出五边形内角和为540°(如图一);
(3)在五边形内任取一点,连结各顶点,将五边形分割成五个三角形,得出五边形内角和为5×180°—360°=540°(如图二);
(4)从五边形任意一边上取一点,连接不相邻的顶点,将五边形分割成四个三角形内角和为4×180°—180°=540°(如图三);
(5)六边形可怎样剪成三角形求内角和?n边形呢?
(6)总结规律:多边形内角和为(n—2)×180°(n≥3)。
3、议一议:
(1)过四边形一个顶点的对角线把四边形分成两个三角形;
(2)过五边形一个顶点的对角线把五边形分成( )个三角形;
(3)过六边形一个顶点的对角线把六边形分成( )个三角形。
(4)过n边形一个顶点的对角线把n边形分成( )个三角形;
三、正多边形定义:
1、出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)
2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。
3、填表:
正多边形的边数
3
4
5
6
8
…
n
正多边形的内角和
180°
360°
540°
720°
1080°
…
正多边形每个内角的度数
60°
90°
108°
120°
135°
…
四、小结:
主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。
五、布置作业:
课本P110、习题4、10第1、2、3题。
附:选用随堂练习:
1、一个多边形的每个内角都是140,它是()边形?
2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成()个三角形。
3、过六边形的一个顶点的对角线把它分成()个三角形,过n边形的一个顶点的对角线把n边形分成()个三角形。
4、一个多边形的每个内角都是140°,这个多边形是()边形。
5、如果一个多边形的边数增加1,那么这时它的内角和增加了()度。
6、下列角能成为一个多边形的内角和的是()
A、270°B、560°C、1800°D、1900°
思考题:如图(1),求∠A+∠B+∠C+∠D+∠E+∠F等于多少度?
如图(2),求∠A+∠B+∠C+∠D+∠E+∠F+∠G等于多少
一、教学目标
【知识与技能】
掌握多边形的内角和公式,能应用公式解决简单问题。
【过程与方法】
通过由四、五、六边形归纳多边形内角和的过程,提高总结归纳能力。
【情感、态度与价值观】
在探究过程中体验成功的喜悦,激发学习数学的兴趣。
二、教学重难点
【重点】多边形的内角和公式。
【难点】多边形的内角和公式的探究过程。
三、教学过程
(一)导入新课
回顾三角形内角和为180,正方形、长方形内角和为360。
提问:一般的四边形内角和是否也是360?五边形、六边形等多边形的内角和又是多少?
引出课题《多边形的内角和》。
(二)讲解新知
自主探究:在纸上画任意四边形,利用三角形内角和推导四边形的内角和。
预设学生想到只需连接一条对角线,即可将一个四边形分割为两个三角形,故内角和为360。
学情分析:
学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。
教学目标:
1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。
2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。
3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。
教学重点:
多边形的内角和公式。
教学难点:
探索多边形的内角和定理的推导
教学过程:
一、创设情境,导入新课
1、请看:我身后的建筑物是什么?─水立方。我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)
这节课咱们一起来探究《多边形的内角和》。
二、合作交流,探究新知
1、多边形的内角和
问:要求内角和你联想到什么图形的内角和?(示三角形的内角和定理)。如果两个三角形能够拼成四边形,你能求出四边形的内角和是多少度呢?
预设回答:三角形的内角和360°。四边形的内角和360°
知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”
【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.
2、是否所有的多边形的内角和都可以“转化”为两个三角形的内角和来求得呢?如何“转化”?
预设回答:能,可以引对角线,将多边形分成几个三角形。
让学生合作交流讨论,展示探究成果。教材第35页“探究”
示图,取多边形上任意一个顶点,连接除相邻的两点,则多边形的内角和可转化为三角形内角和之间的关系,
多边形边数可分成三角形的个数多边形的内角和56 7┅┅┅┅n边形n
n边形有几个内角?是否可以“转化”为多个三角形的角来求得呢?如何“转化”?
预设回答:有n个内角,可以转化多个三角形来求,n边形可以引n-3条对角线,即有n-2个三角形。所有n边形的内角和等于(n-2)x180°
【教学说明】通过五边形、六边形、七边形、八边形等特殊多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法.
例:教材第36页例1
【教学说明】让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用.
三、课堂演练
1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()
A.十三边形B.十二边形
C.十一边形D.十边形
2、十二边形的内角和为,已知一个多边形的内角和是1260°,则这个多边形的边数是。
【教学说明】由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程.对需要帮助的学生及时点拨并加以强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.
四、课时小结
1、这节课你有什么新的收获?
五、布置作业:
教材第36页练习1、2题。
六、板书设计多边形的内角和n边形内角和等于(n-2)×180°。
多边形的内角和是180的倍数;
边数越多,内角和就越大;
每增加一条边,内角和就增加180度。
一、教学任务分析
1、教学目标定位
根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:
(1).知识技能目标
让学生掌握多边形的内角和的公式并熟练应用。
(2).过程和方法目标
让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。
(3).情感目标
激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。
2、教学重、难点定位
教学重点是多边形的内角和的得出和应用。
教学难点是探索和归纳多边形内角和的过程。
二、教学内容分析
1、教材的地位与作用
本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。
2、联系及应用
本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此
多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。
三、教学诊断分析
学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。
四、教法特点及预期效果分析本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:
1、教学方法的设计
我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
2、活动的开展
利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
3、现代教育技术的应用
我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。
以上是我对《多边形的内角和》的教学设计说明。
各位评委、各位老师:
大家好!我说课的内容是人教版义务教育课程标准实验教科书,七年级数学(下)第七章第三节《多边形的内角和》。下面,我从以下几个方面对本节课的教学设计进行说明。
一、教材分析
1、教材的地位和作用本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。
2、教学重点和难点重点:多边形的内角和与外角和难点:探索多边形内角和时,如何把多边形转化成三角形。
二、教学目标分析
1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。
2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。
3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。
4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。
三、教法和学法分析
本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:
1、教学方法的设计我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
2、活动的开展利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
3、现代教育技术的应用我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。
四、教学程序设计
1、本节教学将按以下六个流程展开创设情境引入新课↓合作交流探索新知↓自主探究得出结论↓尝试练习应用新知↓归纳总结形成体系↓分组竞赛升华情感
2、教学过程
互动环节互动内容设计意图1创设情境引入新课
(1)在一次数学基础知识抢答赛上,王老师出了这么一个问题:某个多边形所有的角加起来等于它的外角和,那么该多边形是几边形?小明同学仅用几秒钟就解决了问题,你能吗?
(2)(演示教具)用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,你知道这是为什么吗?通过今天的学习,我们就能明白其中的道理,引出课题。
这样一开始就利用抢答赛问题以及教具演示实验来提问设疑,学生很容易发问:这个多边形是几边形呢?用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,为什么会产生这种效果呢?从而可调动学生的学习兴趣和注意力,创设恰当的教学情境。
2合作交流探索新知
(1)问题:三角形的内角和等于多少度?外角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?
(2)问题:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?
(3)学生思考,并分组交流讨论,教师深入小组参与活动,指导、倾听学生交流。
(4)学生分组选代表展示小组的探索成果,师生共同进行评判,对学生找到的不同方法要加以及时肯定。
学生可能找到以下几种方法:
①“量”—即先测量四边形四个内角的度数,然后求四个内角的和;
②“拼”—即把四边形的四个内角剪下来,拼在一起,得到一个周角;
③“分”—即通过添加辅助线的方法,把四边形分割成三角形。
教师在学生展示完后提问:
①在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?
②我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?
先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想。
从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,鼓励学生找到多种方法,让学生体会多种分割形式,有利于深入领会转化的本质——四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的'多样性。通过交流,让学生用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力。
3自主探究得出结论
(1)问题:用刚才类似的方法,你能算出五边形、六边形、七边形的内角和吗?
学生先独立思考,分组讨论,然后再叙述结论。
(2)问题:依此类推,n边形的内角和等于多少度呢?让学生自己归纳总结,得出n边形的内角和公式为(n—2)·180°。从探索四边形的内角和,到五边形、六边形、七边形乃至n边形,通过增强图形的复杂性,让学生体会由简单到复杂,由特殊到一般的思想方法,再一次经历转化的过程,同时在分组交流的过程中,感受合作的重要性。
4应用新知尝试练习
(1)想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系?为什么(教材88页例1)。
(2)算一算
①教材89页练习1、2。
②四边形的外角和等于多少度?
③五边形的外角和,六边形以及n边形的外角和呢?
(3)读一读先让学生阅读教材89页最后两段内容,然后我再用课件展示。通过做例题和练习来巩固新知识。先求四边形的外角和,再求五边形、六边形以及n边形的外角和,我提出阶梯式的问题,让学生逐步归纳得出多边形的外角和等于360°。这两段是新增加的内容,从另一个角度增加对任意多边形外角和理解与认识。这样处理,注重教材阅读学习,同时用课件演示更加形象直观,便于理解。
5归纳总结形成体系我从以下几个方面引导学生进行小结:
(1)现在你能解决数学知识抢答赛上,王老师提出的问题了吗?你知道为什么能用四块大小形状完全相同的四边形拼成一块无空隙的纸板了吗?
(2)这节课我们学习了哪些知识和方法?你有什么收获?让学生运用所学知识解决引问中的问题,提高解决问题的能力,鼓励学生畅所欲言总结对本节课的收获和体会,有利于培养归纳、总结的习惯和能力,让学生自主建构知识体系。
6分组竞赛升华情感
我制作了A、B、C、D四组不同的电子试卷,让学生运用所学知识通过小组竞赛的形式合作完成,自检掌握情况。通过竞赛的方式,激发学生的学习兴趣,引导他们在做练习的过程中,通过小组协作来巩固知识和获得技能。
在每组试卷中,大部分选自教材的练习题。另外,我还另增加了1个思考题,实际上是对证明四边形内角和方法的补充,主要是通过一题多解发散思维,提高思维的灵活性,还可以复习旧知识,把握知识间的相互联系,让学生再次体会转化的思想方法。
五、评价分析
1、注意评价内容的多元化通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。
2、注重对学生学习过程的评价在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特的想法或结论给予鼓励性评价。
六、设计说明
1、指导思想根据义务教育阶段数学课程的要求,结合教材的编写意图,在本节课设计时,我遵循以下原则:情境引入激发兴趣,学习过程体现自主,知识建构循序渐进,思想方法有机渗透。
2、关于教材处理本教案设计时,我对教材作了如下改变:
①将教材例1作为练习中的“想一想”,由学生自已尝试解答;
②将例2中的求“六边形”的外角和,改为练习中的“算一算”,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。
③作业采取分组竞赛的形式合作完成。这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!
《探索多边形的内角和与外角和》的教案
一、教学目标:
1、让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯。
2、能灵活的运用多边形内角和与外角和公式解决有关问题。
二、教材分析
本节的主要内容是多边形的外角定义和公式.多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题.为提供三角形的外角提供了一种方法。
三、教学重点、难点
1、多边形的外角和公式及公式的探索过程。
2、能灵活运用多边形的内角和与外角和公式解决有关问题。
四、教学建议
关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°.
五、教具、学具准备
投影仪、题板、画图工具
六、教学过程
1.复习提问:
(1)多边形的内角和是多少?
(2)正八边形的每一个内角为度?
2.创设问题情景,引入新课:
教师投放课本51页图9-35时,并出示以下问题:
小明沿一个五边形广场周围的小路,按顺时针方向跑步。
(1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们。
(2)观察∠1、∠2、∠3、∠4、∠5的`两边分别与它相邻的五边形的内角的边有何关系?
(3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?
点拨:
请填写下题:
如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α= ,∠β= ,∠γ= ,∠δ= ∠θ= .
因为∠α+∠β+∠γ+∠δ+∠θ=.
所以∠1+∠2+∠3+∠4+∠5= .
由此可得:五边形的外角和是360°
(4)你能借助内角和来推导五边形的外角和吗?
点拨:
因五边形的每一个内角与它相邻的外角是邻补角,所以五边形的内角和加外角和等于5×180°所以外角和等于5×180°-(5-2)×180°=360°。
(5)你用第二种方法推导下列多边形的外角和三角形的外角和 四边形的外角和 五边形的外角和 n边形的外角和是得出结论:多边形的外角和都等于360°。
4.应用举例
例 一个多边形的内角和等于它的外角和的3倍,它是几边形?
点拨:
设出未知数,根据相等关系: 内角和=3×外角和列出方程。
5.练习:
见学案练习一和练习二
6.达标检测
见学案达标检测
7.小结
本节课你学到了什么?有什么收获?
8.作业
学生口答,并计算出度数
学生独立观察分析思考找出特征,试概括所得结论,从而引出多边形的外角定义及外角和定义及引入新课从而板书课题.
学生质疑思考,一时找不到方法,可按点拨的引导继续思考。
生充分思考,认真分析,小组讨论交流得出答案。
学生找关系,小组积极讨论、交流,小组汇报结果。
学生独立探究,很快得出答案.
学生独立解决
让学生先总结、交流谈体会
这三条线段叫做这个三角形的边;(AB、BC、CA)
相邻两条边的公共端点叫做这个三角形的顶点;(A、B、C)
相邻两条边所夹的角叫做这个三角形的内角,又叫做这个三角形的角(∠A、∠B、∠C)
三角形的内角的邻补角叫做这个三角形的外角
2.三角形的表示为△ABC
3.三角形的三条重要线段:高、中线、内角平分线(三条高所在的直线都交于一点,这个点叫
做三角形的垂心;三条中线交于一点,这个点叫做三角形的重心;
三条内角平分线交于一点,这个点叫做三角形的内心)
4.三角形内角和定理以及相关的结论
(1)三角形的内角和为180°
(2)直角三角形的两个锐角互余
(3)三角形的外角和为360°
(4)三角形的一个外角等于与它不相邻的两个内角的和
(5)三角形的一个外角大于与它不相邻的任何一个内角
5.三角形的三边关系定理
三角形的任意两边之和都大于第三条边;任意两边之差都小于第三条边
6.三角形具有稳定性
7.多边形:由在同一平面内,不在同一直线上的若干条线段首尾顺次连接所围成的封闭图形叫
做多边形
这些线段叫做这个多边形的边;
相邻两条边的公共端点叫做这个多边形的顶点;
相邻两条边所夹的角叫做这个多边形的内角,又叫做这个多边形的角
多边形的内角的邻补角叫做这个多边形的外角
8.对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线
由一个顶点出发的对角线有(n-3)条;(n表示边数)
条对角线(n表示边数)
9.多边形的内角和及外角和
(1)多边形的内角和为(n-2).180°(n表示边数)
(2)多边形的外角和为360°
【阶段练习】
一、回答下列各问题
1.什么是三角形?它有哪些元素?通常用什么符号来表示它及三个角所对的边?
2.为什么屋架、桥梁及电杆的支架多采用三角形的形状?
3.如果△ABC的三条边长分别为(12、13、14)及(10、20、30),这样的三角形能成立吗?
为什么?
4.设△ABC的边长分别为a、b、c,那么这三条边的边长须具有什么条件,才能将△ABC画
出来
5.△ABC中有几条角平分线?试画图说明
6.什么是三角形的高?一个三角形有几条高?三角形的高的位置是否一定在形内?为什么?
试画图说明
7.三角形的一条中线把这个三角形分成两部分,这两个部分的面积有什么关系?为什么?
8.三角形的三个内角分别为α、β、γ,则α+β+γ的值是多少?
9.三角形的一个外角与它不相邻的两个内角之间有什么关系?
二、填空题
1.三角形的外角和是内角和的_____________倍
2.四边形的外角和是内角和的____________倍
3.六边形的外角和是内角和的_______________倍
4.一个多边形的内角和是900°,则这个多边形是________边形
三、解答题
已知AC、AD是五边形ABCDE的对角线,求证:AB+BC+CD+DE+EA>AC+CD+DA
一、教学目标:
1、让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯。
2、能灵活的运用多边形内角和与外角和公式解决有关问题。
二、教材分析
本节的主要内容是多边形的.外角定义和公式。多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题。为提供三角形的外角提供了一种方法。
三、教学重点、难点
1、多边形的外角和公式及公式的探索过程。
2、能灵活运用多边形的内角和与外角和公式解决有关问题。
四、教学建议
关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°。
五、教具、学具准备
投影仪、题板、画图工具
六、教学过程
1、复习提问:
(1)多边形的内角和是多少?
(2)正八边形的每一个内角为度?
2、创设问题情景,引入新课:
教师投放课本51页图9—35时,并出示以下问题:
小明沿一个五边形广场周围的小路,按顺时针方向跑步
(1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们。
(2)观察∠1、∠2、∠3、∠4、∠5的两边分别与它相邻的五边形的内角的边有何关系?
(3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?
点拨:
请填写下题:
如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α=,∠β=,∠γ=,∠δ=∠θ=。
因为∠α+∠β+∠γ+∠δ+∠θ=。
所以∠1+∠2+∠3+∠4+∠5=。
由此可得:五边形的外角和是360°
(4)你能借助内角和来推导五边形的外角和吗?
点拨:
因五边形的每一个内角与它相邻的外角是邻补角,
所以五边形的内角和加外角和等于5×180°
所以外角和等于5×180°—(5—2)×180°=360°
(5)你用第二种方法推导下列多边形的外角和
三角形的外角和四边形的外角和五边形的外角和n边形的外角和是。
得出结论:多边形的外角和都等于360°。
4、应用举例:
例一个多边形的内角和等于它的外角和的3倍,它是几边形?
点拨:
设出未知数,根据相等关系:内角和=3×外角和列出方程
5、练习:
见学案练习一和练习二
6、达标检测
见学案达标检测
7、小结
本节课你学到了什么?有什么收获?
8、作业
学生口答,并计算出度数
学生独立观察分析思考找出特征,试概括所得结论,从而引出多边形的外角定义及外角和定义及引入新课从而板书课题。
学生质疑思考,一时找不到方法,可按点拨的引导继续思考。
生充分思考,认真分析,小组讨论交流得出答案。
学生找关系,小组积极讨论、交流,小组汇报结果。
学生独立探究,很快得出答案。
学生独立解决
让学生先总结、交流谈体会
多边形及多边形的内角和
【教学目标】 知识与能力: 1.了解多边形定义。
2.掌握多边形内角和的计算公式.3.掌握“多边形外角和等于360°”.
4.会用多边形的内角和与外角和的性质解决简单几何问题. 过程与方法:
1.通过类比归纳得出多边形的概念,培养学生的类比能力,渗透化归思想方法。
2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力;
3.通过探索多边形的内角和公式,感受数学思考过程的条理性; 4.探索多边形内角和公式,体验归纳发现规律的思想方法. 【教学重点、难点】
Ø重点:本节教学的重点是任意多边形的内角和公式. Ø难点:例2的解题思路不易形成,是本节教学的难点.。【教学过程】
1、创设情境,导入新课 1/4页
(1)昨天我们已经学习了四边形的定义,今天清晨,小明在广场的小路上跑步,请问小明跑步的图案可以抽象出什么图形呢?(2)上图广场上的小路可以抽象出一个边数为5的多边形——五边形。我们知道边数为 3的多边形——三角形,边数为4的多边形——四边形,„„边数为n的多边形——n边形(n≥3,n是整数).[设计意图:数学源于生活。教师创设生活情境,通过类比让学生有意识地整理所学习的内容,激发了学生的探究欲望和兴趣,从而自觉参与数学知识整理的活动和探究新知的过程。] 【合作交流,探究新知】
(1)你能设法求出这个五边形的五个内角和吗?先启发学生回顾四边形的内角和及推理 方法,提出多边形对角线定义:连结多边形不相邻两顶点的线段叫做多边形的对角线(是下面解决多边形问题的常用辅助线)。
(2)启发学生用连结对角线的方法把多边形划分成若干个三角形来完成书本第96页的合作学习。
(3)再启发学生观察所能划分成的三角形个数与边数n有关。(4)结论:n边形的内角和为(n-2)×180°(n≥3).(5)及时巩固
【总结回顾,反思内化】 这节课学了什么?学生自由发言。
教师小结:(1)从n边形的一个顶点出发有 条对角线.(2)一个n边形共有 条对角线】。(3)n边形的内角和为
(4)任何多边形的外角和为360°(5)数学思想:类比(多边形定义类比四边形定义)转化(多边形内角和问题可以转化为三角形问题)。【作业布置,延伸拓展】
【教学内容】
【教学目标】
1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题.
2.经历探索多边形内角和计算公式的过程,体会如何探索研究问题.
3.通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想.
【教学重点与教学难点】
1.重点:多边形的内角和公式
2.难点:多边形内角和的推导
3.关键:.多边形"分割"为三角形.
【教具准备】三角板、卡纸
【教学过程】
一、创设情景,揭示问题
1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?
2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?
你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力
二、探索研究学会新知
1、回顾旧知,引出问题:
(1)三角形的内角和等于_________.外角和等于____________
(2)长方形的内角和等于_____,正方形的内角和等于__________.
2、探索四边形的内角和:
(1)学生思考,同学讨论交流.
(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形.)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想.以四边形的内角和作为探索多边形的突破口。
(3)引导学生用"分割法"探索四边形的内角和:
方法一:连接一条对角线,分成2个三角形:
180°+180°=360°
从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形.
180°×4-360°=360°
3、探索多边形内角和的问题,提出阶梯式的问题:
你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)
你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:
n边形3456...n分成三角形的个数1234...n-2内角和...4、及时运用,掌握新知:
(1)一个八边形的内角和是_____________度
(2)一个多边形的内角和是720度,这个多边形是_____边形
(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________
通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和
三、点例透析
运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?
四、应用训练强化理解
4、第83页练习1和2多边形内角和定理的应用
五、知识回放
课堂小结提问方式:本节课我们学习了什么?
1多边形内角和公式
2多边形内角和计算是通过转化为三角形
六、作业练习
1、书面作业:
2、课外练习:
教学过程中教案课件是基本部分,又到了写教案课件的时候了。教案是推进教学质量改进的有效工具。幼儿教师教育网小编精心挑选了一篇有趣的文章名为“多边形课件”,如果对这个话题感兴趣的话,请关注本站!
[教学目标]
知识与技能:
1.会用多边形公式进行计算。
2.理解多边形外角和公式。
过程与方法:
经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力.
情感态度与价值观:
让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
[教学重点、难点与关键]
教学重点:多边形的内角和.的应用.
教学难点:探索多边形的内角和与外角和公式过程.
教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决.
[教学方法]
本节课采用“探究与互动”的教学方式,并配以真的情境来引题。
[教学过程:]
(一)探索多边形的内角和
活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。
活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?
多边形边数分成三角形的个数图形
内角和计算规律
三角形31180°(3-2)·180°
四边形4
五边形5
六边形6
七边形7
。。。。。。
n边形n
活动3:把一个五边形分成几个三角形,还有其他的分法吗?
总结多边形的内角和公式
一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。
巩固练习:看谁求得又快又准!(抢答)
例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?
(点评:四边形的一组对角互补,另一组对角也互补。)
(二)探索多边形的外角和
活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?
分析:(1)任何一个外角同于他相邻的内角有什系?
(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?
(3)上述总和与五边形的内角和、外角和有什么关系?
解:五边形的外角和=______________-五边形的内角和
活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?
也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。
结论:多边形的外角和=___________。
练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。
练习2:正五边形的每一个外角等于________,每一个内角等于_______。
练习3.已知一个多边形,它的内角和等于外角和,它是几边形?
(三)小结:本节课你有哪些收获?
(四)作业:
课本P84:习题7.3的2、6题
附知识拓展—平面镶嵌
(五)随堂练习(练一练)
1、n边形的内角和等于__________,九边形的内角和等于___________。
2、一个多边形当边数增加1时,它的内角和增加()。
3、已知多边形的每个内角都等于150°,求这个多边形的边数?
4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()
A:360°B:540°C:720°D:900°
5.已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数?
目标
1、通过观察和比较正五边形、正六边形、正八边形和正十边形,感知其主要特征。
2、通过动手操作,激发幼儿学习图形的兴趣。
3、培养幼儿观察、辨别的能力。
4、让幼儿体验数学活动的乐趣。
5、积极参与数学活动,体验数学活动中的乐趣。
准备
1、挂图“美丽的窗户”
2、操作学具
3、《操作册》P45—P46
过程
走线、线上游戏《积木房》
1、以“小熊设计房子”导入,引起幼儿兴趣
森林设计师笨笨熊给小动物们设计了好多房子,这些房子都快装修好了,只有窗户还没有装好,我们来帮帮它吧。
2、集体活动(出示挂图)
小朋友来看一看,笨笨熊它设计了几间房子啊?
那你们发现这些房子的窗户一样吗?
谁能告诉我怎么不一样的?(有五条边的、有六条边的……..引导幼儿说出每条边相同的是正五边形、正六边形………..)
我们一起来给这些窗户装修一下(一边数一边给每条边涂色)
3、集体操作
今天李老师把这些漂亮的窗户都带到了我们大二班,小朋友想不想看一看呢?
呦,看李老师记性多不好,只把窗框带了过来忘了把窗户上的玻璃带来了。那我想请小朋友帮我把这些窗户根据他的形状装上玻璃好吗?
老师示范做一个
我给小朋友也准备了小窗户,现在请小朋友把自己的小窗框拿出来放好。
现在请小朋友给它们装上玻璃吧。
老师个别指导
装好的小朋友坐坐好,我们来看一看小朋友装的漂不漂亮。
请两个小朋友展示作品
4、分组活动
多边形不仅是小动物们的窗户,多边形还能玩很多游戏。大家想不想玩?
第1、2桌:玩“种花”游戏在不同的多边形纸样里面画上数量与边数相同的花,如五边形里中5朵小花………。
第3、4桌:玩“做花伞”游戏,在不同的多边形的伞面上装饰上漂亮的图案,做成小花伞。
第5、6、7桌:做《操作册》第45页。
5、评价
现在我要请做的最快最好的小朋友把你的作品给大家分享一下。
每组一个人
延伸
今天我们帮笨笨熊装好了窗户,也认识了正五边形、正六边形、正八边形和正十边形、其实在我们的生活中也有很多多边形的物品,今天我请小朋友回家找一找生活中的多边形,并且把它画下来,明天带到幼儿园和我们大家一起分享。
教学反思:
在听课之前,我对这一堂课进行研究和设计。我考虑到本课时的教学内容较为简单,在教学中我采用自主学习,体验探究的'教学方式,让学生动手、动脑、操作、观察,合作探究多边形对角线条数,从中体会从特殊到一般的几何图形探究方法。力主体现“自主学习、主体参与、合作探究”的教学理念。
《多边形的面积整理与复习》教学设计
教学内容:义务教育教科书五年级上册数学103页。教学目标:
1、熟练掌握平行四边形、三角形、梯形的面积计算公式,进一步理解图形特征、面积公式之间的内在联系,构建知识网络。
2、灵活运用公式解决一些简单的实际问题,进一步体会数学与生活的联系,感受数学的价值,增强学习兴趣。
教学重点:回顾平面图形面积公式推导过程,建构知识体系。教学难点:感悟平面图形之间的内在联系。
教学准备:课件、学生课前自主复习办手抄报、整理卡、平面图形学具和教具 教学过程:
一、创设情境,再现知识
师:漫步我们的校园,随处可见图形的身影(看大屏幕),同学们会计算它们的面积了吗?(师出示数据)
指名只列式不计算。
教师黑板上张贴长方形及公式。
小结:面积计算在生活中的应用十分广泛。
师:这节课我们一起对第六单元多边形的面积进行整理复习。这一单元我们学习了哪些图形的面积?(张贴图形:三角形、梯形、平行四边形;板书:基本图形、组合图形、不规则图形)结合课前的自主复习,你觉得我们应该复习些什么知识?(学生自主发言)(教师板书:公式、推导、联系、应用、注意……)
二、合作梳理 构建网络
1、梳理基本图形的公式和推导
师:以小组为单位,每人选择平行四边形、三角形、梯形中的任意一种图形说一说它们的面积计算公式,知其然更要知其所以然,并借助手中的学具重点交流这些计算公式的推导过程。注意:一定要说清楚是由哪个图形怎样推导出来的。
学生以小组为单位回顾,教师巡视。
学生汇报,其他同学补充或者质疑,完善表达。(学生借助教具,并张贴三个公式)
师:同学们对三个公式及推导还有疑问吗?(师在板书:公式、推导上打√)
2、讨论联系,构建网络
师:大家有没有发现,这几种平面图形面积的推导过程有什么相同的地方?(板书:转化)转化是一种重要的数学思想。
小组活动:
(1)说一说平行四边形、三角形、梯形是怎么转化的?转化成了谁?(2)根据这种转化关系,将这些图形按照一定的顺序排一排,张贴在整理卡上,同时借助一些符号或文字,把它们联系成一张网络图,表示出图形与图形的联系。
教师巡视,学生张贴自己的网络图。汇报想法。其他学生评价质疑。师小结:真是百花齐放,百家争鸣,这些思考都很好地反映了转化的数学思想。从左往右看能从前面的图形推导出后面的图形(教师顺势摆好教具),从右往左看,后面的图形能转化成前面的图形如果是直角三角形或直角梯形还可以直接转化为长方形(教师画箭头),我们可以发现长方形是这些图形的“根”。
师:这几种图形本身之间是有着紧密的联系的。(课件:梯形的上底是0时,变三角形,梯形的上底等于下底时又变成了平行四边形),正因为它们之间有着密切的联系,才能够实现相互的转化,从而解决新问题。
3、梳理组合图形面积,加强联系
师:如果我们把几个基本图形连在一起,就变成什么图形?(课件演示)怎样求组合图形的面积?(板书:分、补)无论是分或是补,其实都是转化成基本图形。(板书箭头)
4、回顾不规则图形面积,完善网络 师:不规则图形呢?
小结:估算(数方格和转化)(板书),近似地转化成基本图形求面积。(板书箭头)
三、分层练习形成技能
师:经过大家的努力,我们将这一单元的知识整理成网络图,理清了知识的来龙去脉。老师相信同学们对这部分知识一定有了更深更系统的认识。接下来老师带你们去练习园迎接挑战,锤炼本领。
(一)我过基础关(基础性题组)我会算:
1、求出下面图形的面积。只列式不计算
2、组合图形
全班交流解题思路。选择一种自己喜欢的方法计算出组合图形的面积,同桌互判(课件再订正答案)
教师小结:要先明确解题思路,并把每个基本图形的面积求对,才能确保正确。
(二)我闯变式关(形成性题组)
我会辩:判断(指名按顺序逐个完成)
(1)两个等底等高的三角形可以拼成一个平行四边形。()(2)梯形的面积等于平行四边形面积的一半。()(3)平行四边形的底越大,它的面积就越大。()我会填:填空(将答案写在练习本上,指名订正说明理由)(1)一个平行四边形的面积是24平方厘米,它的高是3厘米,它的底是()厘米。
(2)一个平行四边形和一个三角形等底等高,平行四边形的面积是30平方厘米,三角形的面积是()平方厘米。
(3)三角形的面积是14平方分米,高是4分米,底是()分米。(4)将一个长方形的框架挤压成一个平行四边形后,平行四边形的面积比长方形的面积()。
四、收获提炼 评价反思
师:孔子曰:温故而知新。相信今天的复习能给大家带来新的发现和体会。谁来交流一下自己的复习收获?学生交流复习收获。
师:你们的收获可真多呀,让我们带着这些收获再次走进生活,去发现和解决生活中更多的面积问题。
五、拓展链接 整体提升
1、走进劳动基地(提问题,并选择与面积相关的乘法解答)
师:在我们小院里,小兔和鸽子的家就是一个图形大世界!仔细观察,这里有哪些用面积计算的问题?(学生提问题)
预设:制作这样一个鸽舍(或鸽舍旁边的储物箱)要用多少木料? 如果把正面除窗户的部分重新涂油漆,涂油漆的面积是多少?需要多少千克?花多少钱?
鸽舍的玻璃面积是多少? 房顶是多少平方米?
围成的面积是多少?用多少块地砖?多少块墙砖?
师选择其中一个问题出示要求计算:储物箱前面上底0.4米,下底0.6米,高0.2米,需要多少平方米的木料?如果涂油漆,每平方米花12元,要用多少钱?
2、回归课的开始(教师提问题,解答与面积相关的除法问题)每棵花占地300平方厘米,求需要多少棵花秧?
师小结:我们在解决实际问题时,认清面积与其他数量之间的关系很重要。课下同学们可以选择自己感兴趣的问题去解决。
3、全课总结:课前我们自主复习,并办了整理复习小报,可谓异彩纷呈,集聚观赏性和可读性,今天的作业是各小组将小报相互学习,并评选优秀小报,在教室展览,全班学习。
1
目标
知识与技能:掌握多边形内角和定理,进一步了解转化的数学思想
过程与方法:经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.
情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.
重点:多边形内角和定理的探索和应用
教学难点:边形定义的理解;多边形内 角和公式的推导;转化的数学思维方法的渗透.
教学过程
第一环节 创设现实情境,提出问题,引 入新(3分钟,学生思考问题,入)
1.多媒 体展示蜂窝,教师结合图片让学生发现生活中无处不在的多 边形.
2.工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?
第二环节 概念形成(5分钟,学生理解定义)
1.借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素.
2.教师再给出严格规范的定义,特别借助学具说明“在平面内” 的必要性.此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形.
第三环节 实验探究(12分钟,学生动手操作,探究内角和)
(以四人小组为单位展开探究活动)
提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究. 1 . c o m
活动一:利用四边形探索四边形内角和
要求:先独立思考再小组合作交流完成.)
(师巡视,了解学生探索进程并适当点拨.)
(生思考后交流,把不同 的方案在纸上完成.)
……(组 间交流,教师展示几种方法)
教师帮助学生反思:在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处?
进而引导 学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为 1 80°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。
活动二:探索五边形内角和
(要求:独立思考,自主完成.)
第四环节 思维升华(5分钟,教师引导学生进行推算)
教学过程:
探索n边形内角和,并试着说明理由
(结合出示的图表从代数角度猜测公式,并从几何意义加以解读)
n边形的内角和=(n—2)180°
正n边形的一个内角= =
第五环节 能力 拓展(12分钟,学生抢答)
抢答题:
1.正八边形的内角和为_______ .
2.已知多边形的内角和为900°,则这个多边形的边数为_______.
3.一个多边形每个内角的度数是150°,则这个多边形的边数是_______.
应用发散:
4.如图所示的模板,按规定,AB,CD的延长线相交成80°的角,因交点不在板上,不便测量,质检员测得∠BAE=122°,∠DCF=155°.如果你是质检员,如何知道模板是否合格?为什么?
5.小明有一个设想:2008年奥运会在北京召开,要是能设计一个内角和是2008°的多边形花坛该多有意义啊!小明的这个想法能实现吗?
第六环节 时小结:(3分钟,学生填表)
教师和学生一起对本节内容和同学们的表现做一小结,然后每位学生利用活动评价表进行自我量化考核,并于下反馈给老师
第七环节 布置作业: 习题4、10
A组(优等生)1;思考题:一个多边形去掉一个内角后形成的多边形内角和为 1800°,你能求出原多边形的边数吗?
B 组(中等生)1
C组(后三分之一生)1
教学反思:
一、【课题】多边形的面积复习课
二、【复习目标分析依据】
1、课程标准中的相关陈述:
利用方格纸或割补等方法,探索并掌握平行四边形、三角形和梯形的面积计算公式。
2、教材分析:
本节课是五年级上册第八单元多边形的面积的复习。复习的主要内容包括平行四边形、三角形、梯形的面积和组合图形的面积。教材要求要先对本单元的知识进行系统整理,然后通过练习巩固多边形面积计算。从教材上安排的习题来看,注重知识形成的过程,着重培养学生灵活解决问题的能力。
3、学情分析:
在之前学习当中,学生已经通过数方格和剪拼的方法初步探索和掌握了平行四边形、三角形和梯形的面积计算公式、并能够计算一般组合图形的面积。通过复习,知识进一步系统化,学生解决问题的能力进一步提高,空间观念进一步提升,从而达到学期目标。
三、【复习目标】
(1)通过回忆、小组合作,进一步理解和掌握多边形面积计算公式的推导过程,并构建知识网络。
(2)通过拼摆和讨论,学生对转化这一数学思想理解更加深刻。(3)通过练习,能够结合具体情景灵活解决实际问题。
四、【复习重、难点】
复习重点:多边形面积公式的推导过程。
复习难点:理解多边形面积之间的联系。
五、【评价设计】
1、在回顾整理和融会贯通环节中根据学生对多边形面积推导过程的汇报和对知识网络的构建完成对目标1的评价。
2、在回顾整理环节中根据学生拼摆、讨论和汇报对目标2进行综合评价。
3、在练习环节中观察学生能否运用所学知识解决实际问题对目标3进行评价。
六、【复习活动预案】
(一)引入课题
板书课题,这节课我们就一起来复习多边形的面积。
(二)回顾整理。
1、出示郑州地铁图,问:我们能在图上找到哪些之前学过的图形?
2、回忆公式。还记得这些图形的面积公式吗?先用文字叙述,再用字母表示。学生汇报。
通过回忆再现完成目标1。
3、梳理公式推导过程。
数学是一门很严密的学科,不但要知道是什么,还要知道为什么。你知道这些计算公式是怎样推导过程出来的呢?请同学们在小组内选一个或几个你喜欢的图形拼一拼、摆一摆、说一说。(小组活动)
4、各小组汇报。
哪个小组讨论的是平行四边形的面积公式推导过程?(把平行四边形贴在黑板上)在学生汇报展示面积公式推导过程的时候,如果学生回答的不完整,小组成员可以补充,或者老师补充提问,如果学生回答不好而且没人补充,老师演示课件。
哪个小组愿意派代表来说说三角形的面积公式推导过程?(把三角形贴在黑板上)哪个小组愿意派代表来说说梯形的面积公式推导过程?(把梯形贴在黑板上)学生进一步掌握多边形面积公式推导过程,完成目标1。总结内化,完成目标2。
6、构建知识网络。
同学们再来想一想这三种图形的面积计算公式的推导有哪些相同之处呢? 因此我们可以用箭头来表示转化的过程。大家想想,这个箭头我应该怎么画?为什么?(在黑板上图形之间标上箭头)
如果我们想在这个结构图中加上长方形,那么应该把它放在哪里合适呢?(平行四边形的下边)教师贴上长方形,画上箭头。如果把箭头反过来又表示什么呢?(推导)这样就形成了一个完整的知识结构图。如果把这个图看成一棵大树的话,那么长方形相当于?(树根)平行四边形相当于?(树干)三角形和梯形相当于(树枝和树叶)
师在黑板上画出树的形状。
从这个图中我们可以发现转化把这几种图形紧密的联系在了一起,转化也是我们学习数学的重要方法。
构建知识网络,完成目标1。理解图形间的内在联系,完成目标2。
(三)巩固提升。
下面,我们利用刚才复习的知识来做几组练习,在这个环节中我们要充分发挥自己的聪明才智,向大家展示出最优秀的自己,有信心吗?
第一个环节,判断对错并说出理由,看谁更快。
1、(1)、把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。()(2)面积相等的两个梯形,一定能拼成一个平行四边形。()(3)两个平行四边形的面积相等,那么它们的底和高都相等()(4)两个面积相等的三角形,形状一定相同。()
(5)一个三角形的底扩大2倍,高不变,它的面积也会扩大2倍。()
2、下面这块地种了三种蔬菜,茄子、西红柿和黄瓜各种了多少平方米?这块地共有多少公顷?(把计算过程写在学习任务单1的相应位置)
在计算多边形面积的时候,你想提醒同学们注意什么?
3、如果学校空地的形状如下图所示,你能求出它的面积吗?(单位:厘米)小组内任选一种方法解答,然后学生汇报,把学生采用的不同方法展示出来。)学生把计算过程写在学习任务单2上。
4、学校想在这片空地上建一个面积是48平方米的花圃,请你设计这个花圃的形状?(鼓励学生设计不同的图形,最好是组合图形。)汇报展示。
张明同学设计了一种长方形图案,长9 米,宽7米,空白处是小路,路宽1 米。判断一下他设计的对吗?你是怎样想的?
通过练习学生解决实际问题的能力得到提升,完成对目标3。
(四)复习总结
通过本节课的复习,同学们一定有了新的收获,在以后的学习中希望大家能够在新知识和旧知识之间建立联系,这样才能学的更好。
栏目小编已经根据您的需求为您整理出以下相关信息:“多边形的面积课件”。教案和课件是老师们必不可少的工具,因此在编写教案和制作课件时,老师们需要花费一些时间。然而,在编写的同时,需要充分展示每个知识点的教学过程。分享是一种美德,将这些分享给朋友更加有品质的体现!
【教学内容】:
课本79页到81页的内容
【教学目标】:
1、知识与能力目标:使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2、过程与方法:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3、情感态度价值观:通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。
【教学重点】:
理解公式并正确计算平行四边形的面积.
【教学难点】:
通过转化,理解平行四边形面积公式的推导过程.
【教具】:
多媒体课件
【学具】:
每个学生准备一个平行四边形纸片、剪刀。
【教学过程】:
一、复习铺垫。
同学们这节课我们来学习第五单元的内容《多边形面积的计算》,这节课我们先来研究平行四边形的面积。
现在大家来看这幅图,你在图中可以找到什么我们以前认识的图形呢?
指名回答。
同学们长方形正方形的面积我们都会计算了,这节课开始我们来学习平行四边形的面积计算。
【设计意图:通过主题图让学生知道本单元的所有内容以及本节课要学习的内容,明确学习目的。】
二、探索新知。
1、在学校门口有两个花坛,一个是长方形的一个是平行四边形的,同学们这两个花坛哪个的面积大一些呢?
我们可以用数方格的方法。
同学们可以以小组为单位进行,在数的过程中要注意如果不满一格的我们就当半格数,数完后还要把图下面的表格填好。
把你们小组数出来的结果和大家一起共同分享一下。
根据刚才填的内容,观察表中的数据,你发现了什么呢?
(平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,而且它们的面积也相等)
【设计意图:通过让学生动手数方格以及观察表中的结果来初步了解长方形面积与平行四边形面积以及它们的长宽与底高之间的关系。】
三、小组合作,探究方法。
非常好!刚才我们通过数方格知道长方形的面积与平行四边形的面积的关系。下面我们通过小组合作的方式来找一找平行四边形和长方形的关系是怎样的。
同学们能不能利用手上的平行四边形把它转化成我们学过的图形呢?(可以,可转化成长方形或正方形)
下面大家分小组来进行操作,看你们组能不能用多种方法来进行转化。在做的过程中大家要注意平行四边形的大小不能有变化的。
学生根据小组合作的结果在平台上进行展示。(可能会有不同的方法展示出来的)
同学们,从刚才大家的展示可以看出,一个平行四边形可以转化成长方形或正方形,那它们是什么关系呢?(演示)
由刚才的演示我们可以得出,长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等开平行四边形的面积。(板书)
由些我们可以得出:
平行四的面积=底高
用字母表示是:
S=ah
小结:同学们由些我们可以知道,要求一个平行四边形的面积,我们必须要知道它的底和高。
【设计意图:通过在小组合作进行操作、探究,理解平行四边形和转化后的长方形之间的关系,从而得出平行四边形的面积计算的方法。】
四、实际运用
同学们我们现在可以有办法知道学校门口的两个花坛的面积哪个大了吧?
我们不仅可以用数方格的方式,也可以用计算的方法来知道它们的面积,以后我们主要是通过计算来得到平行四边形的面积的。
【设计意图:通过实际运用,使学生明确解决平行四边形面积的方法和格式,让学生把生活与数学联系起来。】
五、巩固练习。
1、82页第1题。
2、如右图
【设计意图:通过练习,找出存在问题,加以纠正并解决问题。让学生进一步掌握平行四边形面积的计算,并能利用学习到的知识解决实际的问题。】
六、总结:这一节课我们学习了什么?你学会了什么?
板书设计:
平行四边形的面积计算
长方形的面积=长宽
平行四边形的面积=底高
S=ah
【教学内容】:
人教版义务教育课程标准实验教材数学人教版小学数学五年级上册82~83页
【教学目标】:
一、知识与技能:
1、巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积公式解答有关实际问题。
2、引导学生养成良好的身体习惯。
3、培养学生灵活运用掌握的知识解决问题的能力。
二、过程与方法:
经历运用平行四边形的面积计算公式解决实际问题的过程,体会数学与现实生活的密切联系。
三、情感态度与价值观:
感受数学知识的实用价值,激发学习数学知识的兴趣。
【教学重、难点】
会灵活运用所学知识解答有关平行四边形的实际问题。
【教具准备】:课件、三角尺。
【学具准备】:三角尺。
【教学过程】:
一、复习引入。
1、计算平行四边形的面积有哪些方法?
2、平行四边形的面积计算公式是怎样推导出来的?
教师结合学生的回答板书平行四边形的面积计算公式:S=ah
3、引入练习:今天这节课,我们就要用上节课学习的知识来解决一些实际问题。
【设计意图:通过复习,让学生对有关知识进行梳理回顾。】
二、指导练习。
教材练习十五第2-7题。
1、课件出示第2题
这道练习要求学生自己想办法求出平行四边形的面积,有一定的探索性。学生审题后同桌商量要求平行四边形的面积需要知道什么信息?指导学生先在课本上画出平行四边形一边上的高,再量出底和对应高的长度,注意引导学生可以以不同的边作底来求出面积。最后应用公式进行计算,同桌合作完成,集体交流。
2、课件出示第3题
这个平行四边形的高是多少?
组织学生在小组中议一议,使学生明确,已知平行四边形的面积和底,求高学生可以依据乘除法的互逆关系学会灵活运用公式或列方程解答。独立完成,然后同学自己点评。
板书:287=4(m)
或解:设这个平行四边形的高是x米。
7x=28
7x7=287
X=4
3、练习十五第4题
这道练习要进行面积单位的换算和除法计算。
(1)组织学生讨论题意。
组织学生在小组中合作探究。
(2)学生独立完成。
(3)交流做法和结果,强调注意面积单位的变化。
4、练习十五第5题
这道练习是让学生认识等地等高的平行四边形的面积相等。
(1)引导学生讨论它们的面积相等吗?并说明理由。
(2)学生得出它们的面积相等的结论后,再让学生计算它们的面积验证刚才的结论。
5、练习十五第6题
第六题与第五题道理相同
组织同学小组讨论:正方形与平行四边形有什么关系?引导学生明确算平行四边形面积就是算正方形面积。完成后小组汇报结果。
6、练习十五第7题
(1)组织学生以小组为单位做实物学具实验。
实验过程要求学生观察、讨论什么不变什么变?
(2)进一步讨论面积怎样变化?什么情况下面积最大?小组汇报集体评析。
【设计意图:通过这几道练习,让学生体会到生活中处处有数学,所学的数学知识跟实际生活有紧密联系,掌握数学知识能解决生活中许许多多实际问题。】
三、拓展练习。
8、练习十五第8题
学生小组讨论A、B是大平行四边形上下两边的中点,可以得到什么信息?它们的高之间有什么关系?然后邀请一些愿意出来为大家分析的同学上讲台上说说他如何解决这个问题。最后老师归纳解答方法。对分析精彩的同学给予肯定和表扬。
【设计意图:通过拓展练习,培养学生的逻辑思维和刻苦钻研自觉探求精神。】
四、课堂总结。
今天这节课的学习,我们进行了许多有关平行四边形面积知识的练习,你有哪些收获?正确解决平行四边形有关知识你认为要做到什么?注意什么?
组织学生说一说,相互交流。
【设计意图:通过课堂总结,对本节课有关的知识进行归纳整理,培养学生善于总结的好习惯。】
板书设计:
平行四边形的面积练习
S=ah
287=4(m)
或解:设这个平行四边形的高是x米。
7x=28
7x7=287
x=4
教学内容:(机动1课时)
1.平行四边形面积的计算(2课时)
2.三角形面积的计算(2课时)
3.梯形面积的计算(3课时)
4.实际测量(1课时)
5.组合图形的面积(1课时)
6.整理和复习(2课时)
教学要求:
1.使学生在理解的基础上掌握平行四边形、三角形和梯形的面积计算公式,能够计算它的面积。
2.使学生初步学会使用简单的测量工具测定直线和沿着直线测量指定的距离;了解步测和目测的方法,能够计算常见的规则形状的土地面积。
教学重点:
1.引导学生运用转化的方法;在动手操作的基础上掌握三角形、平行四边形和梯形面积的计算公式;能正确地应用各种图形面积的计算公式,求它们的面积和解决有关面积的实际问题。
2.使学生认识常用的测量工具及其用途;掌握测定直线和沿直线测量指定距离的步骤和方法;初步学会测定直线和沿着直线测量指定的距离;了解步测和目测的方法,初步学会步测和目测。
3.使学生能够正确计算常见的规则形状的土地面积,并会解决有关土地面积的实际问题。
教学难点:
1.使学生知道三角形、平行四边形和梯形面积公式的推导过程;掌握各图形面积的计算公式并能灵活地应用它们解决有关面积的实际问题。
2.使学生初步掌握用简单的测量工具测定直线和沿着直线,测量指定距离的方法。
复习要求:使学生在理解的基础上进一步掌握平行四边形、三角形和梯形面积的计算公式,能够计算它们的面积。
复习重点:熟悉各图形面积公式的推导过程,加深对公式的理解。教具准备:平行四边形、两个完全一样的三角形和梯形、剪刀。
教学过程:
一、基本练习
口算(三)。
0.10.024.20.1990.35
120.31.250.80.50.90.01
1.50.4161.63.5+3.53
64.32160.050.81.233
0.651.028.82.22.42.5
4.23.57.20.3+2.80.3
2.870.7(1.5+0.25)4
6.40.2+3.60.2
二、复习指导
1.复习平行四边形、三角形、梯形面积公式的推导过程。
⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。
⑵根据学生的回答,投影出示每个公式的推导过程。如图:
2.生独立做整理和复习的第1题。集体订正时让学生讲一讲为什么三角形和梯形的面积公式中要2?
三、课堂练习
1.整理和复习的第2题。
学生独立计算。指6名学生板演,集体订正
2.练习二十第1题。
学生独立计算并做在课本上,集体订正。
3.整理和复习的第3题。
首先让学生分组讨论,发表各自的看法,然后教师适当举例说明平行四边形的面积跟它的底边和高的关系。当高一定时,底边越长它的面积越大。而三角形的面积是与它等底等高的平行四边形面积的一半。
四、作业
练习二十第2、3、4题。
学有余力的同学可做第10题。
第一课时 平行四边形面积
教学反思:
第三课时 三角形面积的应用
教学内容:
冀教版小学数学五年级上册第60、61页三角形面积的应用。
教学提示:
学生已掌握了三角形面积的计算公式,在此基础上引导学生把计算结果同实际的需要联系起来,培养数学应用意识和解决实际问题的能力。
教学目标:
1、知识与技能:结合具体情境,经历综合应用知识解决实际问题的过程。
2、过程与方法:通过解决与三角形面积有关的简单问题,获得综合应用所学知识解决实际问题的经验和方法。
3、情感态度与价值观:愿意对数学问题进行讨论,感受数学运算的合理性与结果运用的现实性,培养数学应用意识。
重点、难点:
教学重难点:会应用三角形的面积计算公式解决一些简单的实际问题。
教学准备:
多媒体,图形。
教学过程:
一、复习导入
同学们,我们已经学习了哪几种平面图形的面积?
谁能说一说怎样求他们的面积?(学生自愿回答)
【设计意图:让学生复习长方形、正方形、平行四边形、三角形的面积公式,为下面的学习打下伏笔。】
二、探索新知
1、出示例题:有两块白布,用它们做医院包扎使用的三角巾(不可拼接),第一块白布:长135分米,宽9分米。第二块白布:长140分米,宽10分米。
9d
2、提出问题。
第一块白布可做多少块这样的三角巾呢?第二块白布可做多少块这样的三角巾呢?请同学试着用自己的方法算一算。
3、解决问题。
学生试算,教师巡视。了解学生计算的方法。
师:学生汇报计算的结果。
生:我先算第一块白布和一块三角巾的面积,再计算第一块白布可做多少块三角巾。
135×9=1215(平方分米)
9×9÷2=40.5(平方分米)
1215÷40.5=30(块)
生:我列成了一个综合算式
(135×9)÷(9×9÷2)
生:边长是9分米的正方形白布可以做2块三角巾,那么第一块白布可做多少块三角巾,就用
135÷9×2=30(块)
【设计意图:通过让学生自己尝试解决问题,经历成功与失败,培养学生克服困难的精神和勇气。】
师:同学们的做法很好,希望大家在做题的时候用不同的方法解决问题,提高自己的思维能力。
师:哪个组再汇报一下第二个问题的解决方法。
生:我们组用“总面积÷每块三角巾的面积”来做。
白布面积:140×10=1400(平方分米)
三角巾的面积:9×9÷2=40.5(平方分米)
可以做多少块三角巾:1400÷40.5≈34(块)
师:能做出34块吗?大家画图试一试。
学生画图,发现问题,小组讨论
师:同学们通过画图,发现了什么问题?
生:第二块白布的长、宽虽然比第一块长5分米、宽1分米,题中要求“不可拼接”,所以不能做出34块,只能用第2种方法,做30块。
生:先算白布长可以做多少个边长9分米的正方形。
140÷9=15(个)……5(分米) 余数5分米是多余的布料,不能做一个三角巾。
再算白布宽可以做多少个边长9分米的正方形。
10÷9=1(个)……1(分米) 余数1分米是多余的布料,不能做一个三角巾。
最后算可以做多少块三角巾。
15×2=30(块)
师总结:当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。
【设计意图:在具体情境中,发展学生的空间观念,考察学生能否创造性运用已有知识。结合画图,引导学生把计算的结果同实际的需要联系起来,培养数学的应用意识和解决问题的能力。因此否定第一种算法、】
三、巩固新知
1、判断题
(1) 两个面积相等的三角形可以拼成平行四边形行( )
(2) 等底等高的三角形面积相等( )
(3) 三角形的面积等于平行四边形面积的一半( )
(4)三角形面积的大小与它的底和高有关,与它的形状和位置无关。( )
2、一块广告牌是三角形,底是12.5米,高6.4米。如果要给广告牌刷漆(只刷一面),每平方米用油漆0.4千克,刷这个广告牌需要油漆多少千克?
3、教材第61页练一练1题。
答案:1、×、√、×、√ 2、16千克 、 3、0.48平方米,72元
【设计意图:练习分层次设计,主要是巩固、熟练公式,解决实际问题是让学生感知生活化的数学。】
四、达标反馈
1、大白菜地的形状是三角形,底80米,高60米,如果每棵大白菜占0.2平方米,这地可种大白菜多少棵?
2、明明的房间是一个长4米、宽3米的长方形。用直角边分别是4分米和3分米这样的直角三角形地砖铺地,至少需要多少块?
3、教材第61页2-3题。
答案:1、80×60÷2=2400(平方米) 2400÷0.2=12000(棵)
2、4米=40分米 ,3米=30分米 ,
40×30=1200(平方分米),4×3=12(平方分米),1200÷12=100(块)
3、教材2、5×4.2÷2=10.5(平方米),39×11=429(千克)
教材3、421≈400,58≈60,400×60÷2=12000(平方米)
五、课堂小结
师:通过今天的学习,你学会了那些知识?
生:我知道:在实际问题中,三角形的底和高确定后,三角形的'面积也就确定了。
生:在解决问题时,根据实际情况确定方法。如例题的第二个问题就要考虑实际问题选择方法。当长方形的长和宽不是三角形的底和高的整数倍时,一般不能应用“总面积÷每块三角巾的面积”来解决问题。
六、布置作业
1、教材第61页4----6题。
2、如图一个交通标志牌的面积是36平方分米,它的高是多少分米?
教学内容:
1、平行四边形面积的计算(第12-14页)
2、三角形面积的计算(第15-18页)
3、梯形面积的计算(第19-21页)
4、实践活动:校园的绿化面积(第26-27页)
教材分析:
教学面积计算时,不仅教会学生面积计算的方法,更重要的是通过教学培养学生的能力。一是培养学生动手操作的能力,通过数方格、图形割补、拼、摆等小系列的操作,发展学生的空间观念。二是培养学生转化矛盾,探索规律的能力。教学中,要启发学生设法把所研究的图形转化成已会计算的图形,还要引导学生主动探索所研究的图形与已学过的图形之间的联系,从而找到计算方法,这样学生的印象深刻,思维也得到发展。
教学目标:
1、使学生通过剪拼、平移、旋转等方法,探索并掌握三角形、平行四边形和梯形的面积公式,能正确计算它们的面积。
2、使学生通过列表、画图等策略,整理平面图形的面积公式,加深对各种图形特征及其面积计算公式之间内在联系的认识。
3、使学生经历操作、观察、填表、讨论、分析、归纳等数学活动过程,体会等积变形、转化等数学思想,发展空间观念,发展初步的推理能力。
4、使学生在操作、思考的过程中,提高对空间与图形内容的学习兴趣,逐步形成积极的数学情感。
教学重点:平行四边形、三角形、梯形的面积计算公式
教学难点:理解三种图形面积公式的推导过程,运用公式解决面积的计算问题。
课时安排:9课时
第一课时:平行四边形面积的计算
教学内容:平行四边形面积的计算
教学目标:
1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:理解并掌握平行四边形的面积公式
教学难点:理解平行四边形面积公式的推导过程
教学过程:
一、复习导入:
1、说出学过的平面图形。
2、在这些图形中,哪些图形的面积你会求?
二、探究新知:
1、教学例1:
(1)出示例1中的第1组图
要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)
(2)出示例1中的第2组图
要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调转化的方法。)
(3)揭示课题:
师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究平行四边形面积的计算。(板书课题)
2、教学例2:
(1)出示一个平行四边形
师:你能想办法把这个平行四边形转化成学过的图形吗?
(2)学生操作,教师巡视指导。
(3)学生交流操作情况
第一种:①沿着平行四边形的高剪下左边的直角三角形。
②把这个三角形向右平移。
③到斜边重合。
第二种:①沿着平行四边形的任意一条高将其剪为两个梯形。
②把左侧的梯形向右平移。
③道斜边重合。
(4)教室用课件进行演示并小结。
师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。
(5)小组讨论:
①转化后长方形的面积与原平行四边形面积相等吗?
②长方形的长与平行四边形的底有什么关系?
③长方形的宽与平行四边形的高有什么关系?
(6)学生总结,形成下面的板书:
长方形的面积=长X宽
平行四边形的面积=底X高
3、教学例3:
(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。
转化后的长方形平行四边形
长(cm)宽(cm)面积(cm)底(cm)高(cm)面积(cm)
(2)学生操作,反馈交流。
(3)用字母表示面公式:S=ah(板书)
三、巩固练习:
1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。
2、指导完成练一练:强调底和高的对应关系。
四、总结:
师:通过今天的学习有哪些收获?
板书设计:平行四边形面积的计算
转化
已学过的图形新图形
割补、剪拼
因为长方形的面积=长宽
所以平行四边形的面积=底高
课后札记:
本单元教学平行四边形、三角形和梯形的面积计算,这是在学生认识了这些图形的特征,掌握了面积的意义和长方形面积计算公式的基础上安排的。全单元内容在编排上有四个特点。
第一,先教学平行四边形的面积公式,然后以它为基础教学三角形、梯形的面积公式。因为把三角形、梯形转化成平行四边形比较化成长方形简便,从平行四边形面积公式推理出三角形、梯形的面积公式比较容易。
第二,加强练习,突出知识的实际应用。为了使学生掌握平面图形的面积计算方法,全单元安排了三个练习,分别巩固平行四边形、三角形、梯形的面积公式,并在简单的情境中应用这些公式解决实际问题。
第三,设计了全单元内容的整理与练习,除了知识的巩固性练习和应用性练习外,突出了对知识的整理和结构的建立,并引导学生开展自我学习评价,小结自己在知识与技能的掌握方面、学习活动的开展方面、习惯与态度等情感方面的表现与收获,力求把促进学生全面、持续、和谐的发展落到教学的实处。
第四,安排了一次实践活动。在本单元结束时,利用已经掌握的五种平面图形的面积公式,通过割、补等操作活动,对图形进行分解与组合,计算稍复杂的不规则图形的面积,从而提升对常用面积公式的掌握水平。
你知道吗介绍了我国古代把一个三角形转化成长方形,从而推导三角形面积计算方法的历史记载。不仅弘扬中华民族的文明历史,还让学生体会转化策略的具体应用是多样而灵活的。在此基础上,编排了第25页的思考题,让有兴趣的学生学习使用。
1.组织学生动手操作、合作交流,经历探索面积计算公式的过程。
教材希望学生通过探索,理解并掌握三角形等图形的面积公式。因为这些图形的面积计算的教学价值,不只是知道几个公式和进行求积计算,更在于通过这些内容的教学发展学生的形象思维和空间观念,培养实践能力和创新精神,积极参与数学学习活动的热情和信心。
研究并推导三角形等平面图形面积公式的途径是多样的,教材选择了把平行四边形割补成长方形、把两个完全相同的三角形(梯形)拼成平行四边形等方法。这些方法与思路比较贴近学生已有的数学活动能力和思维发展水平,易于操作,适宜大多数学生应用。
教材通过引导方向、提供条件、安排交流、组织思维这样的线索支持和帮助学生探索。
(1)创设启动学生探索的情境。
研究新的数学问题,需要明确的方向和清晰的思路,这一点在教学中尤为重要。
在教学平行四边形面积时,第12页的两道例题起帮助学生确立研究思路的作用。例1通过每组的两个图形面积相等吗唤醒把图形等积变换的思想方法一个复杂的图形可以转化成面积相等的、比较简单的图形,这是研究平行四边形面积计算的策略。例2把一个平行四边形转化成长方形,为学生明确了探索活动的思路和方法。沿着平行四边形的一条高把它剪成两部分,是实现图形有效转化的关键。为此,教材一方面把平行四边形置于方格纸上,便于学生沿着高剪。另一方面提出它们都是沿着什么剪的这个问题,引导学生注意自己的剪法,交流各人的剪法,体会沿着高剪的必要性与合理性。
在教学三角形面积时,第15页的例4用图呈现了一个三角形的面积是它所在的平行四边形面积的一半这个十分重要的数量关系。学生可以用数方格的方法,从每个三角形的面积各是几个小方格,推出它的面积是多少平方厘米。也可以先通过底高算出每个平行四边形的面积,再除以2算出每个三角形的面积。两种方法结果相同,印证了两种方法都是正确的。而后一种方法比前一种方法方便,避免了数方格时的一些麻烦。由此产生研究三角形面积计算的方向和思路:能否从平行四边形面积算出三角形的面积
(2)为学生提供操作的物质条件和方法指导。
研究平行四边形面积计算的问题,要把平行四边形剪拼成长方形;研究三角形面积计算,要把两个相同的三角形拼成一个平行四边形。这些研究活动都在相应的图形上进行操作,教材第127页有许多平行四边形和三角形,第129页有许多梯形,为学生开展操作活动提供需要的图形。
除了提供操作的图形,教材还在以下三个方面对操作活动给予支持:一是告诉学生到哪里去选取操作的材料。第13页例3和第15页例5都清楚地指出从第127页选一个平行四边形(或三角形)剪下来,第19页例6的操作材料是方格纸上的梯形。二是指导学生怎样操作。在三道例题中分别有把平行四边形转化成长方形看看与(例题中)哪一个三角形可以拼成平行四边形,拼一拼看看哪两个梯形能拼成平行四边形,拼一拼。三是指出通过操作应初步知道些什么。如通过长方形的面积求出平行四边形的面积;先求出平行四边形面积,再求出每个三角形的面积;先求出平行四边形面积,再求出每个梯形的面积。教材希望这些方法指导,使操作活动有序、有效地进行,为进一步的数学思考积累感性材料。
(3)在个体操作的基础上安排合作学习。
在三道研究图形面积计算公式的例题中,每个学生都只进行了一次图形的割补或移拼活动。同一小组的学生,在第123页里选择了不同的平行四边形和三角形,因此具有相互交流的需要与可能。通过交流,学生能知道,任何形状的平行四边形都可以转化成长方形,只要是完全相同的两个三角形都可以拼成一个平行四边形。这样,他们对图形变换的认识不再是个案的体会,而是对图形本质联系的体验。这对形成图形的面积公式是十分重要的一步,也体现了数学学习的严谨性与数学结论的确定性。
在每道例题中都设计了一张表格,这是在交流后每名学生都要填写的。表格的内容都是两部分:一部分是转化后的图形的有关数据,如转化成的长方形的长、宽与面积,拼成的平行四边形的底、高与面积;另一部分是转化前的图形的有关数据,即原来平行四边形的底、高与面积,原来一个三角形(梯形)的底、高与面积。把这两部分内容设计在同一张表格里,能引导学生从数量的角度,体会图形转化前后在长度与面积上的对应联系。表格里先填转化成的图形的数据,后填转化前的图形的数据,出于两点原因:一是学生通过操作,已经实现了图形的转化,新图形的边的长度可以用尺量得,面积能够算得,完成表格的左半部分比较容易。二是原来图形的面积是依据图形的形状变了、大小不变推导出来的,没有转化后的图形的面积就得不到原来图形的面积。至于原来图形的底、高的长度,学生有条件通过推理得到。在填写表格右半部分时,学生对转化前后两个图形的联系有所理解。
(4)组织推理,建立数学模型。
在教学面积公式的三道例题中,都设计了三个讨论题,这些讨论题的任务是组织起面积公式的推理活动。其中前两个讨论题是关于转化前后两个图形的比较研究,归纳出两者之间的内在联系,包括面积之间的联系以及线段间的对应联系。这些联系,学生在操作活动中已有初步感知,又通过填写表格有了比较清楚的体会,通过讨论,可以把具体现象上升为理性认识。第三个讨论题是从转化后图形的面积计算得出原来图形的面积计算,是对已有的面积公式进行等量替换得出新的面积公式。教材里没有写出这样的替换,把它留给学生进行。学生从中不仅认识了新的面积公式,而且在数学思考,特别是开展推理活动方面,将得到一次很好的锻炼。本单元教学的三个面积公式,既用文字表达,也用字母表达,都是具有普遍规律和应用价值的数学模型。公式的得出是建模的过程,只要学生经历了探索公式的全过程,一定能理解和掌握这些公式。
2.在练习中加强对面积公式的体验。
本单元结合面积公式的练习是比较充分的,配合每个面积公式各安排了一道试一试、少量的练一练以及一个练习。试一试是学生首次应用新学的面积公式解决简单的实际问题,在练一练和练习中一般都有三方面的内容,一是加强对面积公式的理解,突出公式中最关键的成分,二是应用公式求图形的面积,三是解决与面积计算有关的实际问题。这里对第一方面的内容作一些说明。
教材十分重视学生对面积公式的理解,在得出面积公式以后,仍然给学生许多机会,让他们的体会逐步深刻。
第14页第1题在方格纸上画两个形状不同的平行四边形,可以有两种思路。一种是画出面积为15平方厘米的平行四边形(因为长方形的面积是15平方厘米),这样的平行四边形可以是底5厘米、高3厘米,底3厘米、高5厘米应用这种思路能更熟悉平行四边形的面积公式。另一种是画出底5厘米、高3厘米而形状不同的平行四边形(因为长方形长5厘米、宽3厘米),这种思路能更好地认识平行四边形与相应长方形的联系,又一次体会这两种图形面积公式的关系。
第14页第5题拉动细木条钉成的长方形框,它的周长始终不变,面积变得越来越小。原因是图形变了,先是长方形变成平行四边形,再是平行四边形的高越来越短。学生从中区分平行四边形的边与高,体会到它的底虽然不变,由于高变小了,面积也小了。
第16页练一练、练习三第1题都是两个完全一样的三角形拼成一个平行四边形或一个平行四边形(长方形)分成两个一样的三角形,如果已知一个三角形的面积能求平行四边形的面积或已知平行四边形(长方形)的面积能求一个三角形的面积。这些题突出了等底等高的平行四边形与三角形面积的关系,能减少学生求三角形面积忘记除以2的错误。练习三第10题使学生进一步体会平行四边形与三角形的关系,只要它们等底等高,无论三角形在平行四边形的哪里,它的面积总是平行四边形的一半。
第17页第5题判断方格纸上哪几个三角形的面积是平行四边形的一半。其中最左边的那个三角形与平行四边形的底都是3、高都是4;最右边的那个三角形刚巧是底4、高3。平行四边形的面积是34,这两个三角形的面积都是342。这样,学生不仅作出了判断,而且对三角形面积公式的理解更灵活了。
第17页第6题在方格纸上画面积是9平方厘米的三角形,也有两种思路。一种是根据底高2=9,假设底是2厘米,则高是9厘米;假设底是3厘米,则高是6厘米另一种思路是先画出面积是18平方厘米的平行四边形(如29、36等),再把平行四边形分成两个相同的三角形,从中选取一个。两种思路都能加深学生对三角形面积公式的体验。
第20页练一练第1题,练习四第1、2题的设计都与前面相似,不再重述。
3.整理与练习以及实践活动《校园的绿化面积》的编写,充分考虑了学生学习的需要,努力提高他们的学习水平。
小学高年级数学,教学的内容多了,可应用的范围广了。因此,及时整理学到的知识,经常调整认知结构;回顾学习过程,积累继续学习的资源;联系实际,在日常生活中应用知识都是学生的学习需要。教材编写全单元的整理与练习,安排实践活动是从学生的实际需要考虑,满足他们的需要,培养学习数学的能力。
先分析整理与练习。回顾与整理已经学过的面积计算公式,包括本单元教学的三个公式以及三年级(下册)教学的长方形、正方形的面积公式。这个栏目在编写上有两个特点:一是鼓励学生自己整理,在回忆知识的时候,用适合自己的形式把全部知识理一理。教材中呈现了两种整理形式,即列表整理和画图整理,前者理出了有什么知识、是什么知识,后者理出了面积公式间的关系。教学时要从学生的实际能力出发,对有条件的学生,应鼓励他们自己整理,并加强交流,体会整理方法是多样的,各种整理形式都有其特点。对有困难的学生,可以先看看教材中的整理,然后选一种形式自己也来理一理。二是突出对学习过程的回顾与学习策略的提炼。平行四边形、三角形和梯形面积计算公式的推导过程有什么相同的地方这个问题引导学生回顾学习过程,通过寻找相同的地方提炼转化策略,都是把新的图形转化成已能求面积的图形,都是利用已有的面积公式推出新的面积公式。转化策略支持了本单元中对面积计算公式的探索,还能广泛应用于其他数学知识的学习和数学问题的解决。练习与应用栏目有三个编写特点:一是通过第1题、第4题的判断与画图,继续加强对各个面积公式的理解以及公式之间联系的体验,如第1题里的四个图形的底相等、高也相等,长方形与平行四边形面积相等,三角形、梯形的面积都是平行四边形、长方形的一半。所以三角形、梯形的面积公式里都有2。二是以练习平行四边形、三角形、梯形的面积计算为主,带着练习长方形、正方形的面积计算,帮助学生全面地掌握知识。三是在稍复杂的情境中解决与求面积有关的实际问题,如第3、7、8、9题。这些题比前面练习中的实际问题复杂,但更贴近实际生活,对学生更有吸引力和挑战性。探索与实践栏目引导学生走出书本、走出教室、走进生活,寻找并解决与面积知识有关的实际问题。栏目里设计的两道题都富有教育、教学的价值。第1题求一堆钢管的根数,学生最容易想到的方法是把各层的根数连加,还能应用加法运算律使连加计算简便。教材引导学生从梯形面积的计算方法的角度体会自己的算法,进一步理解梯形的面积公式,获得解决这个实际问题的技巧。第2题安排学生自行开展小型的实践活动,把图形的认识、测量长度的方法和计算面积的公式等多方面知识融为一体,对发展学生的数学意识是十分有益的。评价与反思是教材新开辟的教学活动栏目,以这个栏目推动课堂教学评价的改革。教材中的这个栏目,引导学生实事求是地反思自己在学习过程中的表现和学习的收获,对自己的学习作出主动、客观、有积极意义的评价,从而促进更好地发展。这个栏目里的内容有两个显著的特点:第一,知识与技能的习得是评价内容之一,但不是惟一。把参与学习活动的态度、能力和对数学活动的体会作为评价的重要方面,努力体现新课程倡导的动手实践、自主探索、合作交流等学习方式。通过评价,使学生知道应该以什么样的态度学习数学。第二,尽力调动学生开展评价的积极性,以自我评价为主,配置有趣的评价表达方式,由学生根据自己的表现,能得几颗星,就把几颗星涂上颜色,从而清楚自己在学习时的表现以及以后应该怎样做。
再分析实践活动《校园的绿化面积》。编排这次实践活动的目的是,进一步丰富学生学习、应用数学知识的思想方法,培养估计、测量等应用能力,发展学生的想像和创新精神。在想想算算里计算稍复杂的图形的面积,这些图形都可以分解成两个基本的图形,它的面积或是两个基本图形的面积之和,或是两个基本图形的面积之差。教材把分解与组合作为一种思想方法,通过计算不规则图形的面积凸现出来。呈现华风小学校园里的草坪的平面图,由大卡通提问你准备怎样算在小组里交流,引导教学把重心放在思想方法上。呈现了学生交流的场面,交流的内容也是解决问题的策略。对计算校园里两块花圃的面积,也应该先让学生说说自己的思路。在分别求出各个基本图形的面积时,找到相关的长度数据是教学的难点,如从草坪图分解出来的梯形的底和高,左边花圃图分解成的长方形的宽或长等,这些都需要联系图形的特征通过推理和计算才能得出,应该给学生适当的指点。量量算算在校园里找一块合适的草坪或花圃,先估计,再测量计算面积。合适的意思是,形状为已经学过的图形,并且不太复杂,最好是平行四边形、三角形或梯形的;面积不要过大,也不要过小,便于估计和测量;测量长度方便、安全。学生估计花圃或草坪的面积可能出现两种思路:一种是凭借头脑中对1平方米的表象,直接估计面积大约是多少平方米;另一种是先估计有关的长度大约是多少米,再应用面积公式算出面积大约是多少平方米。两种思路都是可以的。估计面积允许有较大的误差,重要的是估计时的思考。实际测量计算面积所要的长度,由于学生还没有学过小数,花圃、草坪的面积通常以平方米为单位,所以只要量得大约长几米就可以了。对于面积较小的花圃用平方分米作面积单位也是允许的。画画算算里为华风小学设计一个花圃,它的形状、大小都是开放的,学生可以按自己的意愿设计,把自己的个性特点、丰富的想像、创新意识充分地表现出来。在方格纸上进行设计,便于画图,也容易算出面积。
相关文章
最新文章