圆柱的认识课件

圆柱认识课件 圆柱课件 06-27

圆柱的认识课件精华。

希望大家能够喜欢并受益于本页面推荐的“圆柱的认识课件”相关文章。老师们在上课前通常会提前准备教案课件,这对于教师来说并不是一个新鲜的事情。而学生的反应则是教学质量的一项重要评价标准。希望本文能够帮助到您。

圆柱的认识课件 篇1

学习活动:

一、创设情境,引出课题

同学们,老师这有一张白纸,现在,我想让这张纸站立起来!(教师演示纸横站、竖站怎么都不行)怎么站不起来呀?同学们能想办法帮帮老师吗?

(请学生拿出纸试验,并到前面展示。)。

可能会出现以下几种情况:

教师指出:像这样(指卷成筒形的)形状的物体在数学上称为圆柱。圆柱有什么特征呢?这节课我们一起来研究这个问题。

二、主动探究——认识圆柱的特征。

1、整体感知圆柱。

(1)教师利用课件出示大型建筑的支柱、笔筒、岗亭等实物图。

指出:这里的支柱、笔筒、岗亭的主体部分都是圆柱,人们把许多建筑物设计成圆柱形状,以增加立体感和美感。

(2)请学生找找生活中圆柱形的物体。

(3)利用课件从上述实物图形中抽象出圆柱几何图形。

2、操作感知—圆柱的各部分

(1)请同学们看看、摸摸手中的圆柱形物体,同桌讨论:圆柱有几个面?这些面有什么特征?

(2)组织学生交流,初步感知圆柱有三个面,其中有两个面是平面,是两个圆面,叫圆柱的底面;还有一个面是曲面,叫圆柱的侧面。

(3)请学生说说手中圆柱各部分名称。

(4)感知圆柱上、下两个底面的关系。

引导学生观察、议论,并说出自己的做法。

可能有如下方法:

a、可以剪下来比较;

b、量半径、量直径;

c、量周长;

d、把模型的底面固定在纸上沿着它的周边在纸上画出一个圆,再把模型倒换过来比较。

教师引导学生小结:圆柱上下两个底面是完全相同的两个圆。

3、认识圆柱的高

(1)教师出示两个高、低不同的圆柱,提出问题:哪个圆柱比较高,为什么?

引导学生发现:圆柱的高低与圆柱两个底面之间的距离有关。指出:圆柱两个底面之间的距离叫做高,圆柱有无数条高。

(2)怎样测量圆柱的高

a、独立探究:让学生想办法测量自己手中圆柱的高。

b、集体交流测量方法,使学生明确,用直尺和三角板可以比较准确的测量圆柱的高。

4、认识圆柱侧面展开图

(1)猜一猜:如果把圆柱侧面沿高剪开再展开,它会是什么形状?

(2)剪一剪:请大家拿出贴有商标纸的饮料罐,沿着它的一条高剪开,然后展开摊平——(会得到一个长方形)

(3)议一议:展开后得到的长方形的长和宽与圆柱有什么关系?

(4)集体交流,形成共识:长方形的长就是圆柱底面的周长,宽就是圆柱的高

(5)知识拓展

a、什么情况下圆柱的侧面展开后会得到一个正方形?

b、如果沿一条斜线剪开,会得到什么形状?导发现:当圆柱底面的周长和高一样的时候,把圆柱侧面沿高展开后得到一个正方形;如果沿一条斜线剪开,得到一个平行四边形。

(6)做一做:快速转动准备好的长方形纸片看看有什么发现?

圆柱的认识课件 篇2

活动目标:

1、认识球体和圆柱体,知道他们的名称和基本特征。能从周围环境中找出相似的物体。

2、能区别平面图形和几何图形以及几何图形之间的不同,发展幼儿的辨别力。

3、发展幼儿空间概念想象和思维能力。

活动准备:

1、教具:课件《认识球体与圆柱体》、电脑.

2、学具:每人一只球、五只一圆的硬币、一只篓子、一张有圆形或球体或圆柱体的图片。各类废旧报纸、毛线等。

3、座位安排:两个半圆行、每人一只垫子,席地而座。

4、三处有圆形、球体、圆柱体娃娃的标志。

活动过程:

一、出示课件,引起兴趣。

小朋友,今天来了这么多客人老师,开心吗?姜老师告诉你们一个好消息,还有一位客人要来做客呢,你们看,他来了。

(出示课件一:硬币来了。通过硬币的介绍,进一步感知圆形,初步感知球形。)

这是谁呀?他是什么形状的?转起来呢又是怎样的?

二、通过硬币的引见,导出球体,体现圆与球的特征。

1、球和硬币有什么区别。

(出示课件二:球和硬币的区别)(m.JYm1.COm 句怡美)

2、请幼儿看一看,球与硬币在外形上有什么区别。

3、请幼儿比一比,球与硬币谁滚的快。

4、请幼儿讲一讲,球与硬币的特征。

5、小结:对,小朋友讲的真好。我们来听听硬币和球体是怎么说的?

(课件三:通过硬币与球的比赛,以及形象的讲解进一步了解硬币与球的特

征:硬币圆圆的、扁扁的,就象一张纸;球不管从哪个方面看都是圆的,不管从哪个方向滚都可以。)

三、认识球体与圆柱体。

1、通过课件四,引出圆柱体。(五个硬币叠在一起变成圆柱体。)

2、摆一摆,(把五个一圆的硬币叠在一起,看看变成了什么?)

3、球体和圆柱体比赛滚。(课件五比滚)

A、请个别幼儿上来滚一滚老师叠起来的圆柱体与球体,看看他们谁快谁慢?

B、讲讲为什么?

4、球体和圆柱体比叠高。(课件五比叠高)

A、请小朋友把你叠的`圆柱体和好朋友再叠一叠,可以吗?把两个球也叠一叠,可以吗?

B、为什么?

四、通过讲讲生活中的圆形、圆柱体、球体,发展幼儿的扩散性思维。

1、象硬币这样的圆形,你们还在哪里见到过?硬币叠起来就是圆柱体,那你还在哪里看到过圆柱体呢?

2、哪里看到过球体?比一比谁想的最多。

3、硬币叠起来就是圆柱体,那你还在哪里看到过圆柱体呢

圆柱的认识课件 篇3

教学目标

1.使学生了解圆柱的特征,知道圆柱的底面及其直径和半径,圆柱的高,圆柱的侧面积及它的展开图。

2.通过观察,认识圆柱并掌握它的特征,建立空间观念。

教学重难点

重点:理解掌握圆柱的特征。

难点:1.建立空间观念。2.弄清圆柱侧面是一个长方形(正方形),长方形的长和宽与圆柱底面周长和高的关系。

教学工具

多媒体课件圆柱的模型茶叶桶等圆柱形实物

教学过程

一、自主探究

(一)学生自行看课本。

1、圆柱由哪些部分组成?

2、圆柱有几个底面?几个侧面?几条高?

3、你能说出圆柱的特征吗?

4、长方形或正方形沿一条边旋转会形成不同的圆柱体,不妨自己一试。

(二)同桌互说P11做一做。

(三)找一个圆柱

1.感触一下圆柱的面。

(1)用手平摸上下底,有什么特点。

(2)用笔画一画,上下底面积有什么特点。

(3)用双手摸侧面。

2.明确:圆柱的上、下两个面叫做底面。它们是两个完全相同的两个圆。

圆柱的侧面,是一个曲面。

圆柱的高。出示高、低不同的两个圆柱。

用直尺和三角板演示圆柱的高。

使学生明确:圆柱两个底面之间的距离叫做高。

二、合作交流

小组共同互说:

1、圆柱侧面展开是什么样?

2、圆柱有何特征?详细说一下。

三、汇报释疑 整理消化

教材P15练习二4

四、实践应用拓展延伸

1.教材P12做一做;

2. P15练习二1----3

圆柱的认识课件 篇4

教学内容:

小学数学(人教版)第十二册的内容。

教学目标:

1、知识目标:认识并掌握圆柱的特征,掌握圆柱侧面积的计算方法。

2、能力目标:通过观察与操作、合作与交流,提高学生的观察能力、动手操作能力,培养空间观念,构建生态课堂。

3、情感目标:在师生互动中不断增强合作的意识,体验成功的乐趣,提高学习的兴趣,构建和谐课堂。

教学重点:

在操作活动中发现圆柱的特征和侧面积的计算方法,正确计算圆柱的侧面积,形成空间观念。

教学难点:

理解曲面和通过化曲为直的方法推导侧面积的计算方法。

教具学具:

多媒体课件、圆柱体实物、剪刀、线等。

教学程序:

一、创设情境,提出问题

1、分一分。(课件出示实物图)

师:请同学们看屏幕,这些都是我们生活中常见的物体,你能按形状把它们分一分吗(教师根据学生的回答随机拖动分类)?

2、说一说。

师:你为什么这样分(引导学生根据已学图形的特征简要说一说)?

师:剩下的这些形体我们将陆续进行学习,今天我们就先来认识圆柱体,简称圆柱(突出两个圆柱图)。

师:请同学们看屏幕上的2个圆柱,再看一看桌上老师为你们准备的3个圆柱,它们都是直直的(点击,抽象出圆柱的平面图形),而且上下一样粗,象这样的圆柱就叫直圆柱。

师:说一说,你见过哪些物体的形状是圆柱形的?

[评析:通过展示学生生活中常见的物体,创设有利于学生学习的生活情境,在分类中自然地引出课题,然后举例并从实物中抽象出圆柱的几何图形,使学生初步感受圆柱的特征,最后通过对实物的辨析,强化对圆柱体的认识,使课堂自然、真实、生动。]

二、自主探索,分析问题

1、独立思考,初步理解圆柱的特征。

①想一想。

师:观察这些圆柱,(点击出示研究问题)它们有什么相同的地方?

引导学生得出:圆柱有上下2个圆……

②摸一摸。

师:圆柱除了上下两个圆面之外,还有其他的面吗?请你摸一摸,它们有什么不同的地方?

师总结:圆柱上下两个面是平面,周围的这个面是弯曲的面,叫曲面。

③说一说。

师:圆柱一共有几个面(教师在黑板上贴出圆柱平面图)?

师总结:圆柱上下2个平面叫圆柱的底面,圆柱周围的这个曲面叫圆柱的侧面,圆柱的侧面是一个曲面。

2、合作探究,理解圆柱的特征。

师:请同学们继续观察圆柱,你还有什么发现?

如果学生说不出,教师引导:它的2个底面怎样?圆柱的底面是不是相等呢?你有什么方法验证?请同学们小组合作,验证一下你们的想法,看哪个小组想的办法最多?

3、全班交流,掌握圆柱的特征。

师:哪个小组的同学愿意代表你们小组交流一下你们的发现?

生1:用尺子量一量圆柱底面的直径,看是不是一样大。

生2:揭下2个底面,重合起来比,发现它们完全相同。生演示。

生3:揭下1个底面,贴到另一面,它们也完全相同。生演示。

生4:先沿一个底面画圆,再把圆柱倒过来,和另一个底面比一比,它们也完全相同。生演示。

教师:同学们真聪明,想出了这么多的办法验证出2个底面完全相同(板书)。

[评析:让学生学会思考,是数学课程的重要目标之一。创设富有挑战性的问题,更容易激发学生的有效思考。学生发现圆柱两个底面相等只是源于对圆柱的生活感受,而当学生利用老师提供的学具,采用不同的方法验证了自己的发现时,就会产生一种积极的,兴奋的行为状态,就更容易参与到下面的问题解决中去。]

师:我们发现了圆柱的相同点,那么它们有什么不同点呢?由什么决定?

生:它们有粗有细,有长有短。

……

师:和两个底面垂直的线段长度是2个底面之间的距离。圆柱2个底面之间的距离叫做圆柱的高(在黑板的图上标明高)。

师:如果老师把圆柱沿底面直径切开,你能找出一条高吗?圆柱有多少条高?你能给圆柱画一条高吗?(师生演示)

[评析:圆柱高的认识是学生认识中的难点。在教学中教师突破了以往只教学圆柱侧面高的教学定势,从内外两方面帮助学生认识高、画高,培养了学生的空间观念。]

三、合作探究,解决问题

1、猜测,初探圆柱的侧面积。

师:老师这儿有一个圆柱形茶叶盒外层的包装纸,我想知道这张包装纸的面积,你能帮老师想想办法吗?

生1:直尺不好量就用卷尺量。

生2:剪下来压成平面再算。

……

2、验证,理解圆柱的侧面积。

师:同学们的想法非常好,哪剪下来的包装纸是什么形状呢?老师给每个圆柱都裹上了一层包装纸,请你试着剪一剪,看有几种不同的剪法?都能剪出什么形状?各应该怎样计算它们的面积(请学生在小组内交流)?

生1:长方形的面积就是包装纸的面积。也就是圆柱的侧面积。

生2:长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高。

生3:……

师总结:我们沿圆柱的一条高把侧面剪开,压平,就得到了一个长方形(板书)。长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高,长方形的面积就是圆柱的侧面积。因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高。

师:要想计算圆柱的侧面积,应该知道什么条件?如果知道圆柱的底面半径、直径和高,又该怎样求它的侧面积?

[评析:侧面积计算方法的探究是本节课的重点和难点。教师通过包、剪、比等手段化曲为直,帮助学生发现圆柱的侧面积就是侧面包装纸的面积,再通过动手操作、小组合作等手段发现问题的本质,体现了从一般到特殊这一研究问题的方法。]

四、巩固拓展,应用问题

1、指出下面图形中哪些是圆柱?并指出圆柱体的底面、侧面和高。

先由学生判断,再根据学生的叙述出示底面、侧面和高。(图略)

2、画出下面圆柱的高。

3、选择。选择正确的算式,并说明理由。

4、计算圆柱的侧面积。只列算式不计算。

圆柱的认识课件 篇5

一、揭题示标

【学习目标】

1、认识圆柱,掌握圆柱的基本特征,知道圆柱的各部分名称。

2、理解圆柱的侧面展开图与圆柱各部分的关系。

板书课题

师:同学们,今天我们来学习“圆柱的认识”(板书课题)。

出示目标

本节课我们的目标是:(出示)

1、认识圆柱,掌握圆柱的基本特征,知道圆柱的各部分名称。

2、理解圆柱的侧面展开图与圆柱各部分的关系。

为了达到目标,下面请大家认真地看书。

出示自学指导

认真看课本第10页到第12页的例1和例2,看图看文字,,重点看圆柱的侧面展开图,想:

1、圆柱有几部分组成,各部分名称是什么?

2、圆柱的侧面展开图是什么形状,与圆柱有什么关系?

5分钟后,比谁能做对检测题!

师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

二、自主探究

(一)看书

学生认真看书,教师巡视,督促人人都在认真地看书。

(二)检测(找两名学生板演,其余生写在练习本上)

第11、12页的“做一做”

要求:

1、认真观察,正确书写。

2、写完的同学认真检查。

三、合作提升

(一)更正

师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

(二)讨论

1、看图认为判断正确的请举手。

【圆柱有上下两个底面(是圆),有一个侧面(长方形)】

2、观察自己做的圆柱,侧面展开图是什么形状?它的长和宽相当与圆柱的什么?

[长方形的长等于圆柱底面的周长,宽等于圆柱的高]

3、评正确率、板书,并让学生同桌对改。

今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有练习题,敢不敢来试一试?(出示)

四、巩固运用

1、练习

圆柱有( )个底面,是完全相同的( ),有一个( ),展开后是个( )。

下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

2、当堂训练(课本练习二,第15页)

作业:课本第1、2、3、4题(填书上)。

练习:《学习与巩固》第6页

五、总结解惑

这节课你有什么收获?

板书设计

圆柱的认识

1、圆柱有上下两个底面(是圆),有一个侧面(长方形)。

2、长方形的长等于圆柱底面的周长,宽等于圆柱的高。

圆柱的认识课件 篇6

(一)知识与技能

使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征。

(二)过程与方法

1.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。

2.通过学生自主研究,使学生掌握研究立体几何的一般方法,提高学生学习数学的积极性。

(三)情感态度和价值观

进一步培养学生主动探索精神,发展学生的空间观念,提高学生的学习兴趣。

二、教学重难点

教学重点:掌握圆柱的基本特征。

教学难点:高的认识。

三、教学准备

教师:课件,长方体模型,圆柱模型,卡纸做的长方形(长10 cm,宽5 cm),小棒(可用筷子代替),备用剪刀若干。

学生:每生自带一个圆柱形物体,草稿纸。

四、教学过程

(一)复习旧知,引出课题

1.课件出示长方体、正方体:这是我们已经研究过的立体图形,谁还记得长方体和正方体有哪些特征?我们是怎样研究的?

教师:(出示长方体的模型),我们在认识长方体时主要认识了它的哪些方面?是怎样研究的?

学生1:长方体的组成,就是长方体有6个面,12条棱和8个顶点。

观察:数一数。(根据学生回答板书研究方法)

学生2:相对的面的面积相等,相对的棱的长度相等。

动手操作:画、剪、比、量。

教师:我们在认识一种几何图形时,可以用这些方式研究一种新的立体图形。

2.在我们的生活中,还有很多物体的形状设计不是长方体和正方体的,你们看(课件出示):

这些物体的形状有什么共同的特点?

如果把这些物体的形状画下来会是什么样子的呢?

课件演示:从实物图抽象出圆柱图形。

3.小结:上面这些物体的形状都是圆柱体。

揭题:今天我们要一起来研究圆柱。(板书课题)

(二)动手操作,探究圆柱的特征

1.小组合作:探究圆柱各部分的组成和特征。

教师:那么圆柱究竟是怎么样的呢?(课件出示合作要求)

(1)请你拿出你所带的圆柱形物体,看一看它是由哪几部分组成的,小组合作研究各部分有什么特征,如果需要用到特别的工具,比如剪刀,可向老师借用。

(2)有困难的小组可以到书中去寻找或补充答案。仔细阅读教材18页例1的内容,注意边读书中内容,边用笔画一画。

(3)小组内互相交流:组织整理好汇报的内容(如:有什么发现?是用什么方法来研究的?)

2.小组汇报:

(1)结合实物,初步探索圆柱的组成。

哪一组同学来给大家说说看,圆柱有哪些特征?你们是怎么验证的?(学生汇报,教师相机质疑)

学生:我们知道了圆柱有3个面组成。上下两个圆叫做底面,圆柱周围的面叫做侧面。(课件出示圆柱和相应的名称)

教师:指一指手中圆柱的底面、侧面。(板书:2个底面,1个侧面)圆柱的这些面有什么特征呢?

(2)观察、比较圆柱底面的特征。

学生:圆柱的两个底面都是圆,大小相等。(板书:面积相等)

教师:你是怎样知道两个底面相等的?

预设:剪出来比较、量直径计算、画在纸上倒过来观察是否重合。(分别请学生演示验证)用哪种方法验证最简单?

(3)感知圆柱侧面的特征。

教师:圆柱周围的面有什么特征?与底面有什么不同?(板书:曲面)再用手摸一摸。

(4)圆柱的高。

课件显示:一个圆柱高度变化过程。

请同学观察:圆柱的什么发生了变化?

引导:哪段距离表示圆柱的高?请看屏幕,圆柱两个底面之间的距离,就叫圆柱的高。

(课件出示:圆柱两个底面之间的距离叫做高)

教师:圆柱的高在哪些地方可以找到?

根据学生的回答,课件上显示并用有颜色的线闪烁。

小结并板书:圆柱的高有无数条,高的长度都相等。

教师:你能在你的圆柱上指出这条高吗?(圆柱中心的高,指不到)

面对无数条的高,测量哪一条最为简便?(为了方便一般测量侧面上的高)

教师:请看这样画一条线段是它的高吗?(三角板斜放)

预设:高是两个底面之间的距离,应该垂直于两个底面。

在我们的生活中,圆柱的高还有其他的说法。

(课件演示)你看:一口水井是圆柱形的,这个圆柱的高还可以说是“深”,一个1元硬币是圆柱形的,这个圆柱的高还可以说是“厚”,水管也是圆柱形的,它的高还可以叫“长”。

(5)小结圆柱特征。

教师:现在谁来完整的说说圆柱有什么特征(看板书)?

(三)练习巩固

1.教材P18做一做第1题。

根据学生回答,课件出示相应名称。

2.教材P20练习三第1题:

学生独立完成,全班校对答案,不是圆柱的说说理由。

(四)游戏拓展,感受平面图形与立体图形的转换

1.出示一个硬纸板做成的长方形(长10cm,宽5 cm),用长尾夹将其10 cm的长固定在小木棒上。

教师:这个简易的玩具跟我们今天所学的圆柱有什么关系呢?我们可以快速地转动木棒,看看会发生什么奇迹?

学生:转动起来是一个圆柱。

教师:是怎样的一个圆柱?你能用具体数据来描述一下吗?(底面半径为5 cm,高为10 cm的一个圆柱)

2.如果我把这个长方形5cm长的那一边夹住后再转,转出来的圆柱跟刚才的一样吗?

想象一下:这又是一个怎样的圆柱?(一边说一边用手势表示)

出现的圆柱和你想象的大小一样吗?和我们生活中常见的什么物体大小差不多?

3.同一个长方形,为什么转出来的圆柱不同?

如果有一个长方形长是150厘米,宽是30厘米 ,快速旋转,会形成一个多大的圆柱?学生回答,课件出示:油桶。

4.考考你:教材P18做一做第2题。

(五)课堂总结

这节课你有什么新的收获和感想?

板书设计:

圆柱的认识课件 篇7

教材分析

幼儿容易将平面图形和几何体混淆。活动中,将平面图与相应的几何体比较,既可加深幼儿对平面图形的认识,又可突出几何体的特征。同时,将几何体与几何体比较,帮助幼儿发现不同几何体的异同,加深对几何体的认识。另外,幼儿在亲手制作几何体的过程汇总,可以具体形象的地感知、探索几何体的特征,在主动观察、比较、操作中提高综合能力。

活动目标:

1、初步了解球体和圆柱体的主要特征。

2、能在探索、操作中,感知、发现球体和圆柱体的不同。

3、乐意与同伴交流,能清楚地讲述自己的发现。

活动准备:

物质准备:1、各种不同形体的物体若干,如:球体物体:乒乓球、皮球、海洋球、玻璃球等;圆柱体物体:各种瓶子、易拉罐、粗细不同的圆柱体积木、薯片筒及粗细不同的管子等;不能滚动的物体若干。2、每组一个筐子,报纸、正方形和长方形硬卡纸,各种不同大小的硬币、橡皮泥若干。

经验准备:请家长和幼儿提前观察生活中球体和圆柱体的物品。

活动过程:

一、操作各种不同形状的物体,自由探索、交流,发现可以滚动的物体。

1、教师交代活动的要求:请小朋友把桌上可以滚动的物品放在筐子里。

2、幼儿自由探索、操作。相互交流自己的发现,并通过演示证明这些物体是可以滚动的。

3、引导幼儿将会滚动的物体按形状分类。

提问:这些会滚动的物体形状一样吗?鼓励幼儿发现它们形状的不同,并分类。

二、观察圆柱体和球体,初步了解球体和圆柱体的主要特征。

1、引导幼儿摸一摸,从各个方向看一看圆柱体和球体,发现它们的不同,并能用语言清楚地讲述。

2、请幼儿尝试向不同的方向滚动球体和圆柱体,发现并说出它们的不同之处。

小结:球体不管从哪个方向看都是圆的:摸一摸没有棱角.很圆滑:无论向哪个方向都能滚动。圆柱体的两个底面是圆的,而且这两个圆形是一样大的,圆柱体上下一样粗。球体放在地上可以向各个方向滚动,而圆柱体放在地上却不能向各个方向都滚动。

3、请幼儿说说在周围环境中哪些物体是球体,哪些物体是圆柱体。

小结:我们生活中的水杯、车轮等都是圆柱体的形状。地球仪、条条球等都是球体的形状。

三、尝试拼搭圆柱体,进一步感知圆柱体的特征,能在探索、操作中,感知、发现球体和圆柱体的不同。

1、请幼儿尝试将这些圆柱体拼搭在一起,组成新的圆柱体。

2、幼儿进行探索活动,探索后相互交流各自的拼搭结果。

3、引导幼儿讨论:为什么有些圆柱体可以拼搭成一个新的圆柱体,而有些不行呢?

小结:圆柱体上下一样粗。

四、分组进行操作活动“变一变”,尝试用各种材料制作球体、圆柱体。1、报纸组:引导幼儿用报纸卷成金箍棒。

2、卡纸组:提供大小不同的长方形、正方形硬卡纸,引导幼儿做望远镜。

3、硬币组:提供各种硬币若于,引导幼儿将一个硬币竖起来迅速转动,看看硬币转动起来像什么;把相同大小的硬币叠放在一起,看看变成了什么。

4、橡皮泥组:引导幼儿用橡皮泥做球。

yjs21.cOm更多幼师资料编辑推荐

圆柱的课件(精华4篇)


教案课件是教师教学工作的起点,每天教师都必须编写教案课件。教案和课件是高效教学的关键要素,当教师编写教案课件时必须注意以下几点:一、要清晰地确定教学目标和预期结果,确保教学内容与学生需求相匹配。二、要根据学生的认知水平和学习特点,采取合适的教学策略和方法。三、要注重课件的设计和布局,使其结构合理、内容丰富。四、要注意语言的简洁明了,避免使用过于晦涩的词汇和句子。五、要合理运用多媒体技术和教学资源,使课件更加生动有趣。六、要经常反思和调整教案课件,根据实际教学效果进行修订和改进。希望这篇“圆柱的课件”能符合您的需求,记得收藏本网页以便以后查看!

圆柱的课件(篇1)

一、教学目标

(一)知识与技能

用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。

(二)过程与方法

经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。

(三)情感态度和价值观

通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。

二、教学重难点

教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。

教学难点:转化前后的沟通。

三、教学准备

每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。

四、教学过程

(一)复习旧知,做好铺垫

1.板书:圆柱的体积。

问:圆柱的体积怎么计算?体积和容积有什么区别?

2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。)

【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。

(二)探索实践,体验转化过程

1.创设情境,提出问题。

每个小组桌子上有一个没有装满水的矿泉水瓶。

教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)

预设1:瓶子还有多少水?(剩下多少水?)

预设2:喝了多少水?(也就是瓶子的空气部分。)

预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)

2.你觉得你能轻松解决什么问题?

(1)预设1:瓶子有多少水?(怎么解决?)

学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。

教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)

小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!

(2)预设2:喝了多少水?

学生:喝掉部分的形状是不规则,没有办法计算。

教师:当物体形状不规则时,我们想求出它的体积可以怎么办?

教师相机引导:能否将空气部分变成一个规则的立体图形呢?

学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?

引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)

小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?

(3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后空气的体积=瓶子容积。

【设计意图】课本中的例题呈现如下,

例题是直接呈现转化方法的,我是想先屏蔽相关数据信息和方法,通过激发学生解决问题的内在需求,根据自己的生活学习经验来想办法解决,才有了对数学情境的改编,以期通过转化、观察、对比,让学生发现倒置前后两部分立体图形之间的相同点,沟通两部分体积之间的内在联系,顺利地把新知转化为旧知,分散了难点,从而找到解决问题的方法。

3.小组合作,测量计算。

(矿泉水瓶内直径为6cm)

教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了!

(1)课件出示:

一个内直径是( )的瓶子里,水的高度是( ),把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是( )。这个瓶子的容积是多少?(测量时取整厘米数)

(2)四人小组合作:

A.组长安排好分工:

要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把题目填完整。

B.组内互相说一说:倒置前后哪两部分的体积不变?

矿泉水瓶的容积=( )+( )。

C.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正确。

【设计意图】这一环节让学生大胆动手操作,在实践中不断发现解决问题,在同伴的交流中拓展自己的思维,让学生在合作中建立协作精神。

4.交流反馈。

教师巡查,选择矿泉水瓶中原有水高度分别6、7、8、9厘米的同学板演。

瓶中水高度为6厘米的:

3.14×(6÷2)2×6+3.14×(6÷2)2×13

=3.14×9×(6+13)

≈537(毫升)。

瓶中水高度为7厘米的:

3.14×(6÷2)2×7+3.14×(6÷2)2×12

=3.14×9×(7+12)

≈537(毫升)。

瓶中水高度为8厘米的:

3.14×(6÷2)2×8+3.14×(6÷2)2×11

=3.14×9×(8+11)

≈537(毫升)。

瓶中水高度为9厘米的:

3.14×(6÷2)2×9+3.14×(6÷2)2×10

=3.14×9×(9+10)

≈537(毫升)。

教师:出示某品牌矿泉水瓶的标签,上面写着净含量为550毫升,基本符合。

5.解答正确吗?

教师引导学生回顾反思:刚才我们是怎样解决问题的?

小结:根据具体情况选择合适的转化方法,像这样不规则立体图形的体积可以转化为规则的立体图形来计算。

【设计意图】通过回顾解决问题的过程,帮助学生把本环节的数学活动经验进行总结,引导学生在后续的学习中碰到相似的问题也可同样利用转化的思想来解决。

(三)练习巩固,学以致用

1.数学书P27做一做。

(1)学生独立思考,解决问题。

(2)把自己的想法与同桌说一说。

(3)交流反馈:重点交流如何转化,倒置后哪两部分体积不变?

求小明喝了多少水实际上是求矿泉水瓶上面无水部分的体积,这部分为不规则的立体图形。

将水瓶倒置后不规则容器转化成了圆柱:该圆柱体积=小明喝了的水。

3.14×(6÷2)2×10=282.6(毫升)。

2.输液100毫升,每分钟输2.5毫升,请观察第12分钟时吊瓶图像中的数据。问整个吊瓶的容积是多少毫升?

(1)请学生计算,并反馈订正。

(2)反馈要点:

整个吊瓶容积=图像中空气部分的容积+还剩下液体的体积。

根据图象,可以得出在第12分钟吊瓶有80毫升是空的。

剩下液体的体积=100-2.5×12=70(毫升)。

即整个吊瓶容积=80+70=150(毫升)。

【设计意图】从生活中常见的吊瓶问题引出,感受数学与生活的密切联系,能根据图像提取解决问题的有效信息 ,既提升了所学知识,又关注了学生的思考,培养学生的分析、解决问题能力。

3.如下图,一个底面周长为9.42厘米的圆柱体,从中间斜着截去一段后,它的体积是多少?

(1)思考:这是一个不规则的立体图形,要求它的体积,它不能像瓶子里的水一样可以流动变形转化,怎么办?

(2)讨论方法:

A.重叠:假设把两个大小一样的斜截体拼成一个底面周长为9.42厘米,高为(4+6)厘米的圆柱,这个立体图形的体积是新圆柱体积的一半。

B.切割:把这个立体图形分为两部分,下面是一个底面周长为9.42厘米,高为4厘米的圆柱体,上面是一个高为(6-4)厘米的圆柱斜截体,且体积是高为(6-4)厘米的圆柱体积的一半。

(3)用自己认可的方法计算,并进行反馈。

解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。

解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。

(4)反馈小结:可以有不同的转化方法来解决问题。

【设计意图】不满足于一种方法的转化,展示多种方法,开拓学生的思维。

(四)全课总结,提升认识

教师:回忆一下,今天这节课有什么收获?

教师和学生共同小结:求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。

在解决问题时,主要要弄清楚转化前后两部分之间的关系。

【设计意图】通过小结,让学生自主地对回顾本课所学知识进行梳理总结,通过归纳与提炼,让学生明确转化思想在数学学习中的重要性。

圆柱的课件(篇2)

一、教学内容

P13-14页例3、例4,完成“做一做”及练习二的部分习题。

二、教学目标

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

三、教学重点:掌握圆柱侧面积和表面积的计算方法。

四、教学难点:运用所学的知识解决简单的实际问题。

五、教学准备:多媒体课件

六、教学预设 :

(一)、自学反馈

1、求下面各圆柱的侧面积

(1)底面周长2.5分米,高0.6分米

(2)底面直径8厘米,高12厘米

2、求下面各圆柱的表面积

(1)底面积是40平方厘米,侧面积是25平方厘米

(2)底面半径是2分米,高是5分米

(二)、关键点拨

1、圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

圆柱的课件(篇3)

【教学内容】

圆柱的表面积(1)(教材第21页例3)。

【教学目标】

1、理解圆柱的表面积的意义。

2、探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。

【重点难点】

1、掌握圆柱的侧面积和表面积的计算方法。

2、理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。

【教学准备】

多媒体课件和圆柱体模型。

【复习导入】

1、复习引入。

指名学生说出圆柱的特征。

2、口头回答下面的问题。

(1)一个圆形花池,直径是5m,周长是多少?

(2)长方形的面积怎样计算?

板书:长方形的面积=长×宽。

【新课讲授】

1、教师出示圆柱形实物,师生共同研究圆柱的侧面积。

师:圆柱的侧面展开是一个什么图形?

生:长方形。

师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。

师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?

教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。

2、教学例3。

(1)圆柱的表面积的含义。

教师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?

通过讨论、交流使学生明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。

(2)计算圆柱的表面积。

①师:圆柱的表面展开后是什么样的?

组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。引导学生说出:圆柱的表面是由两个底面和一个侧面组成。

②组织学生自主探究、交流,该如何计算圆柱的表面积。指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。

(3)巩固练习:教材第21页“做一做”。组织学生独立完成,请两名学生板演后集体订正。

答案:628cm2

【课堂作业】

完成教材第23页练习四的第2~6题。

第2题教师提醒学生用圆柱形的纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。

第3、4题是解决问题。先让学生弄清楚是求圆柱哪部分的面积,然后再计算,必要时,可通过教具或图形帮助学生直观理解。

第5题,对于有困难或争议大的,可用实物或模型直观演示。

第6题,是实际测量、计算用料的题目,可以分组进行测量和计算。

答案:

第2题:3、14×1、2×2=7、536(m2)

第3题:3、14×1、5×2、5=11、775(m2)

第4题:3、14×3×2+3、14×(3÷2)2=25、905(m2)

第6题:长方体:800cm2正方体:216dm2圆柱:533、8cm2

【课堂小结】

通过这节课的学习,你有哪些收获?

【课后作业】

完成练习册中本课时的练习。

第2课时圆柱的表面积(1)

圆柱的课件(篇4)

课前先学——

课前,教师让学生在家做三件事:(1)自己动手制作一个圆柱;(2)写出制作的步骤;(3)制作过程中有什么发现?

课上对话——

师:谁来说说你是怎么做圆柱的?(听到老师这个提问,我在想教学从学生经历的实践体验入手,值得肯定)

生:我准备了三张纸、圆规和剪刀,……(这么自信的表达,一定很多有价值的内容,倾听,延伸,提炼,概括,问题一样得到解决。这课有听头)

师:你直接说出步骤。(这么无情地打断学生的讲话,有些失望)

生:我先准备纸,然后就卷成圆筒,再剪两个底面,就做出来了。(这是个应变能力很强的学生,老师要什么,他就能给什么。其间省略太多东西了)

师:好的。(这里的“好的”起着语言过渡的作用,然而,学生操作经历的概括,是否有助于理解圆柱的侧面和底面之间的关系,教师并没有关注)

师:侧面的长和底面的周长有什么关系?(看得出教师最急于提的是这个问题,也难怪,这个一个所有教案中都会出现的问题)

生:相等。

师:是这样吗?请你把它剪下来。(“剪下来”的行为怎么不是学生为了说明问题的主动行为,而是教师为了板书和讲解发出的指令)

(学生刚拿出剪刀,老师就一把接了过来,把学生精心制作的圆柱剪开,贴在黑板上。有些学生小声说道:“真可惜。”)

师:同学们,你们看,(这是老师讲解前常说的一句话)这个圆柱的侧面展开是一个长方形,长方形的长等于圆柱底面的周长,长方形的宽等于这个圆柱体的高。(迫不及待地告诉,自我中心意识强)圆柱的表面积你们会算了吗?(一句口头禅式的提问,不用想都会知道学生会怎么回答)

生齐答:会了。(真的会了?还是应付老师的齐答)

如此“快节奏,高效率”的教学,看起来过程顺利,但是教师主导的课堂,能否实现教学目标,不得而知。

再读文本——

拿起教师的教学用书,我们读到了,本节课的教学还应实现这样的教学目标:

1、让学生探索研究长方形的长和宽与圆柱的关系,发现长方形的长等于圆柱的底面周长、长方形的宽等于圆柱的高;

2、在如何计算侧面积的推理过程中,锻炼形象思维和抽象思维,培养空间观念;

3、指导并训练学生规划解决问题的步骤,形成解决问题的思路。

对话学生——

课后,找到那位说制作步骤的学生,和他有了这样的对话:

师:现在愿意跟我们说说圆柱的制作过程吗?

生:老师根本没有让我把话讲完,其实为了今天的发言,我昨晚就准备了。制作圆柱其实并不容易,特别是制作规定底面和高的圆柱。我和同学们,基本都是先用一张长方形的纸做出圆柱的侧面,然后再用这个圆筒画出两个圆,作为圆柱的底面。这样制作看起来任务是完成了,但算圆柱的侧面积和底面积都不太方便。如果要是让我再制作一个,我会先量出长方形的长和宽,如果用宽作为高,这个长就要用两次,一次是用来求侧面积,一次用来算底面积,因为我发现长方形的长就是圆柱底面的周长。

师:你的发现,全班学生都会发现吗?

生:我相信我们班上有不少同学并没有很好的理解。

师:那怎么办?

生:老师不是在黑板上讲了吗?没理解的就背公式呗。

生:老师,我们在课前还讨论过这样的问题,就是为什么全班学生做出的圆柱都是瘦瘦高高的,身材都那么好。其实很多人做圆柱时,都是用长方形的长作高,宽的长度才是底面的周长,我并不赞成老师说:圆柱体侧面展开是一个长方形,长相当于底面周长,宽相当于圆柱的高。应该说:圆柱体侧面展开是一个长方形,长方形的长和宽中的一条边相当于底面周长,另一条边相当于圆柱的高。

圆柱的课件


教案课件是老师教学工作的起始环节,也是上好课的先决条件,每个老师都需要将教案课件设计得更加完善。老师在上课时必须按照教案课件来实施,好的教案课件怎么写?为了让您更加了解圆柱的课件下面为您提供一份全面介绍,大家不妨来参考。希望你能喜欢!

圆柱的课件 篇1

教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:圆柱体积的计算公式的推导。

教学过程:

一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形。

圆柱的课件 篇2

在《圆柱的体积》教学过程中,杨老师紧紧抓住“圆柱体积公式的推导过程”这一教学重点,通过对旧知的回忆,激发学生从旧知探索新知的兴趣,注重鼓励学生大胆尝试、探索新知,放手让学生自主动手操作、归纳、推理,利用等积变形把圆柱转化成我们学过的长方体,逐步归纳出圆柱的体积公式

一、展示导学提示,明确教学目标。杨老师通过展示导学提示,使学生明确学习目标,学生带目标有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。

二、传统教学与现代化教学相结合。在圆柱体积的推导过程中,杨教师首先让学生利用圆柱体教具进行转化,转化成已学过的长方体进行推导,但杨老师觉得还够透彻,因此,又利用多媒体课件把推导过程重新回顾一遍,引导学生观察比较,使学生在丰富感性认识的基础上,推导出圆柱体积计算的公式。充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。这样把传统教学与现代化教学有机地结合在一起,突破了教学难点。

三、巧设疑问,体现两“主”。杨老师通过设疑,指明探究方向,营造探究新知识的氛围。通过学习指南单,学生先自己独立完成,然后再进行小组合作交流,探究圆柱底面积、高与拼成的近似长方体的底面积、高之间的关系,进而推导出圆柱的体积计算公式。这一环节给学生提供充分的合作交流时间,通过小组合作交流,让每一个学生的智慧得以发挥,让每一个学生体亲历转化的的过程,在小组交流中真正的体验圆柱体体积公式的来源。杨老师的“导”、“放”、“扶”层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力。

四、注重数学思想的渗透。在教学过程中,杨老师首先通过回忆圆的面积公式的推导过程,唤醒学生尝试用这种“转化”的数学思想来推导出圆柱的积。接着,学生利用学具动手操作,再启发说出转化成我们熟悉的立体图形。最后,老师合理运用多媒体课件,形象生动地展示“分成的扇形越多,拼成的立体图形就越接近长方体”,这里转化思想和极限思想得到应有的渗透。

五、习题的设置层次分明。杨老师的习题设置遵循了由浅入深,由易到难的原则。由知底面积,半径、直径到周长,步步引申,提高学生应用圆柱体积公式解决问题的能力。

不足之处:1.让学生上台展示圆柱转化成长方体的过程中,应指出先把圆柱体均分成两部分(学具是自动分成的,老师应指出来),后沿底面圆的直径分割成16等份其中有一半其实是分成9等份(如果不将第8等份再分成2小等份,那拼成的图形底面就是一个平行四边形,而不是长方形),这些过程老师应讲解详细些,以便学生理解并推导出体积公式。2.在解决实际问题时,经常用的圆柱体积公式是V=πr2h,老师应重点强调下,便于学生更好地利用公式进行计算。

圆柱的课件 篇3

一、教学对象及学习内容特点分析:

圆柱的体积是小学立体几何图形中的重要内容之一,是已学的长方体知识和将学的圆椎体知识的桥梁,其公式是长方体、正方体体积公式V=Sh的延续。

二、教学目的:

学生能借助媒体提供的资源理解和掌握圆柱体积的计算公式。

学生能应用圆柱体积公式进行圆柱体积的计算。

学生能利用知识之间相互"转化"的思想探索解决新的问题。

三、教学基本指导思想、教学策略和方法:整个过程,充分利用计算机的优点,以小组学习的形式,发挥学生的主体作用,教师是学生学习过程的组织者和辅导者。长方体的体积公式和平面图形的面积公式已学过,因此引导学生用转化的思想去学习,并创设情景,让学生自己发现问题,利用电脑、课本、实物提供的资源协商解决问题,使全体学生都成为学习的主人。

四、教学运用的主要手段、技术、材料:电脑网络、实物投影、圆柱体。

五、教学过程的设想和点评

教师的教学行为学生的学习行为点评

第一阶段:创设情景,设疑引趣。

教师故事引入:圆柱形状的"转笔刀"和"浆糊笔"迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,"转笔刀"很自信地说:"看我这么胖,肯定是我的体积大!""浆糊笔"很不服气地说:"我比你高多了,一定是我的体积大!"就这样你一言我一语,争论了很久还没个结果。

提问:小组讨论寻找解决这两个圆柱体积大小的方法。

1、学生小组讨论解决的方法。

2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。

通过情景的创设,激发学生的学习热情,让他们发现问题,并通过讨论找出解决的方法,使学生从被动学习变为主动学习,学生对这节课的学习也从宏观上得到了解。学生解决问题的方法有出人意料的回答,老师根据情况,给予恰当的鼓励性的评价,以激发学生的思维。

第二阶段: 自主探究。概括规律

1、电脑提供学生探索资源:

(1)平面图形(长方形、正方形、平行四边形、三角形、梯形、圆形)面积公式和立体图形(长方体、正方体)体积公式的导出过程。

(2)把圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个近似的长方体。

2、学生反馈自学内容,师生共同导出圆柱的体积公式V=Sh1、学生打开电脑"自能学习"中的"寻方法",有选择地看学过的平面图形的面积公式和立体图形体积公式的导出过程,从中找到推导圆柱体积公式的方法

2、学生通过观察圆柱公式的推导过程。

3、小组讨论填写实验报告。

4、师生导出圆柱的体积公式后,学生自学课本例题,并完成例4内容。通过利用资源、自能学习,让全体学生都能动脑、动口、动手参与到学习中去,使学生学会学习、学会协作,所学知识的理解更为深刻、透彻。在自学的过程中教师通过监控密切观察着学生的学习情况,发现问题及时解决。

圆柱体积公式的推导过程,学生会有不同的方法,如用课本的方法或用类比的方法,教师应给予恰当的评价。

第三阶段:拓展公式,自能训练。

1、公式拓展。

在日常生活中,圆柱的底面积通常没有直接给出,那么我们通过什么条件也能求出圆柱的底面积呢?

2、教师小结:无论已知圆柱的底面半径、直径还是底面周长,我们都必须根据V=Sh,先求出圆柱的底面积,然后乘以高才能求出圆柱的体积。

3、质疑

1、学生可根据已学的"圆的面积"公式导出。

(当已知圆柱底面的半径时V=∏r2h、当已知直径时V=∏(d÷2)2h、当已知周长时,先求半径,再求底面积,然后求圆柱体积。

2、判断。并说明原因

(1) 一个圆柱体的底面积是8平方厘米,高是6厘米,这个圆柱体的体积是48立方厘米。

(2) 一个圆柱的底面积是10平方米,高是10米,它的体积是100平方米。

(3) 一个圆柱体铁罐,底面直径是2米,高是3米,求它的体积。 列式是:3.14×22×3

1、根据生活实际,当知道圆柱底面半径、直径或周长时,怎样求圆柱的体积这个问题,可以让学生充分拓展思维,不要停留在只会死记公式、生搬硬套的低层次上。并大力鼓励、表扬爱动脑筋的同学

2、通过练习,学生对基本知识有一定的理解,教师也了解了学生对知识的掌握情况。

第四阶段:反馈学习、应用提高。

1、提出练习要求:先做"巩固"练习,有余力的再做"提高"练习。

2、小结练习情况,及时表扬对而快的同学及小组

3、回应开头,解决"浆糊笔"和"转笔刀"争论的问题。学生在电脑上完成。

1、赛车游戏:看谁跑得快。

(1)圆柱的底面积是15平方米,高是3米,体积是( )立方米。

(2)已知圆柱的高是20厘米,底面积100平方厘米,圆柱的体积是( )平方厘米。

(3)一个圆柱形的粮囤,从里面量底面半径是2米,高是2.5米。这个粮囤能装稻谷( )立方米。

(4)一个圆柱的体积是80立方分米,底面积是16平方分米,它的高是( )分米。

2、提高练习。考你智慧:看谁攀得高。

(1)一个圆柱,它的底面直径4厘米,高是3米,体积是( )立方厘米。

(2)一个圆柱体铁架,它的底面周长是62.8分米,高是6分米,它的体积是( )立方分米。

在计算过程中,学生会遇到不少问题,可通过师生交流或小组互相帮助解决,从而实现互帮、互学共同提高。

六、归纳总结、自我评价。

1、提出要求,学生谈收获。

2、总结本节情况。 谈收获,并作出自我评价。通过谈收获,体现学习的自主性,体验获得成功的乐趣。

七、对教学过程的设想和点评:

新课程标准注重小学生对周围世界与生俱来的探究兴趣和需要,在小学阶段,学生的知识积累与思维能力较为有限,强调用符合小学生年龄特点的方式学习,提倡课程贴近小学生的生活,这节课从学生身边学习用品"卷笔刀"和"浆糊笔"的入手,通过拟人的方式,由它们上学过程中引起的争论导出学习的内容,激发学生学习的积极性。这样在教学进程中安排好相关的情景组织学生参与其中,亲历过程,自主地开展活动,通过看、做、玩、想等方式,让学生既学会知识与技能,又培养智能、情感态度与价值观,促进学生科学素养的形成。

新课标还积极倡导让学生亲身经历以探究为主的学习活动,培养他们的好奇心和探究欲,使他们学会探究解决问题的策略,为他们终身的学习和生活打好基础。这是一节在网络环境下开展的探究型数学课,引入后,教师则大胆放手,营造了一个开放的探究空间,通过学生小组讨论寻找比较圆柱大小的方法,引导学生通过自主、合作探究这种学习方式进行实践活动,观察由圆柱转变成已学过长方体的过程,在观察中相互启发,共同提高,形成共识后并加以记录。再将大家的记录结果对比、讨论、从而得出结论:圆柱的体积=转变成的长方体的体积,从而导出圆柱的体积公式V=SH。在这一过程中,教师以学生的发展为本,关注每一位的发展,珍视每位学生的探究体验及独特见解,在学生探究结果的表述过程中,对同一个问题,不同的人可以得出不同的结论,他们通过互相交流互相讨论,思维更是得到发展与创新。不仅激发了每一位学生主动参与探究实践活动,更让学生在探究中学会合作、懂得思考、大胆发表自己的独特见解,更学会倾听、尊重他人的意见,从而实现互帮、互学共同提高,并在探究中发现、学习,激发学生学习的兴趣,培养了实践的能力。

网络环境下的教学方式不仅改变了以往教师满堂灌的现象,在拓宽学生知识面的同时,更培养了学生搜集信息、处理信息并进行合理解释的能力,大大地激发了学生自主学习的积极性,学生的创新意识日渐增强,真正实现了利用信息技术为教学内容服务。

圆柱的课件 篇4

一、说教材

1、教学内容

本节课是人教版六年小学数学课本第十二册第三单元第二小节第一课时。内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。

2、本节课在教材中所处的地位和作用

《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。>一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3、教材的重点和难点

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。弄清楚圆柱与转化后的近似长方体之间的关系是教学关键。

4、教学目标

(1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。

(2)初步建立空间观念和逻辑推理能力。

(3)知道知识间是可以互相转化的。

二、说教法

从学生已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:

1、直观演示,操作发现

教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

2、巧设疑问,体现两“主”

教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。

3、运用迁移,深化提高

运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。

三、说学法

课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。

本节课的教学,使学生掌握一些基本的学习方法

1、学会通过观察、比较、推理能概括出圆柱体积的推导过程。

2、学会利用旧知转化成新知,解决新问题的能力。

3、学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

四、说教学过程

对本节课的教学,我们设计了以下几个环节。

(一)复习旧知识,为引入新知识作准备

1、求下面各圆的面积(口算),单位为厘米

(1)半径为1厘米;

(2)直径为4厘米;

(3)周长为62.8厘米。

2、什么叫做体积?怎样计算长方体的体积?

(二)导入新课,隐射教学目标

1、观察比较:出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你发现谁的体积些大?再出示一个长方体实物,与一个圆柱体实物比较谁的体积大些?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(揭示课题)。这一活动的设计,激发了学生的学习兴趣,使学生为了验证自己的猜想而产生了强烈的求知欲望,从而进入最佳的学习状态。)

2、展示学习目标,学生认读目标

教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的主要任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位就充分地显示出来了。

(三)导入新课,实施教学目标

1、设疑:要判断圆柱体积的大小,究竟哪个大?哪个小?到底圆柱的体积的大小与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?这里老师引导学生回忆圆的面积公式的推导过程,教师出示投影,帮助学生思考。

2、演示操作,揭示新知。

学生小组合作讨论如何把圆柱转化成我们学过的立体图形,并让学生上台操作演示。让学生动手操作,启发学生说出转化成我们熟悉的形体。

教师课件演示:引导学生观察,沿着圆柱底面把圆柱切开,可以得到大小相等的16块。演示给学生看以后,在让学生动手操作,启发学生说出转化成我们熟悉的形体。同时引导学生观察转化前后两种几何形体之间的内在联系,(圆柱体转化成长方体后体积不变)圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?从而推导出圆柱体体积计算的公式,最后让学生说一说圆柱体计算公式的推动过程。并板书:圆柱体的体积=底面积·高

引导学生用字母表示出来,最后让学生看书质疑。

这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。

关于难点的突破,我们主要从以下几个方面着手:

(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。

(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。

(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。

(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。

3、运用。

出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:

(1)单位要统一

(2)求出的是体积要用体积单位。

在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。

(四)巩固练习,检验目标

1、求下面各圆柱的体积。

(1)底面圆的半径是3厘米,高4厘米。

(2)底面积4.5平方米,高3米。

(3)底面圆的直径是6分米,高是8分米。

(4)底面圆的周长是12.56厘米,高是6厘米。

通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。

2、判断:

(1)圆柱体、长方体和正方体的体积都可以用底面积乘以高的方法来计算。()

(2)圆柱的底面积扩大3倍,体积也扩大3倍。()

(3)一个长方体与一个圆柱体,底面积相等,高也相等,那么它们的体积也相等。()

(4)圆柱体体积一定,圆柱体底面积和高成反比例。()

(5)两个圆柱体的侧面积相等,体积也一定相等。()

(6)一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。()

3、变式练习:已知圆柱的体积、底面积,求圆柱的高。

这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定势。

4、动手实践:让学生测量自带的圆柱体。

教师提问:如果要知道这个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算的?

这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。

(五)总结全课,深化教学目标

结合板书,引导学生说出本课所学的内容,我们是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来武装自己的头脑,思考问题。

圆柱的课件 篇5

教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体

积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

我让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的方法,有的组用到沙子的方法;有的组用计算的方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

圆锥的体积这节课的教学具有下面的特点,一是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验

在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

教材中圆锥体积的相对练习较少,但在考试里面实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或三分之四个圆柱的体积),而它们的体积相差2个圆锥的体积(或三分之二个圆柱的体积)??。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘三分之二从而使计算简便。

教学的最后我与孩子们一起通过大量的练习,引导总结出了圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆柱的3倍,圆柱的底面积(或高)是圆锥的三分之一。

总而言之,圆柱圆锥的体积计算是教学的重点和难点,也是考试中学生容易丢分的危险高发内容,我在后面的教学中需要精讲和精炼,让学生熟能生巧、巧能生精,内化成自己的数学直觉方为最高层次!

圆柱的课件 篇6

教学过程

一、情景引入

1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(学生互相讨论后汇报,教师设疑)

二、自主探究、

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

4、确定方法,探究实验,验证体积公式。

(1)、首先要求学生利用实验工具,自主商讨确定研究方法。

(2)、学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

(5)、学生汇报:实验的结果与猜想的结果基本相同。

(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(7)、小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)、学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh

三、巩固发展

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

2、巩固反馈

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)

集体订正,说一说圆柱体的体积还可以怎样算?

4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?

5、拓展练习

(1)、 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

(2)、 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?

四、全课小结:

谈谈这节课你有哪些收获。

教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

教学目标:

1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式。

教学难点:圆柱体积计算公式的推导过程

圆柱的课件 篇7

教学目标

1、理解圆柱体体积公式的推导过程,掌握计算公式。

2、会运用公式计算圆柱的体积。

教学重点

圆柱体体积的计算。

教学难点

理解圆柱体体积公式的推导过程。

教学过程

一、复习准备

(一)教师提问

1、什么叫体积?怎样求长方体的体积?

2、圆的面积公式是什么?

3、圆的面积公式是怎样推导的?

(二)谈话导入

同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积)

二、新授教学

(一)教学圆柱体的体积公式。(演示动画“圆柱体的体积1”)

1、教师演示

把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。

2、学生利用学具操作。

3、启发学生思考、讨论:

(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)

(2)通过刚才的实验你发现了什么?

①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。

②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。

③近似长方体的高就是圆柱的高,没有变化。

4、学生根据圆的面积公式推导过程,进行猜想。

(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?

(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?

(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?

5、启发学生说出通过以上的观察,发现了什么?

(1)平均分的份数越多,拼起来的形体越近似于长方体。

(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

6、推导圆柱的体积公式

(1)学生分组讨论:圆柱体的体积怎样计算?

(2)学生汇报讨论结果,并说明理由。

因为长方体的体积等于底面积乘高。(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)

(3)用字母表示圆柱的体积公式。(板书:V=Sh)

(二)教学例4。

1。出示例4

例4。一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?

2.1米=210厘米

50×210=10500(立方厘米)

答:它的体积是10500立方厘米。

2。反馈练习

(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?

(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?

(三)教学例5。

1、出示例5

例5、一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?

水桶的底面积:

=3.14×

=3.14×100

=314(平方厘米)

水桶的容积:

314×25

=7850(立方厘米)

=7.8(立方分米)

答:这个水桶的容积大约是7.8立方分米。

三、课堂小结

通过本节课的学习,你有什么收获?

1、圆柱体体积公式的推导方法。

2、公式的应用。

四、课堂练习

(一)填表

底面积S(平方米)

高h(米)

圆柱的体积V(立方米)

15

3

6.4

4

圆柱的课件 篇8

1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称。能看懂圆柱的平面图;认识圆柱侧面的展开图。

2、培养学生细致的观察能力和一定的空间想像能力。

3、激发学生学习的兴趣。

【教学重难点】

重点:认识圆柱的特征。

难点:看懂圆柱的平面图。

【教 学 过 程】

一、激趣导入

媒体呈现:大屏幕出示学生生活中常见的物体(有长方体、正方体、圆柱各3-5个)。

1、让学生分类整理,想想它们有哪些特征和量的计算。

2、观察没有学习过的物体,告诉学生对这些物体我们将陆续进行学习,今天我们认识其中一个,它叫圆柱引出课题。

3、板书课题:圆柱的认识

【设计意图】生活是生态的,通过展示学生生活中常见的物体,创设有利于学生学习的生态情境,在分类中自然地引入课题,使课堂自然、生动。

二、探究新知

1.整体感知圆柱

(1)谈谈圆柱,你喜欢圆柱吗?请同学说说喜欢圆柱的理由。

(2)找找圆柱,请同学找出生活中圆柱形的物体。

2.教学例题:认识圆柱

(1)认识圆柱的面。

师:请同学摸摸自己手中圆柱的表面,说说发现了什么?

师:指导看书,引导归纳。

(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)

(2)认识圆柱的高

a.操作思考:一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关?

b.引导小结:水柱的高低和水柱的高有关。

c.结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)

d.讨论交流:圆柱的高的特点。

归纳小结并板书:圆柱的高有无数条,高的长度都相等。

3.例:圆柱的侧面展开

(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状。

反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?

(2)操作探究。展开的长方形的长和宽与圆柱的关系并旋转。

师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

归纳:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

(3)延伸发现展开的平行四边形的底和高及正方形的边长与圆柱的关系。

【设计意图】

让学生从旋转的角度来认识圆柱,感受平面图形与立体图形的联系和旋转。

三、巩固练习

1.做第18、19页“做一做”习题。

2.做第20页练习三的第1题。

3.做第19页“做一做”习题。

4.做第20页练习三的第2~5题。

四、小结 你对圆柱还有哪些问题?

圆柱的课件 篇9

学习活动:

一、创设情境,引出课题

同学们,老师这有一张白纸,现在,我想让这张纸站立起来!(教师演示纸横站、竖站怎么都不行)怎么站不起来呀?同学们能想办法帮帮老师吗?

(请学生拿出纸试验,并到前面展示。)。

可能会出现以下几种情况:

教师指出:像这样(指卷成筒形的)形状的物体在数学上称为圆柱。圆柱有什么特征呢?这节课我们一起来研究这个问题。

二、主动探究——认识圆柱的特征。

1、整体感知圆柱。

(1)教师利用课件出示大型建筑的支柱、笔筒、岗亭等实物图。

指出:这里的支柱、笔筒、岗亭的主体部分都是圆柱,人们把许多建筑物设计成圆柱形状,以增加立体感和美感。

(2)请学生找找生活中圆柱形的物体。

(3)利用课件从上述实物图形中抽象出圆柱几何图形。

2、操作感知—圆柱的各部分

(1)请同学们看看、摸摸手中的圆柱形物体,同桌讨论:圆柱有几个面?这些面有什么特征?

(2)组织学生交流,初步感知圆柱有三个面,其中有两个面是平面,是两个圆面,叫圆柱的底面;还有一个面是曲面,叫圆柱的侧面。

(3)请学生说说手中圆柱各部分名称。

(4)感知圆柱上、下两个底面的关系。

引导学生观察、议论,并说出自己的做法。

可能有如下方法:

a、可以剪下来比较;

b、量半径、量直径;

c、量周长;

d、把模型的底面固定在纸上沿着它的周边在纸上画出一个圆,再把模型倒换过来比较。

教师引导学生小结:圆柱上下两个底面是完全相同的两个圆。

3、认识圆柱的高

(1)教师出示两个高、低不同的圆柱,提出问题:哪个圆柱比较高,为什么?

引导学生发现:圆柱的高低与圆柱两个底面之间的距离有关。指出:圆柱两个底面之间的距离叫做高,圆柱有无数条高。

(2)怎样测量圆柱的高

a、独立探究:让学生想办法测量自己手中圆柱的高。

b、集体交流测量方法,使学生明确,用直尺和三角板可以比较准确的测量圆柱的高。

4、认识圆柱侧面展开图

(1)猜一猜:如果把圆柱侧面沿高剪开再展开,它会是什么形状?

(2)剪一剪:请大家拿出贴有商标纸的饮料罐,沿着它的一条高剪开,然后展开摊平——(会得到一个长方形)

(3)议一议:展开后得到的长方形的长和宽与圆柱有什么关系?

(4)集体交流,形成共识:长方形的长就是圆柱底面的周长,宽就是圆柱的高

(5)知识拓展

a、什么情况下圆柱的侧面展开后会得到一个正方形?

b、如果沿一条斜线剪开,会得到什么形状?导发现:当圆柱底面的周长和高一样的时候,把圆柱侧面沿高展开后得到一个正方形;如果沿一条斜线剪开,得到一个平行四边形。

(6)做一做:快速转动准备好的长方形纸片看看有什么发现?

圆柱课件


居安思危,思则有备,有备无患。在幼儿园教师的生活工作中,时常需要提前准备资料作为参考。资料的意义非常的广泛,可以指需要查到某样东西所需要的素材。参考资料可以促进我们的学习工作效率的提升。那么,想必你在找可以用得到的幼师资料吧?以下“圆柱课件”由小编为大家收集整理,相信能对大家有所帮助。

圆柱课件 篇1

在《圆柱的体积》教学过程中,杨老师紧紧抓住“圆柱体积公式的推导过程”这一教学重点,通过对旧知的回忆,激发学生从旧知探索新知的兴趣,注重鼓励学生大胆尝试、探索新知,放手让学生自主动手操作、归纳、推理,利用等积变形把圆柱转化成我们学过的长方体,逐步归纳出圆柱的体积公式

一、展示导学提示,明确教学目标。杨老师通过展示导学提示,使学生明确学习目标,学生带目标有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。

二、传统教学与现代化教学相结合。在圆柱体积的推导过程中,杨教师首先让学生利用圆柱体教具进行转化,转化成已学过的长方体进行推导,但杨老师觉得还够透彻,因此,又利用多媒体课件把推导过程重新回顾一遍,引导学生观察比较,使学生在丰富感性认识的基础上,推导出圆柱体积计算的公式。充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。这样把传统教学与现代化教学有机地结合在一起,突破了教学难点。

三、巧设疑问,体现两“主”。杨老师通过设疑,指明探究方向,营造探究新知识的氛围。通过学习指南单,学生先自己独立完成,然后再进行小组合作交流,探究圆柱底面积、高与拼成的近似长方体的底面积、高之间的关系,进而推导出圆柱的体积计算公式。这一环节给学生提供充分的合作交流时间,通过小组合作交流,让每一个学生的智慧得以发挥,让每一个学生体亲历转化的的过程,在小组交流中真正的体验圆柱体体积公式的来源。杨老师的“导”、“放”、“扶”层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力。

四、注重数学思想的渗透。在教学过程中,杨老师首先通过回忆圆的面积公式的推导过程,唤醒学生尝试用这种“转化”的数学思想来推导出圆柱的积。接着,学生利用学具动手操作,再启发说出转化成我们熟悉的立体图形。最后,老师合理运用多媒体课件,形象生动地展示“分成的扇形越多,拼成的立体图形就越接近长方体”,这里转化思想和极限思想得到应有的渗透。

五、习题的设置层次分明。杨老师的习题设置遵循了由浅入深,由易到难的原则。由知底面积,半径、直径到周长,步步引申,提高学生应用圆柱体积公式解决问题的能力。

不足之处:1.让学生上台展示圆柱转化成长方体的过程中,应指出先把圆柱体均分成两部分(学具是自动分成的,老师应指出来),后沿底面圆的直径分割成16等份其中有一半其实是分成9等份(如果不将第8等份再分成2小等份,那拼成的图形底面就是一个平行四边形,而不是长方形),这些过程老师应讲解详细些,以便学生理解并推导出体积公式。2.在解决实际问题时,经常用的圆柱体积公式是V=πr2h,老师应重点强调下,便于学生更好地利用公式进行计算。

圆柱课件 篇2

教学目标:

1.结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2.让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。

3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:

掌握和运用圆柱体积计算公式。

教学准点:

掌握圆柱体积公式的推导过程。

教学设想:

1.课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。

2.教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。

3.动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。

4.用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。学生根据不同的公式进行计算,给4个圆柱学具排序。这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。 5.体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了解,学生并不是真正理解圆柱的体积和容积。所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。从形象到抽象建立圆柱的体积概念,符合学生的认知规律。第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。 6.最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。

7.由于每个学生的知识经验、生活情景、思维方式的不同,对知识的学习也有独特的理解和感受。所以我让他们用今天的知识去解决生活中的问题,并写成数学日记,让他们用自己的方式去体验、探究学习过程。

教学过程:

一、问题导入,质疑问难

师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间?

师:这是一个制作学具的学具槽,想一想,它可以做出什么样的学具来?

生:圆柱学具。

师:是的。仔细观察,你有什么发现?

生:圆柱学具占据了学具槽的空间。

师:这就是圆柱学具的体积。你真善于发现!能用你的话说说,什么是圆柱的体积吗?

生:圆柱的体积就是圆柱所占空间的大小。

师:谁来试着给这4个圆柱学具按体积从大到小排排序?你来试试。

生:体积大小接近,不能确定。

师:老师听懂了,无法判断的原因是不知道圆柱体积的大小,现在我们就来研究圆柱的体积。(师板书。)

二、图形转化。猜想推理

师:想一想,你有办法得到这4个圆柱学具的体积吗?(圆柱课件再从槽中跳出。) 生:用公式计算。 生:用水或沙子转化计算。 师:你们是怎样转化的,具体说说。

生:用橡皮泥转化计算。

生:用圆形纸片叠加计算……

师:嗯,这些方法都很好,就在今天的课堂你会选择哪种方法?

生:因为没有实验学具,所以只能用公式计算。

师:其他的方法可以在课后进行。

师:想用公式计算的同学,你想怎样推导圆柱的体积公式呢?结合你们以往学习几何图形的经验,举例说明。

生:大部分图形公式的推导都是把新学的转化为学过的。例如:圆形可以转化为长方形。

师:联系旧知识,采用转化法,确实不错。 师:那现在它是一个圆柱,你想怎么办?

生:像刚才一样进行平均分。

师:你能具体说说吗?

生:沿着圆柱的底面直径平均切分成16个小扇形。

师:都说实践出真知,接下来就请同学们拿出学具,动手尝试着进行转化,并说说转化后的结果。

生:将圆柱沿底面直径平均分成16个小扇形,切分之后,可以拼成一个近似的长方体。

师:(刚才我们将圆柱沿底面直径平均分成16个小扇形,拼成一个近似的长方体。)如果想让它更近似于长方体,你想分成多少份?(32)更近似一点。(64)你呢?(128)……

师:这是同学们刚才的转化过程。

师:打开书,自由读,用直线标记,找出关键词,依照关键词自由读读转化的过程。

师:现在再请一名同学到前面来演示转化过程,其他同学注意观察,圆柱转化为长方体后什么变了,什么没变7(圆柱转化为长方体时形状变了,但是它们底面积、高和体积都没变。)

总结文字公式:长方体体积=底面积×高

圆柱体体积=底面积×高

师:恭喜大家,我们已经成功地推导出圆柱的体积公式。(掌声鼓励一下)老师这有一些字母:d、s、r、c、h、v、π。它们与圆柱体体积的计算公式息息相关,请你们用字母表示出圆柱的体积公式。

生:v=sh v=(d/2)2π×hv=π2×h v=(c÷π/2)2π×h

师:对比这四个公式你又有什么新发现?(彩色粉笔画线。)

生:相同之处都是底面积乘以高,不同是底面积求法不同。

师:谢谢你精彩的发现,你叫什么名字,认识一下,老师会记住你的。

三、运用公式,解决问题

师:现在我们已经知道了圆柱的体积公式,快来解决刚才的实际问题吧!这是我们要由大到小排序的4个圆柱学具,请你们拿出题卡计算出它们的体积并排序。

1号底面积50平方厘米,高2.1分米:

2号直径是10厘米,高20厘米;

3号半径是4厘米,高22厘米;

4号底面周长31.4厘米,高18厘米。

师:汇报一下你的计算和排序结果,并说说你应用了哪个公式?

师:与他答案相同的同学举手示意一下,你是怎样做的?现在你清楚了吗?

师:看来,灵活运用公式,并选择合理的算法。会使我们的学习更高效。

四、巧用公式,多重探究

师:同学们到现在为止,你都学到了哪些关于圆柱的知识?

生:表面积、体积、容积。

师:老师这里有一组习题。请你们选择合适的问题。

师:读完之后,你认为求什么就可以大声地说出来。

(生:体积、容积、表面积。)

学具厂有一个制作学具的圆柱形铁皮桶。它的底面直径是22厘米,高是25厘米,_________?从里面量底面直径是20厘米,高是25厘米______________9底面积是380平方厘米。侧面积是1727平方厘米_________________?

师:说说你选择问题的根据是什么?

生:体积是圆柱所占空间的大小。容积是圆柱能容纳物体的大小,表面积是圆柱所有面积的总和。

五、开放训练,拓展提升

师:学习很愉快,我们来庆祝一下:在一个棱长为a分米正方体盒中,放一个最大的圆柱体蛋糕,系上b分米长的丝带,(打结部分忽略不计)挖去1根直径为c厘米,高是d厘米的圆柱蜡烛空隙,这个蛋糕体积到底是多少呢?这次我们男女生比赛,列式不计算,看谁解法多并说明解题思路。

圆柱课件 篇3

【教学内容】

《义务教育课程标准实验教科书路数学》六年级下册P10鈥?2页。

【教学目标】

1.使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征,发展学生的空间观念。

2.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。

3.通过学生自主研究,使学生掌握研究立体几何的一般方法,丰富其学习数学的积极体验。

【教学重点】

使学生掌握圆柱的基本特征

【教学难点】

圆柱的侧面与它的展开图之间的关系

【教具、学具准备】

圆柱体、硬纸、剪刀、胶带、圆规、直尺、课件、

【教学过程】

一、复习旧知,渗透学习方法。

师:(出示长方体的模型),我们在认识长方体时主要认识了它的哪些方面?

生:长方体的组成,就是长方体有6个面,12条棱和8个顶点。相对的面的面积相等,相对的棱的长度相等。

师:正向大家所说,我们在认识一种几何图形时,通常研究它的两个方面:即它的组成和组成部分之间的关系。今天这节课我们就用这种方式研究一种新的立体图形。

【评析】用长正方体的学习方法来研究圆柱体,体现了研究方法的一致性,有利于学生学习能力的提高。

二、图片引入,探索圆柱的特征。

1.课件引出研究问题。

师:屏幕上的这些物体都是什么形状的?(课件出示:比萨斜塔、客家围屋、立柱、蜡烛、水杯等)

(课件抽出圆柱的几何模型)今天我们一起研究圆柱的认识。(板书课题)

2.结合实物,初步探索圆柱的组成。

师:研究圆柱,我们先要研究圆柱的组成,每个人都有一个圆柱形的物体,请大家用手摸一摸,看一看,援助是有哪几部分组成的?(学生独立观察、操作)

生1:圆柱有三部分组成,两个圆和一个周围的面。

生2:两个圆的面积相等,

生3:圆柱有无数条高。

师:你能给大家指一指圆柱的高在哪里吗?(学生指)

教师划一条侧面上的斜线,这是圆柱的高吗?为什么?两个底面圆心的连线是高吗?高有多少条?

师:大家的观察很仔细,确实圆柱是由三部分组成的,两个圆和一个曲面,并且两个圆的面积相等,在圆柱中,两个圆叫圆柱的底面,曲面叫做圆柱的侧面,圆柱有无数条高。(板书)

3.设置问题障碍,深化特征的研究。

师:通过刚才的研究,我们知道:圆柱是有两个完全一样的圆和一个侧面组成的,是不是任意两个完全相等的圆和一个侧面就一定能组成圆柱呢?(不是)我这里有两个大小完全相同的圆和一个侧面,他们能不能组成一个圆柱呢?(不能)

圆柱的底面和侧面之间又有什么样的关系呢?请大家以小组为单位,结合手中的学具进行研究。

汇报1:

生1:圆的大小和侧面的粗细一样。

师:大家的感觉没错。可是老师总感觉底面圆和侧面之间的关还不够具体,谁有办法能让大家很容易的看到它们之间的关系?再次进行小组合作。

汇报2:

组1:我们可以把圆柱的侧面剪开,把它展开后就变成了一个长方形。这样它们就都成了平面图形,就容易进行比较了。

师:这个小组的同学把侧面剪开变成了长方形,是沿哪里剪的?(圆柱的高)这样就把侧面这一曲面转变成了平面。板书:化曲为直

在以前的学习中,还有哪些知识也用到了这一方法?

生2:学习圆的周长时我们也是用到了这一思想。

生3:学习圆的面积时我们也是用到了这一思想,把原转化成了近似的长方形。

师:大家的想法很有创造力,那展开后的长方形和底面圆之间有什么关系?

组2:现在长方形的长等于圆柱的底面周长。

师:大家把剪开的圆柱体再围起来,验证一下这位同学的结果。(学生操作)

还有其他发现吗?

生4:长方形的宽等于圆柱的高。

师:现在谁能完整地说一说展开后的长方形和圆柱的关系?

生5:圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。

板书:

师:请同位两个用本子作学具互相说一说。

4.课件演示,建构圆柱的特征。

【评析】具有挑战性的问题情境,引导学生的思维层层推进,使学生的操作经验内化到原有的认知结构中,丰富了对圆柱特征的理解。在比较圆柱的侧面和底面圆的关系时,教师适时地启发学生联想圆的周长和面积的公式推导中所用的思想、方法,潜移默化中教会了学生解决问题的策略。

三、运用特征,解决问题。

师:刚才通过大家的努力,我们发现了圆柱的基本特征。现在每个小组都有一张长方形纸(长62.8厘米、宽31.4厘米),你能利用刚刚学到的知识做一个以这张长方形纸为侧面的圆柱吗?请大家先讨论应该怎样去做,有了想法后动手操作。(小组合作)

(交流汇报)

组1:我们组是利用长62.8厘米求出了底面圆的周长也是62.8厘米,62.8梅3.14梅2=10厘米,所以底面圆的半径是10厘米。用圆规画出了两个圆。粘起来就做成了一个圆柱。

组2:我们是把31.4厘米作为圆柱的底面周长,求出底面半径是5厘米,用圆规画出了两个圆做成了圆柱。

师:请大家把做成的圆柱举起来互相欣赏一下。虽然两个小组做成的圆柱形状不同,但他们都用到了今天所学的圆柱的基本特征:圆柱由两个完全相等的圆和一个侧面围成的,圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。大家解决问题的能力有了很大的发展,老师真为你们感到高兴。

【评析】圆柱体的制作,引导学生能用所学的知识和方法寻求解决问题的策略,既培养和发展了学生的应用意识和能力,又发展了学生的空间观念。

四、巩固练习,夯实基础。

1.下面的图形哪些是圆柱?请标注来。

2.折一折,想一想,能得到什么图形,写到括号中

【评析】有效的练习,既巩固了本节课所学习的知识,又发展了学生的空间观念。

圆柱课件 篇4

教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:圆柱体积的计算公式的推导。

教学过程:

一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形。

圆柱课件 篇5

一、创设情境,引入课题

(一)从平面几何想象到立体几何,沟通面与体的关系。

1、请看屏幕,看到两个什么样的平面图形?

2、猜一猜,

(1)号长方形如果向后移产生一定的厚度,会得到一个什么立体图形?

(2)号长方形如果围绕宽这条边旋转一周,猜想一下,又会得到一个什么立体图形?

(二)、引入课题

猜对了吗?想象力不错!今天我们就来一起进一步认识圆柱。(板书课题)

二、自主探究新知,建构模型

(一)、整体感知,由实物到几何图形的抽象过程。从直观几何抽象到经验几何

1、现在举起你们昨天做的圆柱,互相欣赏一下。手巧的同学做得比较精致,有的同学作品不够完美,看来动手能力还得提高。

2、那在日常生活中,你发现哪些物体是圆柱体的?(你们观察很仔细)

3、请看,老师也搜集了一些圆柱体图片,罐头盒、茶叶筒、木桩。如果把它们画成立体图形是怎样的呢?想看看吗?

(二)、研究圆柱的特征

1、提问:那圆柱有什么特征呢?下面就请同学们四人一组,每人拿一个圆柱,用手摸一摸,互相交流,有什么发现?

2、小组汇报,哪一组愿意给大家说说你们发现圆柱有哪些特征?

①、随着学生回答质疑:

你是怎样知道两个底面相等的,用哪种方法验证最简单?(预设:观察、画剪、量直径计算、画在纸上倒过来是否重合)

②、圆柱周围的面有什么特征?与底面有什么不同?(曲面)再用手摸一摸,请看屏幕演示。

③、谁来完整的说说圆柱有几个面,每个面有什么特征?随着学生回答后板书。

2个底面——完全相同的圆

3个面

圆柱特征 1个侧面——曲面

3、高的认识

①、出示两个高低不同圆柱。请看,这两个圆柱有什么不同?那么圆柱的高低和什么有关?(圆柱的高低和两个底面之间的距离有关)

②、请看屏幕圆柱两个底面之间的距离,就叫圆柱的高。为了方便一般测量侧面上的高。

③、请看这样画一条线段是它的高吗?(三角板斜放)

你能画一条你自己制作的圆柱的高吗?长度是多少?还能不能再画一条高,长度又是多少?你能总结出圆柱的高有什么特征吗?

同意吗?还有补充吗?说得很完整,我们把它写下来。(板书:高——无数条,长度相等)

④、高的拓展。

在日常生活中,圆柱的高还有其它的说法,比如:

硬币的高叫什么?(厚)钢管横着放高叫什么?(长)圆柱形水井的高叫什么?(深)

4、小结圆柱特征

现在谁来完整的说说圆柱有什么特征(看板书)

同桌互相指一指手中圆柱的底面、侧面和高在哪里?

谁来指指老师手中圆柱的底面、侧面和高在哪里?(横放)

(三)、研究圆柱的侧面展开图

1、设置问题障碍,深化特征

①、请看下面图形中哪些是圆柱,为什么?(开火车游戏)

②、看来圆柱是由两个完全一样的底面和一个侧面组成的,出示两个小圆和一个大侧面,它们能不能组成一个圆柱呢?

2、实践操作,探究关系

①、提问:那圆柱的底面和侧面满足什么条件才能组成一个圆柱呢?请大家以小组为单位结合手中学具进行研究。

②、抽读探究要求,小组讨论交流在1—5号之中,给圆柱选择合适的侧面包装。

③、质疑:这么多侧面,你为什么选择4号和5号呢?5号为什么也能围成圆柱的侧面呢?(通过割补、平移转化成长方形)贴圆柱的侧面展开图。

④、提问:观察侧面展开图,长方形的长与圆柱底面周长有什么关系?宽与圆柱的高有什么关系?同意吗?回答很准确。(板书:长方形的长=圆柱底面周长,长方形的宽=圆柱的高)

⑤、猜猜看,老师手中这个圆柱侧面展开可能是什么图形?想一想在什么条件下,圆柱侧面展开是正方形?(圆柱底面周长=高)

3、小结:这样看来圆柱的侧面展开可能有哪些图形(长方形、平形四边形、正方形)

三、练习与质疑,组装圆柱的拓展题(从计算几何演绎到推理几何)

想一想:哪几号材料能组成圆柱(接口不计),为什么?

1、2、4号不能。(梯形上底长度小于圆的周长)

1、2、3号和1、2、6号可以组成圆柱。(圆的周长等于长方形和正方形底边长度)

四、课堂小结,提升理念

同学们表现很积极,通过大家的研究探索,我们认识了圆柱,你能谈谈有哪些收获吗?

祝贺你们能有这么多的收获。

五、课堂延伸

圆柱体在生活中应用非常广泛,请欣赏在建筑、市政设施、食品等方面给我们增添了许多情趣。今天我们讲的圆柱都是直直的,上下粗细相同的直圆柱,其实在生活中还存在斜圆柱和弯圆柱,有兴趣的同学可以课后仔细观察身边的物体,你会发现更多有关圆柱的有趣的知识。

板书设书

圆柱的认识

2个底面——完全相同的圆

3个面

圆柱特征 1个侧面——曲面

高——无数条,长度相等

长方形的长=圆柱底面周长

长方形的宽=圆柱的高

教学内容:小学数学九年义务教育六年级下册第二单元《圆柱的认识》

教学目标:

1、知识与技能:认识圆柱的特征,能正确判断圆柱体;认识圆柱的侧面及展开图,理解圆柱侧面展开图与圆柱的关系。

2、过程与方法:进一步让学生体验自主探究,掌握学习的方法,培养学生观察、比较和判断能力,发现问题、分析问题和解决问题的能力。

3、情感态度和价值观:进一步培养学生主动探索精神,发展学生的空间观念,提高学生的学习兴趣,树立学好数学的信心。

教学重点:认识圆柱的特征,理解圆柱侧面展开图与圆柱的'关系。

教学难点:理解圆柱的侧面展开图与圆柱的关系。

圆锥的认识课件


为了让教学更加顺利,老师需要提前准备教案和课件,确保每个课件都设计得更加完善。教案是对教学技巧的重要总结。我们为您准备的“圆锥的认识课件”是经过特别精心打造的惊喜,希望这些思考方式能够帮助您更好地发挥想象力!

圆锥的认识课件 篇1

1、教材第32页“做一做”。

组织小组内同学相互指出各个圆锥的底面、侧面和高,教师巡视指导。

然后集中进行讲解。

2、教材第35页练习六第2题。

组织学生独立思考后指名汇报。

3、课外练习

(1)、幻灯出示练习题:将下面图形分类,说说每类图形的名称和特征。

学生同桌交流,进行分类。

(2)、联系前面所学的圆柱,请同学们在答题纸上写写圆柱和圆锥的联系和区别。

(学生汇报结果)

预设:

生1:圆柱是由两个底面和一个侧面三部分组成。圆柱的底面都是圆,并且大小一样。圆柱的侧面是曲面。一个圆柱有无数条高。

生2:圆锥有一个顶点,圆锥的底面是个圆,侧面是个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥有一条高。

4、幻灯出示生活中的数学。

课后小结

1、同学们,通过这堂课的学习,我们对圆锥有了个初步的认识,知道了圆锥的一些特征。

2、总结圆锥的特征:圆锥有一个顶点,圆锥的底面是个圆,侧面是个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥有一条高。

圆锥的认识课件 篇2

教学内容:

人教版小学数学六年级下册《圆锥的认识》

教学目标:

1.通过教学,使学生能完整、准确地掌握圆锥的基本特征及各部份的名称,认识圆锥侧面的展开图。

2.通过学习培养学生观察能力,操作能力和思维能力。

3.通过学习发展学生的空间观念。

教学内容及重点、难点分析

1.教学内容分析

《圆锥的认识》这部份内容有:圆锥的特征、圆锥的底面、圆锥的高、圆锥的侧面及它的展开图。

圆锥是一种比较常见的立体图形,圆锥在日常生活中的物体有很多,课的开始,就让学生用自己在生活中发现的圆锥入手,概括中圆锥的几何图形。然后通过观察、比较的认知方法主动地获取知识。

2.教材重点圆锥的特征及各部份名称。

3.教材难点圆锥的高的测量方法。

教学对象分析

圆锥是学生在小学阶段学习立体图形的最后一部份内容。前边学生已经认识了长方体、正方体、圆柱等立体图形,学生具备一定的空间观念。头脑中几何表象较丰富。在教学中,突出“观察、对比、操作、分析讨论,大胆探索,总结规律”的学法指导。发展学生的思维。让学生主动、生动地在活动中学习数学。

教学策略及教学法设计

本节课主要通过网络和学生动手操作,让学生在主动的教学情境中,集体讨论归纳出圆锥的特征。另外,提供丰富的感性材料,创设轻松愉快的教学氛围,注重学生之间的多向交流。放手让学生自主探索,发挥学生的创造力。同时加深对圆锥的认识。

教学过程:

一、创设情景,游戏导入

师:首先和同学们玩个游戏:奇思妙想,想象一下把我们学过的这些平面图形高速旋转能得到什么立体图形?

出示:圆形、长方形、梯形、直角三角形

学生大胆猜测后,教师用准备好的教具演示。

师:今天我们先来研究由直角三角形旋转得到的立体图形——圆锥。(板书课题)

圆锥的认识课件 篇3

教学内容:

六年制第十二册数学第48—49页的内容,完成第49页上面的“做一做”和练习十二的第1—2题。

教学目的:

使学生认识圆锥,掌握圆锥的特征,会看圆锥的平面图。

教学重难点:

圆锥的特征

教具准备:

圆锥形物体一个、圆锥的模型一个、CAI课件四件

学具准备:

圆锥形实物,模型一个、一块平板(或玻璃),一把直尺

教程:

一、导入新课

师:我们已经学习了圆柱的有关知识,谁能告诉老师圆柱有什么特征?(指名答)

请同学们拿出自己准备好的物体,看一看,摸一摸,感觉一下,它与圆柱有什么不一样?

生观察感知后,说出自己的结果,师肯定:

这个物体有一个曲面,一个顶点和一个面是圆。

像这样的物体就叫做圆锥体,简称圆锥。也就是这节课我们要学习新的立体图形。

板书课题:圆锥的认识

二、新授

1、教学圆锥的认识

〈1〉出示多媒体CAI课件的三幅圆锥形实物图。

(此处有图)

提问:这些物体的形状是什么?(圆锥)

这时利用CAI课件动画光点的闪烁,闪动实物图的轮廓,紧接着把实物的模像移走,只剩下图形的轮廓,抽象出圆锥体的几何图形。

(此处有图)

接着改变不同的方向,师说明:这样的图形就是圆锥体的几何图形。

〈2〉师讲解:圆锥有一个顶点,底面是一个圆,(边讲边用动画光点的闪烁闪动“圆锥的顶点”,并标示出来,将底面用彩色涂上,并标出“底面”。)请同学们拿出圆锥模型,摸一摸周围的面,提问:这个面是一个平面还是曲面?

指出:圆锥的这个曲面叫做侧面,同时标出“侧面”让学生看着圆锥形物体,指出:

从圆锥的顶点到底面圆心的距离叫做高。

用CAI课件演示作高,接着顺着母线的方向演示、强调:

沿着曲面上的线都不是圆锥的高,圆锥的高只有一条

〈3〉生拿出学具,同桌互指圆锥的底面、侧面、顶点、高

2、小结

谁能归纳一下圆锥有什么特征?(指名试答)

师板书:底面是圆,侧面是一个曲面,有一个顶点和一条高。

3、教学测量圆锥的高。

提问:圆锥的高能直接测量吗?为什么?

(圆锥的高在它的内部,不能直接量出它的长度)

采用多媒体CAI课件(二)演示

边演示,边讲解测量过程

〈1〉先把圆锥的底面放平;

〈2〉用一块平板水平地放在圆锥的顶点上面;

〈3〉竖直地量出平板和底面之间的距离,读出数值。

生自己量手中的圆锥学具的高

4?教学圆锥侧面的展开图

设问:圆柱的侧面展开是什么图形?圆锥的侧面展开又是什么图形呢?

生思考讨论后,指名回答

师:我们通过实验来看看。

出示CAI课件(三),一步一步演示:

(此处有图)

使学生认识:侧面展开后是一个扇形

再利用CAI课件将其展开图合拢,恢复原状,以加深对圆锥侧面的认识。

三、课堂练习

1、做教科书第49页“做一做”

2、做练习十二的第1题

3、做练习十二的第2题

采用CAI课件,拆分组合,指名口答。

四、小结

这节课我们学习了圆锥,想一想:圆锥有什么特征?侧面展开后是一个什么图形?

板书设计

圆锥的认识

(此处有图)

圆锥的特征:

底面是圆,侧面是一个曲面,有一个顶点和一条高。

圆锥的认识课件 篇4

第一课时 圆柱和圆锥的认识

教学内容:

教科书练习五1-4题。

教学目标:

操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。

2、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。

教学重难点:

1、在充分感知的基础上,探索圆柱和圆锥的特征。

2、进一步体验立体图形与生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

教学准备:

模型

直角三角形和半圆形的小旗各一面。

预习作业:

1、预习课本第18页例1,认识圆柱和圆锥的.特点。

2、知道什么什么样的形体是圆柱和圆锥。

练习五的1-4题。

教学过程:

一、预习效果检测

1、你预习的两个立体图形,分别叫什么?

127页的图形,用硬纸板做一个圆柱和一个圆锥。

3、反馈练习五的完成情况。

二、合作探究

1、研究圆柱

⑴生活中还有哪些物体的形状是圆柱形的?

出示相关圆柱形实物和模型

⑵引导观察:仔细观察这些圆柱,你能发现什么?

在小组中交流自己的发现。

⑶组织全班交流,教师适当板书:

上下一样粗细有两个圆面一个曲面

⑷认识圆柱各部分的名称:

教师先对照圆柱的直观模型介绍圆柱的底面、侧面和高,再让学生在实物模型上找到圆柱的底面、侧面和高。

2、研究圆锥

⑴生活中还见过哪些圆锥形状的物体?

⑵仔细观察圆锥,你能发现什么?在小组中说一说。

⑶全班交流,教师相机板书:

有一个顶点底面是圆形侧面是一个曲面

⑷认识圆锥的高

出示圆锥的透视图,让学生认识圆锥的高。

⑸在圆锥的实物模型中,相互说说圆锥的顶点、底面、侧面和高。

3、讨论“练一练”。

⑴让学生各自从教材提供的图片中找出圆柱形的和圆锥形的。

⑵交流说一说挑选的理由和不挑选的理由。

三、当堂达标检测

1、做练习五第2题。

⑴引导学生从正面、上面、侧面观察圆柱和圆锥,看分别看到的是什么形状?

⑵在书中连线。

2、做练习五第3题。

⑴出示长方形、直角三角形和半圆形的小旗,引导学生猜想:如果将旗杆快速旋转,想想一下:小旗旋转一周各能成什么形状?

⑵让学生旋转小旗,看猜想是否正确。

⑶如果让你自己设计一个小旗,你想将小旗设计成什么样子的?想象一下,如果也这样旋转一周,会转成什么形状?自己做一做。

3、做练习五第4题。

教学反思:(略)

圆锥的认识课件 篇5

预设目标:1、引导学生自己发现感悟圆锥的特征,学会测量圆锥的高,并能正确辨认圆锥图形。

合作探究中体验学习全过程。

3、培养学生提出的问题和解决问题的能力。

教学重难点:使学生认识圆锥,并掌握圆锥的特征。

教学过程:

一、复习引入:1、教师:说一说图中哪些图形是圆柱?剩下的这些图形都不是圆柱,这种形状的物体你在哪见过?你能给这些图形取个名称吗?

鼓励学生思考,再请学生看看书中的名称后,揭示课题:圆锥的认识

二、探究新知1、请同学们拿出课前收集的圆锥,相互交流,关于圆锥,你想提出哪些问题?

学生提问:圆锥有哪些特点?圆锥的高怎么表示?怎样量出圆锥的高?

2、合作探究。同学们用桌上的工具材料,分组研究你们感兴趣的问题。

3、小组汇报探究结果,同学相互质疑。

⑴圆锥的特点:底面是个圆,上面是一个尖尖的点,侧面是一个曲面。

质疑:侧面展开是个什么图形?

小结:我们把圆锥模型的侧面展开,得到一个扇形。

⑵圆锥的高:比较两个圆锥的高矮可以发现,圆锥的高是指顶点到底面之间的距离。

质疑:圆柱的高有无数条,那圆锥的高有几条?

小结:圆锥的高是表示圆锥的顶点到底面圆心的距离。圆锥的高只有一条,测量圆锥的高。

三、巩固练习1、做教科书第87页练习二十二的第2题。

2、小结活动。

按书上第191页的图样,用硬纸制作一个圆锥,并量出它的高是多少厘米。

3、总结。教师:这节课你有什么感受?你还有什么意见和问题?

圆锥的认识课件 篇6

教学内容:教科书第41—42页的内容,完成“做一做”和练习九的第l一2题。

教学目的:使学生认识圆锥,掌握圆锥的特征,会看圆锥的平面图。

教具准备:要求每个学生用教科书图样做一个圆锥的模型,并让学生收集一些圆锥形的实物,教师准备一个圆锥形物体,一块平板(或玻璃),一把直尺。

教师:我们已经学习了圆柱的有关知识。请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它与圆柱有什么不一样?

1、圆锥的认识。

让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆,等等。

教师指出:像这样的物体就叫做圆锥体,简称圆锥。这节课我们就来学习这种新的立体图形:

教师:大家门才认识了圆锥形的物体,我们把这些物体画在投影片上。

出示有圆锥形物体的投影片。

教师:现在我们沿着这些圆锥形物体的轮廓画线,就可以得到这样的图形。

随后教师抽拉投影片,演示得到圆锥形物体的轮廓线。

然后在图上标出顶点,底面及其圆心O。

接着让学生用手摸一摸圆锥周围的面,使学生发现圆锥有一个曲面。由此指出:圆锥的这个曲面叫做侧面。(在图上标出侧面。)

让学生看着圆锥形物体,指出:从圆锥的顶点到底面圆心的距离叫做高。然后在图上标出高。

引导学生根据高的定义,弄清楚由于圆锥只有一个顶点,所以圆锥只有一条高。

然后让学生拿出自己的学具,同桌的两名同学相互指出圆锥的底面、侧面和顶点,注意提醒学生圆锥的高是不能摸到的。

2、小结。

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是底面是圆,侧面是一个曲面,有一个顶点和一条高。

3、测量圆锥的高。

教师:由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助—块平板来测量。

(2)用一块平板水平地放在圆锥的顶点上面;

(3)竖直地量出乎板和底面之间的距离。

测量的时候一定要注意:(1)圆锥的底面和平板都要水平地放置;(2)读数时一定要读平板下沿与直尺交会处的数值。

4、教学圆锥侧面的展开图。

教师展示圆锥模型,指名学生说出侧面部分。

教师:我们已经学习过圆柱,哪位同学能说一说圆柱的侧面展开后是什么图形?

学生回答出圆柱的侧面展开图是长方形后,教师设问:那么,请大家想一想,圆锥的侧面展开后会是什么图形呢?”

留给学生短暂的思考讨论时间后,教师指出:下面我们通过实验来看看圆锥的侧面展开后是一个什么图形。

然后教师指导学生把圆锥模型的侧面展开,使学生看到圆锥的侧面展开后是一个扇形。展开后还可以再把它合拢,恢复原状,使学生加深对圆锥侧面的认识。

1做“做一做”的题目。

让学生拿出课前准备好的模型纸样.先做成圆锥,然后让学生试着独立量出它的底面直径。教师行间巡视,对有困难的学生及时辅导。

2、做练习九的第1题。

让学生自由地想,只要是接近于圆锥的都可以视为是圆锥。

3、做练习九的第2题。

相关文章

最新文章

推荐访问