老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是实现高效教学的不可或缺要素之一。如果您想深入理解这一话题不妨看看“不等式的课件”,本文的内容必将给您带来很多有用的收获!
【教学目标】
1、知识与技能目标
(1)掌握基本不等式 ,认识其运算结构;
(2)了解基本不等式的几何意义及代数意义;
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标
(1)经历由几何图形抽象出基本不等式的过程;
(2)体验数形结合思想。
3、情感、态度和价值观目标
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;
(2)体会多角度探索、解决问题。
【能力培养】
培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。
【教学重点】
应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程。
【教学难点】
基本不等式 等号成立条件。
【教学方法】
教师启发引导与学生自主探索相结合
【教学工具】
课件辅助教学、实物演示实验
【教学流程】
SHAPE MERGEFORMAT
【教学过程设计】
创设情景,引入新课
如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系?
赵爽弦图
1.探究图形中的不等关系
将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。
当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。
2.得到结论:一般的,如果
3.思考证明:你能给出它的证明吗?
证明:因为
当
所以, ,即
4.基本不等式
1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,通常我们把上式写作:
2)从不等式的性质推导基本不等式
用分析法证明:
要证 (1)
只要证 (2)
要证(2),只要证 a+b- 0 (3)
要证(3),只要证 ( - ) (4)
显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。
3)理解基本不等式 的几何意义
基本不等式教学设计
数学与应用数学 钟林
课题:人教A版必修5第3章4节,基本不等式
【教学目标】
1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想。
2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力。 3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想。
4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生
ab领会运用基本不等式ab的三个限制条件(一正二定三相等)在解决最
2值中的作用,提升解决问题的能力,体会方法与策略。
【重点难点】
重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式abab的证明过程。
2难点:在几何背景下抽象出基本不等式,并理解基本不等式。
【教学设计】
(一)问题导入
欣赏2002年国际数学家大会会徽,会徽是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能发现它是什么图形构成的吗?请根据会徽探索一些常见相等或不等关系。
探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形ABCD中有4个全等的直角三角形.设直角三角形两条直角边长为,a,b。
22ab那么正方形的边长为。
于是,4个直角三角形的面积之和S12ab。 正方形的面积S2a2b2。 由图可知S2S1,即a2b22ab。
当直角三角形变为等腰直角三角形,即时,正方形EFGH缩为一个点,这时 a2b22ab
所以a2b22ab。
探究二:如下图所示的梯形中,EF是梯形ABCD的中位线,梯形ABGH相似于梯 形GHDC。
梯形ABCD的上底是a,下底是b。让同学们自主研究GH和EF的大小关系。
ab因为EF是中位线,所以EF,
2由相似,可以得出GHab, 同样因为相似,有
AGABa, GDGHb又因为ab,所以AGGD,即AGAE,
ab。 2显然,当AB逐渐趋近CD的时候,GH也逐渐向EF靠近, 当AB=CD的时候,即ABCD是矩形的时候,GH与EF重合。
ab即,当且仅当ab时,ab。
2ab所以,ab,当且仅当ab时,等号成立。
2所以GHEF,即ab
(二)概念深入
根据上述两个几何背景,初步形成不等式结论:
若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)
ab。(当且仅当a=b时,等号成立) 2请同学们运用代数法证明: 作法一(作差法): 若a,bR,则aba2b22ab(ab)20ab2ab22
当且仅当a=b时,等号成立。且发现这里且a和b可以是全体实数、单项式、多项式。
作法二(分析法):
要证明abab, 2只需证明ab2ab, 即证ab-2ab0, 即为a-b20,该式显然成立,所以,当ab时取等号。
于是有这样的结论:
称ab为a,b的几何平均数;称基本不等式abab为a,b的算术平均数, 2ab又可叙述为: 2两个正数的几何平均数不大于它们的算术平均数
作法三(几何法):
如图,AB是圆O的直径,点C是AB上一点,AC=a,BC=b.过点C作 垂直于AB的弦DE,连接AD,BD。 从而有CDab,ODab。 2ab。 2ab当且仅当C点与圆心O点重合时,即a=b时,ab
2故再次证明:
aba0,b0,ab,当且仅当a=b时,等号成立。
2ab也说明了ab的几何意义:半径不小于半弦。
2由于直角三角形COD中,直角边CD
(三)例题讲解
例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?
(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)
对于x,yR,
(1)若xyp(定值),则当且仅当xy时,xy有最小值2p;
s2(2)若xys(定值),则当且仅当xy时,xy有最大值。
4(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神。)
1例2.求yx(x0)的值域。
x1变式1.若x2,求x的最小值.
x21在运用基本不等式解题的基础上,利用几何画板展示yx(x0)的函数
x图象,使学生再次感受数形结合的数学思想。
ab并通过例2及其变式引导学生领会运用基本不等式ab的三个限制
2条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略。
(四)归纳小结&课后作业 基本不等式:
若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)
ab。(当且仅当a=b时,等号成立) 2(1)基本不等式的几何解释(数形结合思想); (2)运用基本不等式解决简单最值问题的基本方法。
作业:A组第4题,B组第1题,第2题
若a,bR,则ab
课题:3.4.3 基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络。数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实。?
根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助。? 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;
(二)能力目标:让学生探究用基本不等式解决实际问题
(三)情感、态度和价值观目标:
通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;? 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具。通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学。而不是觉得数学只是一门枯燥无味的推理学科。在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;?
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?
3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。?? 五、教学重点及难点 教学重点:1.构建基本不等式解决函数的值域、最值问题。?
2.让学生探究用基本不等式解决实际问题;?
教学难点:1.让学生探究用基本不等式解决实际问题;?
2.基本不等式应用时等号成立条件的考查;?
六、教学过程 教师活动 学生活动 设计意图 (一)导入新课
(二)推进新课
已知 ,若ab为常数k,那么a+b的值如何变化?
若a+b为常数s,那么ab的值如何变化?
老师用投影仪给出本节课的第一组问题
(1)求函数y=2x2+ (x>0)的最小值。?
(2)求函数y=x2+ (x>0)的最小值。?
(3)求函数y=3x2-2x3(0
(4)求函数y=x(1-x2)(0
(5)设a>0,b>0,且a2+ =1,求 的最大值。?
(三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题。根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值。 ?
(四)例题精析?
【例】某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少?
当且仅当a=b时,a+b就有最小值为2k.?
当且仅当a=b时,ab就有最大值 (或ab有 最大值 ).?
学生完成
留五分钟的时间让学生思考,合作交流
(根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)?
学生思考、回答,
不等式
教材分析:本课由实际问题中的不等关系引出不等式的概念;类比方程的解,明确不等式解和解集的概念,以及不等式解集的两种表示方法。
教学目标:了解不等式概念,理解不等式的解和解集。 教学重难点:不等式及解集概念的理解。 教学过程: 一:引出新知。
现实世界中存在大量的数量关系,包括相等关系和不等关系。用等式(包括方程),我们可以研究相等关系,而研究不等关系需要用本章的不等式,如引言中选择购物商场问题.二:探索新知。
问题1 一辆匀速行驶的汽车在11:20距离A地50 km,要在12:00之前驶过A地.你能用式子表示出车速应满足的条件吗?
1、汽车在12:00之前驶过A地的意思是什么? 从时间上看,汽车要在12:00之前驶过A地,则 以这个速度行驶50 km所用的时间不到。
从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶的路程要超过50 km。
2、如何用式子表示以上不等关系? 设:车速为x km/h. 从时间上看: 从路程上看:
(1)对于不等式 而言,车速可以是80 km/h吗?78 km/h呢?75 km/h呢?72 km/h呢?
(2)类比方程的解,什么叫不等式的解?
使不等式成立的未知数的值.(3)不等式还有其他解吗?如果有,这些解应满足什么条件?
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式. (4)除了用不等式表示取值范围,还有其他表示方法吗? 数轴
三、运用新知。 例1 请用不等式表示:
(1) 是负数;
(2) 与5的和小于-7;
(3) 的一半大于3.例2 直接说出不等式的解集,并在数轴上表
示出来.
四、归纳总结 (1)什么叫不等式?
(2)什么叫不等式的解?不等式的解和方程的解的区别? (3)什么叫不等式的解集?不等式的解和不等式的解集的区别?
五、布置作业
教科书 习题 第
1、
2、3题。
[教学目标]
依据《新标准》对《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单问题(求最值、证明不等式);培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、不等式的证明)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
二、 [教学重点]
基本不等式 的证明过程及应用。
三、 [教学难点]
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等)的正确理解;
2、灵活利用基本不等式求解实际问题中的最大值和最小值。
四、 [教学方法]
本节课采启发诱导、讲练结合的教学方法,结合现代信息技术多媒体课件、几何画板作为教学辅助手段,加深学生对基本不等式的理解。
[教学用具]
多媒体、几何画板
六、 [教学过程]
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
(一)、创设情景,提出问题;
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。
同时,(几何画板辅助教学)通过几何画板演示,
让学生更直观的抽象、归纳出结论:
(二)、抽象归纳:
一般地,对于任意实数 ,有 ,当且仅当 时,等号成立。
[问] 你能给出它的证明吗?
学生在黑板上板书。
特别地,当 时,在不等式 中,以 、 分别代替 ,得到什么?
答案: 。
【归纳总结】
如果 都是正数,那么 ,当且仅当 时,等号成立。
我们称此不等式为基本不等式。 其中 称为 的算术平均数, 称为 的几何平均数。
(三)、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、符号语言叙述:
若 ,则有 ,当且仅当 时, 。
[问] 怎样理解“当且仅当”?
3、探究基本不等式证明方法:
[问] 如何证明基本不等式?
方法一:作差比较或由 展开证明。
方法二:分析法。
分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。
4、探究基本不等式的几何意义:
读书破万卷下笔如有神,以上就是一米范文范文为大家带来的3篇《2023高中数学基本不等式教学教案》,希望对您有一些参考价值。
不等式和不等式组复习课教学设计
一、设计思想:
“不等式”是初中数学核心内容之一。就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一般化的问题,只要是求未知数的值或范围的问题,经常要借助于不等式,可见学好不等式具有非常重要的意义。
这节课是中考前的专题复习课,知识点不多。由于学生已经学过本章内容,因此在本节复习中主要以提问的形式进行知识要点的复习,以学生自主探索和合作探究的学习方法学习本节内容。教师主要在习题的设计上选好典型例题,复习的知识尽量全面。教学效果上使不同的学生有不同的收获。
二、教学内容分析:
1.《课程标准》对本专题教学内容的要求:
(1)结合具体问题,了解不等式的意义,探索不等式的基本性质。 (2)能解简单的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。 2.本节内容在中考中的地位和作用。
本部分内容在中考中大约6~12分,约占全卷分数的5%~8%左右。而且,近几年考试中,经常与方程、函数三角函数、几何等内容一起综合考查,因此学好本节内容对于解决这些综合问题起着举足轻重的作用。
三、教学目标:
1、知识技能:
①掌握不等式的概念和性质,能根据不等式的性质解决有关问题;
②掌握不等式(组)的解法,会求不等式(组)的解集,特别是不等式组的整数解;
③能根据不等式组的解集确定字母系数的范围;
④会列不等式(组)解决简单的实际问题,特别是方案设计问题。
2、数学思考:通过列不等式或不等式组解决具有不等关系的实际问题,让学生体会不等式是解决实际问题的有效的数学模型。
3、解决问题:通过不等式(组)描述不等关系解决实际问题,发展学生由实际问题转化为数学问题的能力。
4、情感态度:①通过复习教学,继续强化用数学的意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。
②.通过探索,增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:不等式(组)的解法的规范性及实际应用
教学难点:不等式组有无解的问题中字母系数的确定和实际问题中不等式(组)的列出
教学方法:依托多媒体平台,启发、谈论、互动探究法(学生讨论、教师点拨)、讲练结合。
教学手段:计算机多媒体辅助教学。 教学时间:1课时
教学准备:1.学生准备:预习教材,了解本节的知识要点。
2.教师准备:将学生分组,选好组长;制作多媒体课件。
教学设计
一 情境设计
导入新课
出示多媒体课件
1、问题情境:问题:某化妆品店老板到厂家选购A、B两种品牌的化妆品,若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货? 教师:同学们,如果你是这个化妆品店的老板,你怎么解决进货方案问题? (学生思考):
教师:如何用数学符号表示标有下划线的词语?应该考查我们哪部分知识? 学生:最多 —— ≤;不少于—— -≥。 教师:我们学过的哪章知识与它们联系最密切?由此我们想到了哪部分知识? 学生:不等式和不等式组
教师:下面我们就来复习有关这方面的内容,“专题复习
(二)方程和不等式-----------不等式和不等式”。 (板书课题)
(多媒体出示教学目标。图略)
二、展示教学目标、教学重点和难点:(让学生学有目的,学有依据)
三、回顾知识要点:
1.知识网络出示;(使学生对本节知识的复习内容一目了然,从总体把握知识间的内在联系)
实际问题
3、知识要点复习不等关系不等式不等式的性质解不等式解集一元一次不等式一元一次不等式组解法解法数轴表示解集数轴表示实际应用解集数轴表示 2.知识要点复习:(通过提问由学生回答) ①基本概念复习
(澄清基本概念,对知识间的内在联系更明确。)
3、知识要点复习
一、基本概念:
1、不等式:
2、不等号:
3、不等式的解:
4、不等式的解集:
5、解不等式:
6、一元一次不等式:
7、一元一次不等式组:
8、一元一次不等式组的解集:
9、解一元一次不等式组: ②不等式性质复习:(它是解不等式和不等式组的重要依据,特别注意第3条性质,不等号方向改变问题,提醒学生,此处易错,提起注意)
3、知识要点复习
二、不等式的性质:(1)如果a>b,那么a+c>b+c,a-c>b-c不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。ab(2)如果a>b,并且c>0,那么ac>bc,cc不等式两边都乘以(或除以)同一个正数,不等号的方向不变。(3)如果a>b,并且c
3、知识要点复习三,规律与方法:1,不等式的解法:2,解不等式组的方法:3,不等式的解集在数轴上的表示:大向右,小向左,有等号是实心,无等号是空心.4,求几个不等式的解的公共部分的方法和规律:(1)数轴法(2)口诀法同大取大同小取小一大一小中间找 ④用一元一次不等式组解决实际问题的步骤:(为解决实际问题提供依据,这是本节的重点知识,学生可能会类比前边复习的方程和方程组的知识说出。)
3、知识要点复习
5、用一元一次不等式组解决实际问题的步骤:实际问题设未知数,列不等式(组)数学问题(不等式或不等式组)解不等式组实际问题的解答检验数学问题的解(不等式(组)的解集)
四、典型例题解析:(这一环节也是学生要达到的知识技能目标的重要一环,学生解题的顺利与否,是教师关注的重点。学生能够独立解出的,关注其过程是否规范,思路是否清晰,方法是否得当。不能解出的,先由小组合作探究,看是否能找到解题的思路,得出问题的答案;如果仍不能得出,教师加以点拨,引导,帮助学生找到解题思路,得出问题的答案。)
例1.(本题是一元一次不等式的解法的考查,是本节的基本题型,估计学生都能独立解出,可让中游的学生板演,这样解题步骤展现在大家面前,如果规范,起个示范作用;不规范,示范改正,起警示作用。把重点放在解题步骤是否规范上。)
4、典型例题:例1.解一元一次不等式解:3 (x-1) ≤6 –2(x-2)3x –3 ≤6 –2x+43x+2x ≤6+4+35x ≤13x ≤135自然数解非负整数解正整数解最大解最大整数解 (右边的云形图中是在学生解完不等式后先后出示的五种特殊情况,这样进
行变式教学,展示了一题多解的典型题目,同时又使学生锻炼了仔细审题的能力。)
4、典型例题:例1.解一元一次不等式解一元一次方程一元一次不解:3 (x-1) = 6 –2(x-2)解:3 (x-1) ≤6 –2(x-2)3x –3 = 6 –2x+43x –3 ≤6 –2x+4等式和一元一次3x+2x =6+4+3方程有何共同点3x+2x ≤6+4+35x =13和不同点?5x ≤x =x≤55 (通过这种一元一次不等式和一元一次方程解法的类比,使学生明确知识间的内在联系,同时发现其中的异同,对两者的区别更加清晰)
例2.(考查不等式的变形,解决问题的关键是正确理解不等式的概念和基本性质。重点关注基本性质的灵活掌握)
例3.(把平面直角坐标系的象限问题转化成不等式组问题,既体现了转化的数学思想方法,又见识了不等式组的广泛应用。可以帮学生回忆坐标系的有关知识。)
4、典型例题:a例2.若a1;b1a③a+b
3、在直角坐标系中,P(2x-6,x-5)在第四象限,则x的取值范围是3
例4.(把不等式中的相等问题出示,体现了相等和不等可以互相转化的数学思想。并与数与式中的乘方问题相联系,具有一定的综合性。)
例5.(借助数轴确定不等式组的解集,对于解这类题非常有效,学生容易做错,特别是是否包括界点问题,有一定难度,让学生小组合作探究,共同寻找问题的答案。教师巡视,给有困难小组点拨,指导。)
4、典型例题:xa2例
4、(2009凉山)若不等式组集是-1
例题分析:问题5问题分析:本题存在两个不等关系,一是购买B品牌化妆品不超过40套;二是两种化妆品的获利不少于1200元。根据这两个不等关系,可列不等式组求解。 (学生写出解题过程后,教师可出示规范的解题过程,体现数学学科的严谨性。)
4例题讲解:、典型例题:解:设A品牌化妆品购进m套,则B品牌化妆品购进(2m+4)套。根据题意得:解得:16≤m≤18.因为m为正整数,所以m=16,17,18,所以2m+4=
36、
38、40.所以有三种进货方案:(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套;(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套;(1)A种品牌的化妆品的购进16套,B种品牌的化妆品购进36套; (通过方案设计题的解决,使学生能够由实际问题建立数学模型,从而增强解决实际问题的能力。)
五、
归纳小结(先由学生自己归纳总结本节课的收获,从而把课堂传授的知识尽快化为学生的素质,以培养和增强学生的归纳总结能力;然后老师予以补充和归纳,为学生良好学习习惯的养成继续进行指导。)
5、归纳小结你会了吗?这节课你学到了什么?你有什么收获?你还有什么问题?
六、达标检测:(在这一环节,我设计了几个有梯度的题目,这样可使不同层次的学生都能有所收获,都能感受到成功的喜悦,使他们“在数学上都能有不同的发展”。)
6.达标检测(1)若2x=3+k的解集是负数,那么k的取值范围是______.K
3、不等式组数解为(A的最小整)A,-1 B,0 C,2 D,3 9
6.达标检测
4、跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售。若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同。(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来。 6.达标检测选做题•若不等式组xa012xx2有解,则a的取•值范围是(A)。•>-1 ≥-1 ≤1 <1
七、教学设计的理论依据
1.“理论联系实际”的原则,联系学生身边的生活,引导学生学习运用理论知识分析、解决实际问题。
2.新课程标准中的“学生是学习的主人”的主体教育思想。
本节课努力构建师生互动、生生互动的新的教学模式,创设情境引领教学,引导学生的合作学习,让其在思考讨论中自主学习,真正落实以学生为中心、以学生发展为根本,注重学生道德和能力的培养。
《基本不等式》教学设计
基本不等式
开江中学 魏江兰
目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式abab的证明过程及应用。 2难点:
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
《基本不等式》教学设计
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。 具体过程安排如下:
一、创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式a2b22ab。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有a2b22ab,当且仅当a=b时,等号成立。 [问] 你能给出它的证明吗?
证明:因为a2b22ab(ab)20,即a2b22ab.(当ab时取等号)
特别地,当a>0,b>0时,在不等式a2b22ab中,以a、b分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
《基本不等式》教学设计
答案: abab(a,b0)。 2你能用不等式的性质直接推导这个不等式吗? 证明:(分析法):由于a,bR,于是要证明 ab2ab,
只要证明 ab2即证
2ab,
ab2ab0,即 (ab)20,
所以abab,(当ab时取等号)
【归纳总结】
如果a,b都是正数,那么abab,当且仅当a=b时,等号成立。 2ab称为a,b的算术平均数,ab称2我们称此不等式为基本不等式。 其中为a,b的几何平均数。
文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。
探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生探究abab(a,b0)2的几何解释,通过数形结合,赋予不等式不等式abab(a,b0)2几何直观。进一步领悟不等式中等号成立的条件。
如图:AB是圆的直径,点C是AB上一点,CD⊥AB,AC=a,CB=b,CD
Dab
abab2abOCAB几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。
《基本不等式》教学设计
4.应用举例,巩固提高
我们可以用两个重要不等式来解决什么样的问题呢?
例1(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少? (2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化) 对于(1)若(2)若,
(定值),则当且仅当(定值),则当且仅当
时,时,
有最小值有最大值
; .
(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)
1例 2:当x0时,求yx的最小值?x1变式1:当x0时,yx有最值吗?
x1变式2:当x1时,yx有最值吗?
x通过例2及其变式引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.
练一练(自主练习):课本练习 5.归纳小结,反思提高
《基本不等式》教学设计
基本不等式:若若
,则,则
(当且仅当(当且仅当
时,等号成立) 时,等号成立)
(1)基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法(一正二定三相等). 6.布置作业,课后延拓
(1)基本作业:课本P100习题组
1、
2、3题
(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流.
基本不等式教学设计
《等式的性质》教学设计
《等式的性质》教学设计
等式性质教学设计(共8篇)
等式的基本性质的课后教学反思
一、教学目标:
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教 具:计算机辅助教学.
五、教学流程:
(一)、复习:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
今天笔者为大家带来了一篇关于一元二次不等式课件的精彩文章,欢迎保存本网站,并时刻关注我们的最新动态。每位教师都应该在授课前准备充分的教案课件,只要在课前认真编写好教案,便可以有效地促进学校的不断发展。教案是推进教育教学创新的有力工具。
《一元二次不等式及其解法》
教 学 设 计 说 明
《一元二次不等式及其解法》教学设计说明
一.教学内容分析:
1.本节课内容在整个教材中的地位和作用.
必修五第三章不等式第二节一元二次不等式及其解法共有三个课时,本节课是第一课时,教学内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用.许多问题的解决都会借助一元二次不等式的解法.因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用. 2.教学目标定位.
根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标.第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系.第二层面是能力目标,培养学生运用数形结合与分类讨论等数学思想方法解决问题的能力,提高运算和作图能力.第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想.第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神. 3.教学重点、难点确定.
本节课是在复习了一元二次方程和二次函数之后,利用二次函数的图象研究一元二次不等式的解法.只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可.因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系. 二.教法学法分析:
数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感.为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动.我设计了①回忆旧知,服务新知,②创设情境,提出问题,③合作交流,探究新知,④数学运用,深化认知,⑤练习检测,反馈新知,⑥谈谈收获,强化思想,⑦布置作业,实践新知,环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节. 三.教学过程分析:
(一)联系旧知,构建新知
设置一系列的问题唤起学生对旧知识的回忆. 问题1:一元二次方程的解法有哪些呢?
(意图:让学生回顾一元二次方程的解法,为解一元二次不等式做准备.)
问题2:同学们还记得二次函数吗?二次函数的形式是怎样的?你记得二次函数的性质吗?
(意图:引导学生从图象的角度出发,并启发学生二次函数的图象是一条抛物线,其开口方向由二次项系数决定,为突出重点做准备)
(二)创设情景,提出问题
1、让学生动手画直角坐标系,然后沿x轴方向上下对折这张纸,观察它们的值有什么特点?
22、请在刚才的坐标系中画出y=x-7x+6的图像 问题1:
(1)x轴上方有无图像?若有请用红线描出。这部分图像对应的y值如何?(2)x轴下方有无图像?若有请用蓝线描出。这部分图像对应的y值如何?(3)红线与蓝线有无交点?若有请用绿色标出。
(4)你能找出上述各种情况的x的取值范围吗?请在图中写出。
问题2:你能说一说这两个不等式有何共同特点么?(1)含有一个未知数x;
(2)未知数的最高次数为2。通过两问题得出一元二次不等式的概念:一般地,只含有一个未知数,且未知数的最高次数为2的不等式,叫做一元二次不等式。
问题3:判断下列式子是不是一元二次不等式?
问题4:一元二次函数、一元二次方程之间有何联系呢?
一元二次方程的解即一元二次函数图象与x轴交点的横坐标,也就是说方程的解即对应函数的零点。
问题5:一元二次不等式如何求解呢?
(三)合作交流,探究新知
1. 探究一元二次不等式x2?x?2?0的解.
容易知道:一元二次方程x2?x?2?0的有两个实数根:x1??1或x2?2. 二次函数y?x2?x?2与x轴有两个交点:??1,0?和?2,0?. 思考1:观察图象一元二次方程的根与二次函数之间有什么关系? 思考2:观察图象,当x为何值时,y?0;
当x为何值时,y?0; 当x为何值时,y?0.
(设计意图 : ①体现学生的主体性;②有利于加强对图象的认识,从而加强数形结合的数学思想 ;③有利于加强学生理解一元二次不等式的解相关的三个因素;④为归纳解一元二次不等式做好准备.根据前面探讨的问题引导学生归纳一元二次不等式的解.)
2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑:
2抛物线y?ax?bx?c与x轴的相关位置的情况,也就是一元二次方程2ax2?bx?c=0的根的情况,而一元二次方程根的情况是由判别式??b?4ac三 3 种取值情况(??0,??0,??0)来确定.
(设计意图:这里我将运用多媒体图标的形式来展现出其解法思路,学生有一个完整的逻辑思维,让学生在探究中建立知识间的联系,体会数形结合,强调突出本节的难点.)
(四)数学运用,深化认知.
2例1.求不等式2x?3x?2?0的解集. 2变式为:求不等式2x?3x?2?0的解集.
2例2.解不等式?x?2x?3?0.
(设计意图:先让学生来解答例题,若教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬.)总结:
解一元二次不等式的步骤:
一化:化二次项前的系数为正(a>0).二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.(五)练习检测,巩固收获
(设计意图:为了巩固和加深一元二次不等式的解法,让学生学以致用,接下来及时组织学生进行课堂练习.然后就学生在解题中出现的问题共同纠正.)
(六)归纳小结,强化思想
设计意图:梳理本节课的知识点,总结一元二次不等式解法的步骤:“一化,二判,三求根,四画图,五写解集”的口诀来帮助学生记忆和归纳,让学生掌握严谨的做题方法,知晓本节课的重难点.
(七)布置作业,拓展延伸
必做题:课本第80页习题A组 1,2.选做题:(1)若关于m的一元二次方程x
2?(m?1)x?m?0有两个不相 等的实数根,求m的取值范围.2(2)已知不等式x?ax?b?0的解集为x2?x?3?,求a,b的
?值.(设计意图:以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的反馈,选做题是对本节课知识的延伸,整体的设计意图是反馈教学,巩固提高.)四.教学总结
本节课的所有内容以习题的形式展现给学生,学生始终在解题中探究,在解题中发现,学生参与教学的全过程,成为课堂教学的主体和学习的主人,而老师只须时刻关注学生的活动过程,不时给予引导,及时纠正.
高中数学《一元二次不等式的解法(2)》教案
一、教学目标
【知识与技能】
掌握求解一元二次不等式的简单方法,能正确求解一元二次不等式的解集。
【过程与方法】
在探究一元二次不等式的解法的过程中,提升逻辑推理能力。
【情感、态度与价值观】
感受数学知识的前后联系,提升学习数学的热情。
二、教学重难点
【重点】一元二次不等式的解法。
【难点】一元二次不等式的解法的探究过程。
三、教学过程
(一)导入新课
回顾一元二次不等式的一般形式,组织学生举例一些简单的一元二次不等式。
提问:如何求解?引出课题。
(二)讲解新知
结合课前回顾的一元二次不等式的一般形式,对比之前所学内容,引导学生发现其与一元二次方程和二次函数的共同特点。
新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到“意外”的问题,我在平时的教学中重视对“课堂意外预案”的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个“意外预案”。
1、学生在做课本练习1(x+2)(x-3)>0时,可能会问到转化为不等式组{或{求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。
2、根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。
以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家!
一、教材分析
1、地位和作用。本课是五年制高等师范教材南京大学出版社《数学》教材第一册第二章第二节的教学内容,从知识结构看:它是一元一次不等式的延续和拓展,又是以后研究函数的定义域、值域等问题的重要工具,起到承前启后的作用;
从思想层次上看:它涉及到数形结合、分类转化等数学思想方法,在整个教材中有很强的基础性。
2、教材内容剖析。本节课的主要内容是通过二次函数的图像探究一元二次不等式的解法。教材中首先复习引入了“三个一次”的关系,然后依旧带新,揭示“三个二次”的关系,其次通过变式例题讨论了△=0和△
3、重难点剖析。重点:一元二次不等式的解法。难点:一元二次方程、一元二次不等式、二次函数的关系。难点突破:
(1)教师引导,学生自主探究,分组讨论。
(2)借助多媒体直观展示,数形结合。
(3)采用由简单到复杂,由特殊到一般的教学策略。
二、目的分析
知识目标:掌握一元二次不等式的解法,理解“三个二次”之间的关系
能力目标:培养学生“从形到数”的转化能力,由具体到抽象再到具体,从特殊到一般的归纳概括能力。
情感目标:在自主探究与讨论交流过程中,培养学生的合作意识。
三、教法分析
教法:“问题串”解决教学法
以“一串问题”为出发点,指导学生“动脑、动手、动眼、动口”,参与知识的形成过程,注重学生的内在发展。
学法:合作学习(1)以问题为依托,分组探究,合作交流学习。(2)以现有认知结构为依托,指导学生用类比方法建构新知,用化归思想解决问题。
四、过程分析
本节课的教学,设计了四个教学环节:
创设情景、提出问题
问题1:用一根长为10m的绳子能围成一个面积大于6m2的矩形吗?“数学来源于生活,应用于生活”,首先,以生活中的一个实际问题为背景切入,通过建立简单的数学模型,抽象出一个一元二次不等式,引入课题。
设计意图:激发学生学习兴趣,体现数学的科学价值和使用价值。
自主探究,发现规律
问题2:解下列方程和不等式。①2x—4=0②2x—4>0③2x—4
归纳、类比法是我们发现问题、寻求规律,揭示问题本质最常用的方法之一。寻求一元二次不等式的解法,首先从一元一次不等式的解法着手。展示问题2。学生:用等式和不等式的基本性质解题。教师:还有其他的解决方法吗?展示问题3。
问题3:画出一次函数y=2x—4的图像,观察图像,纵坐标y=0、y>0、y
学生:发现可以借用图像解题。此问题揭示了“三个一次”的关系。
设计意图:为后面学习二次不等式的解法提供铺垫。
问题4:用图像法能不能解决一元二次不等式的解呢?已知二次函数y=x2—2x—8。
(1)求出此函数与x轴的交点坐标。
(2)画出这个二次函数的草图。
(3)在抛物线上找到纵坐标y>0的点。
(4)纵坐标y>0(即:x2—2x—8>0)的点所对应的横坐标x取哪些数呢?
(5)二次函数、二次方程、二次不等式的关系是什幺?
教师:展示问题4。此环节,要注意下面几个问题:
(1)启发引导学生运用归纳、类比的方法,组织学生分组讨论,自主探究。(2)及时解决学生的疑点,实现师生合作。(3)先让学生自己思考,最后教师和学生一起归纳步骤。(求根—画图—找解),抓住问题本质,画图可省去y轴。教师抓住时机,展示例题1,巩固方法(△>0的情况),规范步骤,板书做题步骤,起到示范的作用。设计意图:运用“解决问题”的教学方法,使每位学生参与知识的形成过程,体现了教师主导学生主体的地位。
变式提问,启发诱导
方程:ax2+bx+c=0的解情况函数:y=ax2+bx+c的图象
不等式的解集
ax2+bx+c>0ax2+bx+c
⊿>0
⊿=0
⊿
教师:展示例题2(1)—x2+x+6≥0(2)x2—4x+40。
学生:尝试通过画图求解。
此环节要注意:引导学生把不熟悉的问题转化为熟悉的问题解决;对于△=0,△
设计意图:通过探索、尝试的过程,培养了学生大胆猜想,勇于探索的精神。
自我尝试,反馈小结。
教师:展示练习题,把学生分成两个小组,要求当堂完成,看哪个组做的好做的快。教师对出现的问题及时反馈。同时,进一步启发引导学生将特殊、具体问题的结论推广到一般化。展示表格。
学生:填写内容。
学生理解了“三个二次”的关系,得到一般结论应该是水到渠成。最后,教师做本节课的小结,布置作业。设计意图:激发了学生的求知欲,培养了学生的主动参与意识。
五、评价分析
1、重视学生学习的结果评价,更重视过程评价。
2、本节课贯彻了新课程的理念,教学形式开放,体现了“教师主导,学生主体”的教学关系。以上是我对本节课的粗浅认识,如有不妥之处,恳求各位专家、各位同仁批评指正。
一元二次不等式及其解法教学反思
塘沽中专-----戚卫民
我在13级电子班教室上了一节课,由此我进行了深刻的反思:
我教的是一个普通中专的班,学生基础比较差。因此,第一,课前组织很重要,给 学生 做思想 工 作,这 节 课很重要,是大家表现 自己 的好机会,同 学 们应该遵守纪律,积极发言,展示 自己 班良好的素质和班风。这样学生激情会高一些,自然课堂也会活跃一些。第二,把握本节课的难点,课前做好铺垫。一元二次不等式及其解法看上去好像很简单,但是它需要同学们有很好的基础,解一元二次方程的基础。而学生在初中只是熟悉用求根公式解方程,对于十字相乘法分解因式只有极个别会,对于这种情形我在课前把一元二次方程的解法好好的补了一下。还有二次函数的图象画法,也好好的复习一下,加深巩固,突破难点,使得这节课能顺利进行下去。
尽管这样我的课堂效果也不是很好,这是为什么呢?我陷入迷茫之中可能是我的学生不适应教学方式?可能是学生紧张?弄错?后来想想可能我没有好好地备学生。我觉得这节课的教案应该这样设计,可能会更好:课前引入去掉,应该在复习时让学生解一元二次方程,画二次函数图象,这样学生容易进入状态。然后直接导入新课,有特殊到 一般,由具体到抽象,逐步揭开解一元二次不等式的方法。给出例题应由浅入深,先给出形如这样的:(x-2)(x-3)
让他们好求方程的根,从而画图求不等式的解集,为后续例题做铺垫。作为教师我应该很规范的板书。以给学生榜样。然后给出形如这样的不等式:x2+3x-4≥0 由上道题的启示他们自然会去验证Δ,用十字相乘法求一元二次方程x2+3x-4=0 的根,画函数的图像,从而求出解集。从这两道题让他们自己归纳一下解一元二次不等式的步骤,再出课本习题,这样他们一定可以解出来,此种做法可以提高他们的解兴趣,把课堂气氛变得浓烈一些。接着给出-x2-3x+4>0提醒他们要把二项式系数变为正数。用课本课后题做练习。再给出x2-3x+4>0这种Δ0Δ=0的情形。根据二次函数的图像学生应该可以解决。
一节课究竟要解决什么问题,怎样解决这是课堂的首要。贴近学生实际,层层深入,各个击破,帮学生排忧解难,同时发挥他们的主观能动性,让学感受到自己是课堂的主人,这是教师课堂的主旨。还有一点非常重要,老师必须要有很强的亲和力。其实亲和力的前提是要有爱心,有爱才会亲。一个孩子在班上是六十分之一,但在一个家庭是百分百,所以我觉得我们应该向爱我们自己的孩子一样去爱他们,让学生感受到我们的关怀,怎样做到爱学生,我觉得自己以后可这样努力 :记住每一个学生的名字,在路上和他们打招呼,下课和他们谈谈心,说笑说笑,不 要说一些伤学生人 格的话语,适当鼓励他们,人心都是肉长的呀,他们会感觉得到的。成绩差的学生其实是非常敏感的,也是很容易叛逆的,在任何时候老师都要想到自己是成年人,是长者,要站在一定的高度考虑我们的学生,设身处地为他们想象。这样就不会有芥蒂,冲突,代沟。这节课我比较真实展现我的学生和我自己。无论从哪一方面,业务能力,管理能力,对学生的掌控能力,课堂的把握能力。我都有待学习提高。我会努力的!
《一元二次不等式解法》说课稿范文
一、 教材简析
1、地位和价值
一元二次不等式解法是高中数学新教材第一册(上)第一章第5节的内容。在此之前,学生在初中已学习了一元一次不等式,一元一次不等式组,一元二次方程,二次函数,绝对值不等式(高中),这为过渡到本节的学习起着铺垫作用。一元二次不等式解法是解不等式的基础和核心,它在高中代数中起着广泛应用的工具作用,蕴藏着“数与形结合”的重要思想方法,它已成为代数、三角、解析几何交汇综合的重要部分,是高考综合题的热点。
2、教材结构简介
教材首先以一个一次函数图象的应用解一元一次不等式,引出图象法,然后给出一个二次函数,通过具体画图象,提出问题。再一般地给出了二次函数图象解二次不等式的结论。课本精选了四个解不等式的例题,并配有相应的练习和习题。它的后一小节为解可转化为一元二次不等式的分式不等式。
二、 教育教学观
1、 学生为主体,重学生参与学习活动。
2、 重过程。按照认知规律及学生认知特点,由浅入深,由表及里,设计一系列教学活动过程。体现由“实践……观察……归纳 ……猜想…… 结论…… 验证应用”的循环往复的认知过程。
3、 重能力与态度的培养,在活动中培养学生自主、交流合作、探究、发现的能力。重科学严谨的个性品质。重参与学习的兴趣和体验。
4、 重指导点拨。在学生自主探究、实践的基础上,相机启发,恰当点拨,促进学生知识由感性向理性提升,由具体到概括抽象,形成师生间的有效互动。
三、 教学目标
基于上述认识,及不等式的基本知识,同时学生在初中已学过二次函数,考虑到学生已有的认知结构心理特征,制订如下教学目标:
1、 知识目标:一元二次方程,一元二次不等式及二次函数间的联系,及利用二次函数的图象求解一元二次不等式。
2、 能力目标:数形结合的思想(应用二次函数图象解不等式)
3、 情感态度目标:通过问题解决,培养学生自主参与学习,以及严谨求实的.态度。
四、 教与学重点、难点
1、重点:用图象解一元二次不等式。
2、难点:围绕二次函数图象、性质这一主线,解决三个“二次”的联系和应用。
五、 教法与学法
1、学情分析及学法:函数与图象应用是初中生数学的薄弱之处,同时刚进入高中的学生,对高中学习还很不适应,需要加强主动学习的指导。基于此,在学生初中知识经验的基础上,以旧探新;以一系列问题,促进主体的学习活动(如画图象、读图等),建构知识;以问题情景激励学生参与,在恰当时机进行点拨启发,练、导结合,讲练结合;通过学生自己做数学,教师启发指导,以及学生领悟,实现学生对知识的再创造和主动建构;具体通过教材中的问题及设计的问题情景,给予学生活动的空间,通过这些问题(“脚手架”)的解决,使学生逐步攀升,达到知识与能力的目标。
2、教法:数学教学是数学教与学活动过程的教学,学生是在探究与发现中建构知识,发展能力的,因而确定以“问题解决”为教法。实现学生在教师指导下的发现探索。同时所学内容适宜用“计算机高中数学问题处理系统”辅助教学。
六、教学手段及工具:
多媒体教学手段,高中数学问题处理系统。
七、教学设计及教学过程
1、复习设问,引入新课
高中数学新教材第一册(上)《一元二次不等式解法》(第一课时)说课稿.rar
解一元二次不等式化为标准型。判断△的符号。若△<0,则不等式是在R上恒成立或恒不成立。
若△>0,则求出两根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。
2.解简单一元高次不等式
a.化为标准型。
b.将不等式分解成若干个因式的积。
c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。
3.解分式不等式的解
a.化为标准型。
b.可将分式化为整式,将整式分解成若干个因式的积。
c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。(如果不等式是非严格不等式,则要注意分式分母不等于0。)
4.解含参数的一元二次不等式
a.对二次项系数a的讨论。
若二次项系数a中含有参数,则须对a的符号进行分类讨论。分为a>0,a=0,a<0。
b.对判别式△的讨论
若判别式△中含有参数,则须对△的符号进行分类讨论。分为△>0,△=0,△<0。
c.对根大小的讨论
若不等式对应的方程的根x1、x2中含有参数,则须对x1、x2的大小进行分类讨论。分为x1>x2,x1=x2,x1<x2。
5.一元二次方程的根的分布问题
a.将方程化为标准型。(a的符号)
b.画图观察,若有区间端点对应的函数值小于0,则只须讨论区间端点的函数值。
若没有区间端点对应的函数值小于0,则须讨论区间端点的函数值、△、轴。
6.一元二次不等式的应用
⑴在R上恒成立问题(恒不成立问题相反,在某区间恒成立可转化为实根分布问题)
a.对二次项系数a的符号进行讨论,分为a=0与a≠0。
b.a=0时,把a=0带入,检验不等式是否成立,判断a=0是否属于不等式解集。
a≠0时,则转化为二次函数图像全在x轴上方或下方。
若f(x)>0,则要求a>0,△<0。
若f(x)<0,则要求a<0,△<0。
⑵特殊题型:已知一不等式的解集(含有字母),求另一不等式的解集(与原不等式系数大小相同,位置不同)。a.写出原不等式对应的方程,由韦达定理得出解集字母与方程系数间的关系。
b.写出变换后不等式对应的方程,由由韦达定理得出解集字母与方程系数间的关系。
c.将a中得到的关系变化后带入b的关系中,得到变换后方程的两根。
d.判断两根的大小,变换后不等式二次项的系数,从而写出所求解集。
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。
(二)教学内容
本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。
二、教学目标分析
根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:
知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。
能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。
情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。
三、重难点分析
一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。
要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。
四、教法与学法分析
(一)学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。
(二)教法分析
本节课设计的指导思想是:现代认知心理学——建构主义学习理论。
建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。
本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。
五、课堂设计
本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。
(一)创设情景,引出“三个一次”的关系
本节课开始,先让学生解一元二次方程x2—x—6=0,如果我把“=”改成“>”则变成一元二次不等式x2—x—6>0让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。
为此,我设计了以下几个问题:
1、请同学们解以下方程和不等式:
①2x—7=0;②2x—7>0;③2x—7
1.创设情景——引入新课。我们常说“兴趣是最好的老师”,长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以20xx年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。
2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。
3.启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就△>0,△<0,△=0的三种情况,总结二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程ax2+bx+c=0的.根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为“三步曲”法)。
4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1—4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。
5.延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。
展过程一元二次不等式教学设计
一、教学内容分析:
1、教材地位和作用
本节课是数学(基础模块)上册第二章第三节《一元二次不等式》。从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。从思想层面看,本节课突出本现了数形结合思想。同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
2、教学目标
知识目标:正确理解一元二次不等式、一元二次方程、二次函数的关系。熟练掌握一元二次不等式的解法。
能力目标:培养数形结合思想、抽象思维能力和形象思维能力。
思想目标:在教学中渗透由具体到抽象,由特殊到一般,类比猜想、等价转化的数学思想方法。
情感目标:通过具体情境,使学生体验数学与实践的紧密联系,感受数学魅力,激发学生求知欲望。
3、重难点
重点:一元二次不等式的解法。
难点:一元二次方程,一元二次不等式与二次函数的关系。
二、学生情况分析:
我们的学生是在学习了一元一次不等式,一元一次方程、一元一次函数,一元二次方程的基础上学习一元二次不等式。但大都数学生的基础都不是很好,解一元二次方程有一定的困难。
三、教学环境分析:教学环境应包括和谐的师生关系、多媒体的合理应用、良好的课堂组织、合理的问题情境。创设和谐的师生关系有利于提高学习效率,我们学校要建立和谐的师生关系是需要花很多心思的,特别是就业班的同学,且要有一个相当长的适应时间。我们学校的每位老师都有手提电脑,每间教室都有宽屏电子显示器,老师都能熟练掌握多媒体设备的运用。运用多媒体教学效果好、学生容易理解、学习的积极性高。上课时比较注意创设合适的问题情境,效果会不错,学生从生活实际出发,回答所提的问题,不知不觉学习了新的知识,他们不会感觉到学习疲劳,反而能积极主动地学习。
四、教学目标分析:
知识与技能:正确理解一元二次不等式、一元二次方程、二次函数的关系。熟练掌握一元二次不等式的解法。
过程与方法:通过看图象找解集,培养学生从从形到数的转化能力,从具体到抽象、从特殊到一般的归纳概括能力;通过对问题的思考、探究、交流,培养学生良好的数学交流能力,增强其数形结合的思维意识。在教学中渗透由具体到抽象,由特殊到一般,类比猜想、等价转化的数学思想方法。
情感态度与价值观:通过具体情境,使学生体验数学与实践的紧密联系,激发学生学习研究一元二次不等式的积极性和对数学的情感,使学生充分体验获取知识的成功感受;在探究、讨论、交流过程中培养学生的合作意识和团队精神,使其养成严谨的治学态度和良好的思维习惯。
《一元二次不等式及其解法(第1课时)》教学设计
Eric 一 内容分析
本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。
二 学情分析
学生已经掌握了高中所学的基本初等函数的图象及其性质, 能利用函数的图象及其性质解决一些问题。学生知道不等关系, 掌握了不等式的性质, 通过这部分内容的学习, 学生将学会利用二次函数的图象, 通过数形结合的思想, 掌握一元二次不等式的解法。
三 教学目标
1.知识与技能目标:(1)熟练应用二次函数图象解一元二次不等式的方法(2)了解一元二次不等式与相应函数, 方程的联系 2.过程与方法:(1)通过学生已学过的一元一次不等式为例引入一元二次不等式的有关概及解法(2)让学生观察二次函数,在此基础上, 找到一元二次不等式的解法并掌握此解法(3)在学生寻找一元二次不等式的过中程中培养学生数形结合的数学思想 3.情感与价值目标:(1)通过新旧知识的联系获取新知,使学生体会温故而知新的道理
(2)通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。
(3)在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。
四 教学重点、难点 1.重点
一元二次不等式的解法 2.难点
理解元二次方程与一元二次不等式解集的关系
五 教学方法
启发式教学法,讨论法,讲授法
六 教学过程
1.创设情景,提出问题(约10分钟)
师:在初中,我们解过一元一次不等式,如解不等式x – 1 > 0,现在请同学们先画出函数y = x – 1 的图象,并通过观察图象回答以下问题: 1)x 为何值时,y = 0;2)x 为何值时,y > 0;3)x 为何值时,y 0的解集能从函数y = x – 1上看出来吗?
学生画图,思考。先把问题交给学生自主探究,过一段时间,再小组交流,此间教师巡视并指导。提问学生代表。
通过对上述问题的探究,学生得出以下结论:
因为上述方程x – 1 = 0以及不等式x – 1 > 0的左边恰好是上述函数y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3
练习:课本80页练习第1题(1)-(3)【灵活掌握】.师:今天我们这节课的内容有两个: 1)会一元二次不等式的解法 2)理解三个“二次”的关系
作业:课本第80页 习题 A
4.板书设计
§ 一元二次不等式及其解法
解不等式x2 – x – 6 > 0, 请先画出二次函数 y = x2 – x – 6的图像,并回答以下问题: 1)x 为何值时,y = 0;y > 0;y 0的解集呢?
七 教学反思
组1、2题 例,解不等式:
1)2x24x + 1 > 0;3)-x2 + 2x – 3
解:1)因为Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因为Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.
各位评委、各位老师:
大家好!
我叫,来自。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。
一、教材内容分析:
1、本节课内容在整个教材中的地位和作用。
概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。
2、教学目标定位。
根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。
3、教学重点、难点确定。
本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。
二、教法学法分析:
数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了①创设情景——引入新课,②交流探究——发现规律,③启发引导——形成结论,④练习小结——深化巩固,⑤思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。
为了促进学生掌握上课知识点,老师需要提前准备教案,老师在写教案课件时还需要花点心思去写。 教案和课件优化可使教学任务的完成更加精细化。幼儿教师教育网小编特意为大家收集整理了“不等式课件”,欢迎参考愿您成为更好的自己!
不等式的性质 教学设计
十六中 尚进军
【教学重点与难点】
教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3 教学难点:正确应用不等式的三条基本性质进行不等式变形 【教学目标】
1、探索并掌握不等式的基本性质
2、会用不等式的基本性质进行化简 【教学方法】
通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.
【教学过程】
一、创设情境 复习引入
(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)问题:
1、什么是等式?等式的基本性质是什么?
2、什么是不等式?
3、用“>”或“<”填空.(1)3
2×5 3×5
2×(-1)3×(-1)3-5 7-5 2÷2 3÷2 2×(-5)3×(-5)3+a 7+a
2÷(-2)3÷(-2)(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)
二、师生互动,探索新知
1、不等式的基本性质
问题1:观察思考问题3,猜想出不等式的性质
先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1: 不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变. 比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出: 不等式基本性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变. 不等式基本性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变.
问题2:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论. 教师 强调指出:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.
问题3:尝试用数学式子表示不等式的三条基本性质. 学生思考出答案,教师订正,最后得出:(1)如果a>b,那么a±c>b±c(2)如果a>b,c>0那么ac>bc(或>)(3)如果a>b,ca” 或“x26;(2)3x50;(4)-4x>3.解:(l)根据不等式基本性质1,不等式的两边都加上7,不等号的方向不变. 得 x-7+7>26 +>33(2)根据不等式基本性质1,两边都减去2x,不等号的方向不变,得3x-2x75,不等号的方向不变,得(4)根据不等式基本性质3,两边都除以-4,不等号的方向改变,得x(教学说明:这些不等式比较简单,可以利用不等式的性质直接求解,从而加深对这些性质的认识.教师板书(1)题解题过程.(2)(3)(4)题由学生在练习本上完成,指定三个学生板演,然后师生共同判断板演是否正确.解题时要引导学生与解一元一次方程的思路进行对比,有助于加强知识之间的前后联系,突出新知识的特点,并将原题与“x>a” 或“xc, a+c>b, b+c>a 我们现在求的是两边之差与第三边的关系,所以由不等式的性质1将上式变形为: 由a +b>c得a>c-b, b>c-a.同理,由a+c>b, b+c>a可得c>b-a, b>a-c,c>a-b, a>b-c.这就是说,三角形中任意两边之差小于第三边.(教学说明:此问题应用不等式的性质由“三角形的任意两边之和大于第三边”得出“三角形中任意两边之差小于第三边”这个与已有结论等价的新结论.“三角形的任意两边之和大于第三边”对应的是三个形式一样的不等式,而不是一个不等式.由这三个不等式再推出“三角形中任意两边之差小于第三边”.为了加深学生的感性认识,可以通过测量的方法验证这个结论.)三、巩固训练,熟练技能:1、如果a>b,那么(1)a-3 b-3,(2)2a 2b(3)-3a-3b,(4)a-b 0(5)(6)-b_____-、在下列各题横线上填入不等号,并说明是根据不等式的哪一条基本性质.(1)若a–3<9,则a_____12;(2)若-a<10,则a_____–10;(3)若a>–1,则a_____–4;(4)若-a>0,则a_____0.3、利用不等式的性质解下列不等式,并在数轴上表示解集(解未知数为x的不等式,就是要使不等式逐步化为“x>a”或“x<a”的形式)(1)x-1<0;(2)x>-x+6;(3)3x>7;(4)-x<-3.(教学说明:这些练习进一步加深了学生对不等式性质的理解,做此练习题时,应让学生注意观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.做第3题时要引导学生与解一元一次方程的思路进行对比,让学生认识到应用不等式的性质1变形,相当于移项.)四、总结反思,课堂小结1、不等式的基本性质是什么?如何用数学式子表示?2、在本节课的学习中,你还有什么疑惑? 3.主要用到的思想方法是类比思想.4.注意的问题: 当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,若是负数,要变两个号,一个性质符号,另一个是不等号,对于未给定范围的字母,应分情况讨论.六、布置课后作业:1、课本127页练习2、课本128习题的5、6、7题 【评价与反思】通过具体的事例观察并归纳出不等式的三条基本性质,引导学生用数学式子表示三条基本性质,同时注意将不等式的三条基本性质与等式的基本性质进行比较,以加深学生的理解.在教学过程中,注重培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.同时培养了学生积极主动的参与意识和勇敢尝试、探索的精神.
本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.
相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.
不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如, 能使不等式 成立,那么 是不等式的一个解,类似地 等也能使不等式 成立,它们都是不等式 的解,事实上,当 取大于 的数时,不等式 都成立,所以不等式 有无数多个解.
不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.
注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.
一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 的解集是 .
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圆.
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圈.
注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.
2.知道不等式的“解集”与方程“解”的不同点.
通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.
通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.
通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.
2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
基本不等式是数学中一个重要的基础公式,也是高中数学学习的重点之一。此公式广泛应用于各种求证、排列、组合、概率等数学问题中,具有广泛的实际应用价值。本文将围绕基本不等式的定义、推导、应用和解题技巧进行讲解。
一、基本不等式的定义
基本不等式又称柯西-施瓦茨不等式,其一般形式为:
∣∣∣∣∑iaibi∣∣∣∣∣≤∣∣∣∣∑iai∣∣∣∣∣∣∣∣∣∑ibi∣∣∣∣∣
其中a1,a2,…,an和b1,b2,…,bn为任意实数。该不等式的本质含义是,在平面直角坐标系中,向量间的内积不大于它们模的乘积之积,并且当且仅当向量线性相关时取等号。
二、基本不等式的推导
基本不等式的推导涉及到向量的概念。假设有两个n维向量a和b,它们的内积为∑iaibi,则它们的长度分别为:|a|=√∑iai2和|b|=√∑ibi2。
将a和b定义为Rn中的两个向量,则它们的夹角为θ,则有:
cosθ=∑iaibi/|a||b|
通过分析cosθ的大小关系,显然有:
−1≤cosθ≤1
进一步得到基本不等式:
|∑iaibi|≤∣∣∣∣∑iai∣∣∣∣∣∣∣∣∑ibi∣∣∣∣∣
三、基本不等式的应用
基本不等式广泛应用于各种求证、排列、组合、概率等数学问题中,下面将分别介绍它们的应用。
1. 求证
基本不等式可以用于求证数学中的一些定理,比如互余等比数列的和定理。具体应用时,我们可以将等比数列拆成两个向量,然后应用基本不等式即可得到所证定理。
2. 排列组合
在排列组合问题中,基本不等式可以帮助我们确定最优解,以最小或最大值为目标得到所需的数字。例如,在n个数字中有几对数对,他们之间的差值恰好为k,可以通过将原问题转换为求两个向量之间的夹角,然后应用基本不等式进行求解。
3. 概率
在概率问题中,基本不等式可以用于推算随机事件中不等的概率值,例如玩牌游戏中的胡牌概率等。我们可以将每个事件看作向量,然后使用基本不等式计算它们的夹角,从而得到相应的概率值。
四、基本不等式的解题技巧
基本不等式的应用需要掌握一些解题技巧。下面列举一些常用的技巧:
1. 将数列表示成向量
在排列组合问题中,将数列表示成向量,有利于方便运用基本不等式进行计算。
2. 极小化或极大化
当问题中要求最小或最大值时,我们可以使用极小化或极大化的思路,以求解最优解。
3. 利用对称性
当有对称条件时,可以运用基本不等式中的对称性质,简化数学推理。
4. 运用方法的差异性
在某些情况下,我们可以发现数列的算术平均数和几何平均数在大小方面的差异,从而确定使用哪个方法进行计算。
综上所述,基本不等式是高中数学学习的重点之一,应用范围广泛。掌握了基本不等式的定义、推导、应用和解题技巧,能够在数学竞赛中取得更好的成绩,也有利于我们理解、应用其它数学定理。
《不等式的性质(1)》教学设计
一、引入
展示任务单的数据分析,向学生明确本堂课的教学内容。
二、预习检测
学生回答“什么是不等式的性质” 不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变 不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变 不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变
三、应用1:利用不等式的性质比较大小
【例1】若a?b,判断3?2a与3?2b的大小关系.小结:利用不等式的性质比较大小的一般思路: 利用不等式的性质将“已知”逐步化成“目标
(1)教师对任务单中错误率较高的题目进行讲解;
(2)设置类似的问题作为例题,并进行巩固训练和变式训练。
【巩固】(1)若3a?4?3b?4,则a___b;(2)若?5a?7??5b?7,则a___?b,则: 【变式一】若 ①(k2?1)a___(k2?1)b ②1?k2a___1?k2b
【变式二】若a?b,试比较ka与kb的大小.【巩固】(1)若a?b,且(k?1)a?(k?1)b,则k的取值范围是______.1(2)由kx?1变形可得x?,则k的取值范围是________.k
四、应用2:利用不等式的性质解不等式
(1)针对任务单中学生解不等式时在步骤中出现的问题,教师规范解题步骤;
(2)教师分享某位同学任务单中对“不等式的性质与等式性质的异同?”的回答,小组讨论利用不等式的性质解不等式步骤中需要注意的问题;(3)学生综合范例和讨论结果,进行巩固训练和变式训练。【例2】利用不等式的性质解不等式:4y?12??2?3y.【巩固】13用不等式的性质解不等式:y?2?y?522 【变式】13已知y?2?y?5,化简y?3?(6?2y)
五、课堂小结
小组讨论分享:通过本节课的学习,“我知道了??”“我掌握了??”。
六、课堂检测
学生独立完成课堂检测,由数据反馈出本堂课的达成度
七、课后思考 布置课后思考题
利用不等式性质1,比较2a与a的大小(a?0).2,比较2a与a的大小(a?0).利用不等式性质
基本不等式是中学数学中比较重要的知识点,它是一条数学公式,可以用来证明数学上的不等式问题。在中学阶段,我们通常会学习到关于基本不等式的概念、性质以及应用等方面的知识。接下来,本篇文章将围绕这一主题展开,详细说明基本不等式的相关知识点和应用场景。
一、基本不等式的概念和性质
基本不等式实际上是针对于a、b两个正实数而言的,它的数学表述为:(a+b)²≥4ab 。 这个公式被称为基本不等式的“基本式”。同时,在这个式子中,等号成立的条件是a=b时。接下来,让我们来看看基本不等式的一些性质。
1.基本不等式的证明:
(a+b)²=a²+2ab+b²≥4ab (由于a²+b²≥2ab)
化简得:a²+b²≥2ab,即(a-b)²≥0,结合等式左侧两边同时加上4ab,则得到公式(a+b)²≥4ab,也就是基本不等式。
2. 基本不等式的解释:
从式子来看,基本不等式的左边是一个完全平方数,即(a+b)²。右边是4ab。又因为基本不等式中的变量a和b都是正实数,所以无论a和b的大小关系如何,四倍的乘积4ab一定是大于等于a²+b²、即2ab的。因此,我们可以得到基本不等式的结论:(a+b)²≥4ab。
3. 基本不等式的应用:
基本不等式有非常广泛的应用,其中一些典型的应用场景包括以下几种:
a. 使用基本不等式证明其他不等式:
比如,对于x、y两个正实数,我们可以将不等式(x-y)²≥0 化简为x²+y²≥2xy 的形式,然后用上基本不等式,即可快速证明(x-y)²≥0 成立。
b. 使用基本不等式解决实际问题:
比如,用4米长的绳子围成一个矩形兽栏,求兽栏能够围住的最大面积是多少? 我们可以将这个问题转换为求:4m边长的正方形对面提醒兽栏的最大面积问题。此时,我们可以利用基本不等式,推导出正方形的对角线最大长度即为4√2米,由此可以得出此时正方形的面积即为16平方米,也就是兽栏的最大面积。
c. 使用基本不等式验证一些数学结论:
比如,我们可以利用基本不等式来验证任意两个正实数的平均数一定大于等于它们的几何平均数。 具体的,对于两个正实数a和b,我们可以推导得到:
(a+b)²≥4ab
(a+b)²/4≥ab
(√ab+√ab)²/4≥ab
(✓ab) ≥ (a+b)/2
由此可得,两个正实数的平均数一定大于等于它们的几何平均数,即( a+b)/2≥✓ab。
二、基本不等式的应用实例
1.题目描述:
小峰有若干元钱,他能够涵盖八天的生活物资开销。现在,他去买菜了,花掉了R元钱,求他能不能仍然用这笔钱过完余下的那几天。
2.解题思路:
我们可以设小峰剩下的钱数为x,应该取得一个不等式来表示这个问题。具体地,设日均消费为m(m 一定是小于R/x 和x/8之间较小数),则从第9天开始,小峰所存的钱应数学表达式为:
x-R≥m*(8),
x≥m*(8)+R
这是一个关于x的不等式,为验证其是否成立,我们需要对它进行推导。为了推导方便,我们将不等式变形如下:
m*(8)+R≤x
然后,我们可以利用基本不等式将其化简为如下形式:
(mx/✓8)^2+(Rx/✓8)^2≥2mRx/4
由于 x>0,所以令 t = x/✓8,则上式化简为:
(m/2)t^2+(R/2)^2≥tmR
或者
(t-R/m)^2+(m/2)^2≥R^2/ 4m^2
根据上面的式子,我们可以得出,只要 t≥R/m,即x≥m*(8)+R,则小峰就有足够的钱过余下的几天生活了。
3.综述
基本不等式是非常重要的中学数学知识点,它不仅有较为实际的应用场景,还能用于证明和推导其他数学结论。在学习基本不等式的时候,我们需要注意,对于不等式的变量,要理解它们所表示的实际含义和逻辑关系,从而更好地应用基本不等式来解决实际问题。
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.
在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.
教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.
1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?
2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?
3数轴上的任意两点与对应的两实数具有怎样的关系?
4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.
实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA
实例5:三角形两边之和大于第三边,两边之差小于第三边.
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.
(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.
例2比较下列各组数的大小(a≠b).
(1)a+b2与21a+1b(a>0,b>0);
(2)a4-b4与4a3(a-b).
活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.
已知x>y,且y≠0,比较xy与1的大小.
活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.
∵x>y,∴x-y>0.
当y
当y>0时,x-yy>0,即xy-1>0.∴xy>1.
点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.
例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.
活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.
解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.
点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.
已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则( )
C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各项都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为( )
2.比较2x2+5x+9与x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.
2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.
1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.
2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.
3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.
1.比较(x-3)2与(x-2)(x-4)的大小.
2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
当a>b>0时,ab>1,a-b>0,
则(ab)a-b>1,于是aabb>abba.
则(ab)a-b>1.
于是aabb>abb a.
综上所述,对于不相等的正数a、b,都有aabb>abba.
《课题:实际问题与一元一次不等式》教学设计
【教学目标】:
1.通过列一元一次不等式解决具有不等关系的实际问题,进一步熟练掌握一元一次不等式的解法,体会不等式是解决实际问题的有效的数学模型。
2.通过应用一元一次不等式解决实际问题,进一步强化应用数学的意识,从而使学生乐于接触社会环境中的数学信息,谈论数学话题,能够在数学活动中发挥积极作用。
3.通过探究,增进学生之间的配合,培养学生敢于面对困难和克服困难的勇气,树立学好数学的自信心。
【重点难点】:
重点:由实际问题中的不等关系列出不等式。
难点:列一元一次不等式描述实际问题中的不等关系
【教学过程】:
回顾旧知、引入新课
师:之前我们学习过利用一元一次方程解决生活中的销售问题,现在李老师就来考考大家,请看第一题:
出示幻灯片1
1.一种商品标价100元,按标价的8折出售,若想单件商品获利10元,设进价为x元,则可列等式。
(学生解决并给出合理解释)
师:那我们一起来回顾一下利用一元一次方程解决实际问题的基本步骤是什么?
学生回答后,教师总结:
利用一元一次方程解决实际问题的一般步骤:
审、设、列、解、答
师:好!请看第二题:
2.一种商品标价100元,按标价的8折出售,若想单件商品获利不低于10元,设进价为x元,则。
师:相较于第一题,题目发生了什么变化?
学生抓住关键词“不低于”,列出不等式。
师:找到不等关系,列一元一次不等式也是解决实际问题的常用方法。今天,我们就来学习实际问题与一元一次不等式。
出示幻灯片
2小组讨论、探究新知
师:马上就要过春节了,想要给自己准备什么礼物?
师:老师也想给可爱的儿子买礼物,通过考察,已经知道有两家超市正在举行优惠活动,咱们一起去逛一逛,好不好?
出示幻灯片3
甲超市说:凡在本超市累计购买100元商品后,再购买的商品按原价的90%收费。
乙超市:凡在本超市累计购买50元商品后,再购买的商品按原价的95%收费
师:李老师觉得甲超市优惠,因为打9折?你的意见呢?
(学生发表自己的意见)
师:刚才几位同学表达了自己的观点,可是这仅仅是我们的猜想,解决问题不能只靠猜想,运用数学知识该如何解决这个问题呢?
出示幻灯片
4下面老师就把时间交给大家,4人一小组展开讨论,到底该选择哪家超市购买才能获得更大优惠?
(学生讨论的过程中,教师主要巡视并和学生共同探究。)
经过探讨,小组形成初步想法,小组派代表分享讨论结果,逐一解决列表达式、分类、建模列不等式、解不等式等题目中难点,教师以板书形式将结果呈现在黑板上,并引导学生补充,完善解题过程,并利用多媒体进行展示。
学以致用 挑战自我师:同学们理解得非常到位!那么再碰到类似的问题你能解决了吗?
出示幻灯片
5我校计划在暑假期间组织学生到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商:甲旅行社表示可给予每位学生七五折优惠;乙旅行社表示可先免去一位学生的旅游费用,其余学生八折优惠.我校选择哪一家旅行社支付的旅游费用较少?
学生独立思考后进行小组讨论,选代表上黑板展示。
梳理过程 总结提高
教师引导学生回顾两道题的解题过程,谈谈获得的感悟,学生独立思考片刻后进行小组交流讨论。
出示幻灯片6
回顾这个问题的解题过程,你有哪些感悟呢?
例如:我感受最深的是??
我感到最困难的是??
我发现生活中??
我学会了??
布置作业 测评反馈
出示幻灯片7
作业:
一、在市场上收集两种手机收费方式,帮爸爸(妈妈)选择一种合适的消费方式.二、习题(134页)1.(1)(2)5.
1.使学生感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义;
2.让学生自发地寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
1.通过汽车行驶过a地这一实例的研究,使学生体会到数学来源于生活,又服务于生活,培养学生“学数学、用数学”的意识;
2.经历由具体实例建立不等模型的过程,探究不等式的解与解集的不同意义的过程,渗透数形结合的思想。
㈢情感、态度、价值观:
1.通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;
2.让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域中去。
3.培养学生类比的思想方法、数形结合的思想。
1.教学重点:不等式、一元一次不等式、不等式解与解集的意义;在数轴上正确地表示出不等式的解集;
2.教学难点:不等式解集的意义,根据题意列出相应的不等式。
计算机、自制cai课件、实物投影仪、三角板等。
教师创设情境引入,学生交流探讨;师生共同归纳;教师示范画图,课件交互式练习。
〖创设情境——从生活走向数学〗
[多媒体展示]“五·一黄金周”快要到了,芜湖市某两个商场为了促销商品,推行以下促销方案:①甲商场:购物不超过50元者,不优惠;超过50元的,超过部分折优惠。②乙商场:购物不超过100元者,不优惠;超过100元的,超过部分九折优惠。亲爱的同学,如果五·一期间,你去购物,选择到哪个商场,才比较合算呢?
(以上教学内容是向学生设疑,激发学生探索问题、研究问题的积极性,可以让学生讨论一会儿)
教师:要想正确地解决这个问题,我们大家就要学习第九章《不等式和不等式组》,学完本章的内容后,我相信,聪明的你们一定都会作出正确的选择,真正地做到既经济又实惠。
首先,我们来共同学习本章的第一节课——9.1.1节《不等式及其解集》
〖新课学习〗
学习目标:
1.能感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式和意义;
2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
[多媒体展示一段动画]:引例:一辆匀速行驶的汽车在11:20距离a地50千米,要在12:00之前驶过a地,车速应满足什么条件?
设车速是x千米/小时,
(1)从时间上看,汽车要在12:00之前驶过a地,则以这个速度行驶50千米所用的时间不到 小时,即
(2)从路程上看,汽车要在12:00之前驶过a地,则以这个速度行驶 小时的路程要超过50千米,即
请同学们观察上面的两个式子,式子左右两边的大小关系是怎样的? 左右两边相等吗?
在学生充分发表自己意见的基础上,师生共同归纳得出:
用“>”或“<”号表示大小关系的式子叫做不等式;
用“≠”表示不等关系的式子也是不等式。
判断下列式子中哪些是不等式,是不等式的请在题后的括号内划“√”,不是的请划“×”
(1)3> 2 ( ) (2)2a+1> 0 ( ) (3)a+b=b+a ( )
(4)x< 2x+1 ( ) (5)x=2x-5 ( ) (6)2x+4x< 3x+1 ( ) (7)15≠7+9 ( )
上面的不等式中,有些不含未知数,有些含有未知数,大家把(2)、(4)、(6)式与(5)式类比,(5)式是一个一元一次方程,能不能给(2)、(4)、(6)式也起个名字呢?
含有一个未知数, 未知数的次数是1的不等式,叫做一元一次不等式.
问题2:车速可以是78千米/小时吗?75千米/小时呢? 72千米/小时呢?
问题3:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,那么我们可以把使不等式成立的未知数的值叫做什么呢?
(师生共同归纳)使不等式成立的未知数的值叫做不等式的解。
2.课堂练习二——动一动脑,动一动手,你一定能算得对。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(学生做完后,师问):你还能找出这个不等式的其他的解吗?这个不等式有多少个解?你从中发现了什么规律?
(学生讨论后,师生共同总结):当x>75时,不等式 x>50总成立;而当x<75或x=75时,不等式 x>50不成立,这就是说,任何一个大于75的数都是不等式 x>50的解,这样的解有无数个。因此,x>75表示了能使不等式 x>50成立的x的取值范围,叫做不等式 x>50的解的集合,简称解集。
我们再回到前面的问题,经过刚才的分析,可以知道,要使汽车在12:00之前驶过a地,车速必须大于75千米/小时。
一个含有未知数的不等式的所有的解,组成了这个不等式的解集。
4.在数轴上表示不等式的解集;
注意:在表示75的点上画空心圆圈,表示不包括这一点.
5.课堂练习三——动一动脑,动一动手,你一定能算得对。
判断下列数中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12
求不等式的解集的过程叫做解不等式。
7.课堂练习四——看谁算得最快最准。
直接想出不等式的解集,并在数轴上表示出不等式的解集:
(1) x+3>6; (2)2x<8; (3)x-2>0
解:(1)x>3; (2)x<4; (3)x>2。
1.例用不等式表示:
(1)x与1的和是正数; (2)的与的的差是负数;
(3)的2倍与1的和大于3;(4)的一半与4的差小于的3倍.
解:(1)x+1>0; (2)+b<0;
(3)2+1>3; (4)-4<3;
2.课堂练习五——看谁最列得又快又准。
用不等式表示:
(1)是正数; (2)是负数;
(3)与5的和小于7; (4)与2的差大于-1;
(5)的4倍大于8; (6)的一半小于3.
答案;(1)>0; (2)<0; (3)+5>0;
学生小结,师生共同完善:
2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;
3.能够根据题意准确迅速地列出相应的不等式。
不等式的性质(2)教学目标
1.知识与技能:理解不等式的性质,会解简单的一元一次不等式,并能在数轴上表示出解集。
2.过程与方法:通过经历不等式性质的简单应用,积累数学活动。通过独立解题,进一步理解不等式的性质,体会不等式性质的价值。
3.情感态度和价值观:认识到通过观察、实验、类比可以获得数学结论,体验数学活动充满着探索性和创造性。在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,学会分享别人的想法和结果,并重新审视自己的想法,能从交流中获益。重点难点
1.重点:不等式的性质及其解法. 2.难点:不等式性质的探索及运用.方法策略
启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,培养和发展学生的抽象思维能力。
探究教学法——引导学生去疑;鼓励学生去探; 激励学生去思,培养学生的创造性思维和批判精神。教学过程:
一、梳理旧知,引出新课
问题1: 在前面的学习中,你学到了不等式的哪些性质?(用文字语言叙述)(鼓励学生回答问题,用电子白版显示三条性质的符号语言)问题2: 解一元一次方程最终的目的是把方程转化成哪种形式?其主要的理论依据是什么?
(为问题3做铺垫)
二、合作交流,探究新知
问题3: 利用不等式的性质解下列不等式:
(1)x?7?26(2)3x?2x?1 2(3)x?50(4)?4x?3 3(类比着解一元一次方程的方法教师先解(1),并用数轴表示其解集,然后让学生试解(2)(3)(4)并和同学交流,最后教师点评。)
思考1:(3)(4)的求解过程,类似于解方程的哪一步变形? 思考2:依据不等式性质3解不等式时应注意什么? 随堂练习:1.完成课本P119练习1 问题4: 2011年北京的最低气温是19℃,最高气温是28℃,你能把北京的气温用不等式表示出来吗?
(符号“≥”读作“大于或等于”,也可以说是“不小于”;符号“≤”读作“小于或等于”,也可以说是“不大于”.形如a≥b或a≤b的式子也是不等式,它们具有类似前面所说的不等式的性质).随堂练习:完成课本119页练习2.问题5: 某长方体形状的容器长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3cm,现准备向它继续注水.用V(单位:cm3)表示新注入水的体积,写出V的取值范围.(学生先合作探究,然后让学生交流探究结果,最后老师讲评并强调在解决实际问题的时候,要考虑取值的现实意义。)
三、归纳完善,丰富新知
1:如何利用不等式的性质解简单不等式? 2:依据不等式性质3解不等式时应注意什么? 3:请说明符号“≥”和“≤”的含义?
四、布置作业
必做题:P120第5,7,8题.选做题:P120第9题
最新文章