正数和负数的课件

正数负数课件 正数课件 11-01

正数和负数的课件(通用13篇)。

栏目小编为你整理了以下的“正数和负数的课件”,请您仔细了解以下信息。老师会根据课本中的主要教学内容整理成教案课件,需要我们认真写好每一份教案课件。教案是学生学习过程中的辅助工具。

正数和负数的课件 篇1

教学目标

1. 知识掌握目标:使学生了解和掌握正数、负数和零的意义.

2. 技能能力目标:培养学生观察、分析、概括的逻辑思维能力和解决实际问题的能力。培养创新意识和精神、培养学生合作意识。

3. 德育目标:通过负数的引入,对学生进行爱国主义教育。

教材分析与处理、学情分析。

本节课是在学生学习了正数,即在正整数、正分数、零及这些数的运算的基础上,根据七年级学生年龄特点和心理特征即学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。活泼好动,思维敏捷,表现欲强,但思考问题不全面等。采用探索引导式的学习方式。

重点、难点:

重点:正数、负数的意义及如何区别意义相反的量。

难点:如何控制和提高学生的思维,在教学中把握主动性,培养学生各方面的能力。

教学设计及依据:

借助多媒体辅助手段,创设问题情境,引导学生观察、分析、组织讨论、合作交流,启发学生积极思维,不断探索后汇报研究成果,行到结论后进行总结,及时进行反馈应用和反思式总结。依据是《新课标》,学生是学习的主人,而教师在学生学习中只是组织者、引导者,培养学生学会学习,从学生现有生活经验的基础上,让学生感知知识的过程,使学生人人都能获得必要的数学,人人都获得有用的数学,不同的人获得不同的发展。

教学过程

教学环节

教学内容

设计意图

一、创设情境导入新课

本节课中,首先呈现给学生的是两幅冬日雪景动画画面。

教师:同学们从这两幅动画中感觉到的是什么?谁能告诉我今天气温大约是多少度?动画里的温度大约是多少?能不能用我们所学过的数表示吗?

学生:(天气比较冷 20°C 零下10°C 不能)

教师:正因为不能,为了解决这一问题,我们来学一些新数,从而引入新课题.

这两幅画符合学生的年龄特点,激发学生浓厚的学习兴起,给新知识的引入提供了一个丰富多彩的空间.

二、获得新知

加深理解

教师:像零下10°C我们可以记着“-10°C”读做“负的”.请举例说出生活中带负号的数

学生:(海拔中的盆地涨价等)

教师:哪位同学愿意说说表中各数的'意义?

名称

02国债(1)

02国债(2)

02国债(3)

涨跌/元

+0.01

-0.05

—2.01

学生:(分别····)

列举生活中事例,让学生感受到数学来源于生活区,我们身边的一切离不开数学,

三、学生归纳

明晰概念

教师:谁愿意说明正、负数的定义

学生:(正数是比零大的数,负数是比零小的数零即不是正

数也不是负数带“—”号的数为负等)

教师:(屏幕显示)像5, 2, 2.01 1/2…这样的数叫做正数它们都大于零.

在正数前面加上“-”号的数叫做负数,如-10,-3…

0既不是正数,也不是负数.

按组抢答,分别给各组打分.

四、追本溯源

情感升华

教师:谁知道负数最早来源于哪个国家?

学生:(中国)

对学生进行德育教育.

五、实际应用

巩固提高

1、 按组抢答

教师:在知识竞赛中,如果用+10表示加10分,那么扣20分怎样表示? 某人转动盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示? 在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记做+0.02克,那么-0.03克表示什么?

学生:(记做—20 记做—12圈 低于标准质量0.03克)

2、 分组解答(利用屏幕)

教师:现在,给出问题的一部分,请完成另一部分.

①河道中的水位比正常水位低0.2米记做—0.2米,那么比正常水位( )0.3米记做( )

②如果上升3米记做+3,那么( )6米记做-6米,不升不降记做( )

③如果+20‰表示( )20‰,那么—6‰表示减少( ).

④如果—20.50元表示( )20.50元,那么+100.57元表示盈利100.57元.

⑤如果节约20千瓦,那么( )10千/时电记做—10千瓦?

学生:(略)

3、分组说一说

教师:①零上,零下

②东,西(两个相反方向)

③运进,运出

④高,低

⑤上升,下降

⑥增加,减少

⑦节约,浪费

学生:(答案较多,或不完整,鼓励学生多答,学生有补充,和持反对意见的可以用不同的手势表答,并根据实际情况分别给各组打分).

4、比一比谁最聪明

教师:我知道你们都很聪明,下面我们来比一比,(屏幕显示)

我校升旗仪式选拔队员,按规定女队员的标准为155cm,高于标准身高记为正,低度于标准身高记为负,现有参选队员共5人,量得他们的身高后,分别为—7cm、—5cm、—3cm、—1cm、6cm.若实际选拔女仪仗队员标准身高为150cm到160cm,那么上述5人中有几个人可以入选?

教师:哪一位同学来谈你的看法?学生们有补充,和持反对意见的可以用不同的手势表答,并根据实际情况分别给各组打分.

学生:(略)

教师:现在请各组上来两位同学现场演示一下,各同学写出自己的身高,请一位同学挑选她们.

同一个知识点,用不同的题目,不同的回答形式更能调动学生的积极性

六、总结交流

效果回收

教师:通过本节课的学习,你有哪些收获和体会?

学生:(正、负数的意义\用负数表示生活中的些现象\明白相反意义的量,\在生活中数学无处不在,我要学好数学.\我思考今后它是怎么样运算的等)

教师:做最后的总结补充.

把主动交给学生,更能调动积极性和培养学生的能力.

教学反思

通过本节课的教学,我对新教材有了更深刻的认识,不论从教学素材到知识结构,都更加符合学生的年龄特征及认知结构.在教学中应着重突出学生的自主、探究式的学习,通过交流、合作、研究、探讨,才能收到好的教学效果.

正数和负数的课件 篇2

1、了解负数是从实际需要中产生 的;

2、能判断一个数是正数还是负数,理解数0表示的量的意义;

3、会用正负数表示实际问题中具有相反意义的量。

我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的初中学习生活.

老师刚才的介绍中出现了一些数,它们是些什么数呢?

人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的 需要.

数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?

什么是正数,什么是负数?

归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….

这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.

如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.

大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?

0有什么意义?

归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界。

0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。

有哪些相反意义的量?

请举出你所知道的相反意义的量?

“相反意义的量”有什么特征?

课本第5页练习1、2、3、4、7、8.

1、到目前为止,我们学习的数有哪几种?

2、什么是正数、负数?零仅仅表示“没有”吗?

3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用

正数和负数的课件 篇3

教学目标:

1、在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题和现象。

2、在具体的情境中,认、读、写负数,同时渗透“对应”和“集合”的数学思想。

3、培养学生获取信息,并进行分析的意识和能力。

4、进行德育渗透,培养学生科学精神和民族自豪感。

教学重点:

了解负数的意义和负数在生活中的应用。

教学难点:

理解负数的意义。

教学用具:

电脑课件、实物投影仪、温度计。

教学过程:

一、创设情境,导入新知。

同学们,这节课老师和你们一起上数学,数学和什么打交道最多?数学课离不开数,数与我们的日常生活联系得也非常密切。(边说边板书:数数)下面老师要说些数据,请你们认真听,当一名小记录员,看谁能经过思考,将老师所说的数据信息,用你喜欢的方式准确地记录下来。能开始吗?

1、中国队参加足球比赛,上半场进了2个球,下半场输了2个球。

2、寒假开学,我校四年级转进学生7人,五年级转出学生3人。

3、小刚的妈妈卖服装,今年三月份赚了900元,四月份赔了100元。

二、探讨交流,感知新知。

(一)交流记录的数据信息,初步感受正数和负数是表示相反意义的两个量。

1、展示同学们的记录单(随机进行)

根据同学们的记录情况,启发同学进行分析,相互之间交流看法。

谁写完了,举起来让我看看(教师桌间巡视,收集相关信息。)

足球比赛

转学情况

账目结算

上半场2四年级7三月份900下半场

2五年级3四月份100

刚才老师收集了几个同学的记录单,请你们看看,有什么想法?(不能准确地表达老师所说的意思)

看来用我们已有的知识,来记录一些数据,有时候是说明不了问题的。刚才老师说的这些信息进球和输球;转进和转出;赚和赔都是相对应的。(渗透对应的数学思想)表示相反意义的两个量。这张记录单,只把数据记了下来,没有说明情况。请看这张记录单,你觉得怎样?(请学生们交流看法)

足球比赛

转学情况

账目结算

上半场进2个四年级进7人三月份900下半场输2个五年级出3人四月份100

这位同学能把前两条信息准确的记录下来,用的是什么方法?(汉字)这种方法怎么样?(麻烦)

还有不同的记录方法吗?(请同学进一步交流自己的想法,教师分别展示学生不同的记录方法。)

2、小结:你用的符号意思你明白,他用的符号意思他明白,那我们要想让大家都明白,就应该用共同的符号。(视课堂学习的情况而定,如果有用“+”、“-”就来展示一下,让同学们了解。)

3、统一记录的方法和形式看,咱们同学还有用这种方法记录的:

足球比赛

转学情况

账目结算

上半场+2四年级+7三月份+900下半场-2五年级-3四月份-100

谁说说用这种方法记录好在哪儿?(能准确表达老师要说的意思,简单)

小结:这种记录方法中所用的这两个符号“+”、“-”是数学符号,(教师边说边板书:+、-)。数学符号是数学的语言,是帮助大家进行交流的。以前我们见过它,想想在哪儿见得最多?现在它们可有新的名字啦,我们管它“+”叫正号(师边说边板书:正号),跟我读:正号。它“-”叫负号(板书:负号)读:负号,人们在数学中就用这种符号来区别意义相反的量。

(二)认识正数和负数,读、写正、负数。

1、认、读正、负数。

像记录单中这个数+2,我们就读正2(板书:+2)跟我读:正2;它“-2”,读作:负2(板书:-2)跟我读:负2。

用刚才的方法,谁能读出后面的4个数?(指名读,随着生读师板书:+7,-3,+900,-100)

小结:刚才我们用正号和负号能清楚地记录数学信息,从中我们也认识了正数和负数(师板书:正、负)。

练一练:谁能说出几个正数和负数,说的完吗?正、负数是无穷多的。(渗透集合思想)用一个符号表示……(师同时板书)

课件出示:-100,+68,-1.5,+,-,36

请同学们开火车读,其他同学判断。

讨论36是什么数,介绍为了简便起见,正号可以省略不写。

猜猜看,36是正数还是负数?

告诉你,像这样的数是正数,为了简便起见,正号可以省略。同学们想一想,负号可不可以省略,为什么?(区分不开)

在学生充分发表自己的意见后,教师归纳:为了正确的.区分正数和负数,负号不能省略,正号可以省略。我们已经初步的认识了正数和负数,下面老师考考大家,行吗?

2、写数,认识“0”

课件出示练习

做完后同学交流结果。

谁想把你做的结果跟大家交流一下。(学生说,教师同时用课件演示。)

重点讨论“0”的问题,让学生初步感知大于0的数是正数,小于0的数是负数,0既不是正数,也不是负数。

3、介绍负数的历史

通过以上的学习,大家已经认识了负数这个新朋友,其实对负数的认识,我们祖国有着悠久的历史,古代人在很早以前就想出了用不同方法记录正数和负数,大家想知道吗?请看大屏幕。

⑴、出示课件,请同学读上面的信息,其他同学思考:你从中知道了什么?

听了他们的介绍,你们想说些什么吗?

⑵、学生谈感受

使学生了解我国在很早以前就有使用负数的历史,从而培养学生的科学精神和民族自豪感。(进行德育渗透)

(三)寻找生活中的负数,进一步理解负数的意义。

1、从天气预报入手,感知负数的意义。

负数在我们生活中有很多的应用。请看大屏幕,这是20xx年11月3日北京市气温分布图。

出示课件:找同学读一读。

谁能读出上面的气温?

区别-1℃和1℃所表示的意义,感知0是正、负数的分界点。

这个气温分布图上,有这样两个温度:-1℃和1℃,谁能说说它们有什么不同?为什么?(-1℃是零下,1℃是零上)(-1℃比1℃要冷)

小结:在通常情况下,把水结冰的温度定为0℃,把水沸腾时的温度定为100℃,100℃在0℃以上,可用正数表示,0℃以下的温度可用负数表示。由此可见,0℃很关键。

2、在温度计上找温度,体会水银柱越往上升温度越高,水银柱下降温度降低,0℃以上为正数,0℃以下为负数。

把你的温度计准备好,请你在温度计上表示出10摄氏度。(展示同学们的温度计,有两种可能,一种是10℃,另一种是-10℃)从温度计中更能看出0℃的重要性了。

(四)用直线上的点表示正、负数,并总结规律。

正数和负数还可以用直线上的点表示。(边说边演示)请看大屏幕,直线上有无数个点,我们选择其中的一个点为0点,每小格代表单位1,如果我要写正数,在0的哪边写?还可以写好些,正数都在0的右边,那0的左边就是(负数了)。

负数正数

越来越大

-3 -2 -1 0 1 2 3

越来越小

请你观察这个图,从左向右看,你发现了什么?(从左向右数越来越大)还可以从哪边看?你又发现了什么规律?(从右向左数越来越小)从这个图中你能看出0是什么数吗?(板书:0)(0既不是正数,也不是负数)0和正、负数之间有怎样的关系?(0小于所有的正数,大于所有的负数)可以用这个符号“<”把它们连接起来吗?(同时板书:“<”)

三、走进生活,巩固新知。

负数在我们的生活中随处可见。

1、电梯中的负数(出示课件)

下面请同学看大屏幕,叔叔应该按哪个键?阿姨应该按哪个键?

2、存折上的负数。

3、方向问题(出示课件)

我们继续往下看,默读题目,谁读懂了,谁能填空?

4、课本p73例4(出示课件)

请看这幅图,我们以海平面为分界线,图中高于海平面有两点,低于海平面有哪几点?用正、负数读出图中的数据。

5、刘翔跨栏的画面(出示课件)

认识他吗?请你默读信息,思考当时赛场风速每秒-0.4米是什么意思?谁能解释一下?

四、归纳总结,质疑问难。

可见,正、负数在我们的生活中应用得很广泛,以后大家千万要留心身边的生活,在我们的日常生活中,处处都有要学的数学知识。

时间过得真快,马上就要下课了,你们过得高兴吗?说说有什么收获?

看着你们举起的手,大家都有所收获。

哪儿不明白?

我们不仅学会了知识,还学会了思考问题。下节课我们一起讨论解决大家提出的问题。

五、留心生活,完成作业。

作业:1、完成自主丛书p43 1、2、3题;

2、课后思考:还有哪些事物可以用正、负数来表示。

板书:

负数<0<正数

-2+2+正号

-3+7-负号

-100+900

正数和负数的课件 篇4

教学内容:人教版 七年级 上册 第一章 有理数 1.1 正数和负数

教学目标:

在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。

使学生经历数学化,符号化的过程,体会负数产生的必要性。

感受正、负数和生活的密切联系,享受创造性学习的乐趣.

教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。

教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。

教学过程:

一、感受相反方向的数量,经历负数产生的过程。

1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。

2、引入负数的概念

3、总结正负数

(1)这些数很特别,都带上了符号,它们是一种“新数”。 -9、-4.5等都叫负数; +7、+988等都叫正数。你会读吗?请你读给大家听。注意“-”叫负号,“+”叫正号。

(2)读给你的同伴听。

(3)把你新认识的负数再写两个,读一读。

下面让我们走进正数和负数的世界,进一步了解它们。(板书课题)

二、借助实际生活情境的直观,丰富对正负数的认识。

1、负数有什么用?用正数或负数表示下列数量。(1向东走200米,用+200米表示;那么向西走200米元用 表示。

2.说说实际问题中负数的确定

(1.)表示海拔高度

(2.)解释温度中正负数的含义

(3)做练习三

3、怎样理解具有相反意义的量

三、理解0

1、0既不是正数也不是负数。0是正负数的分界。

2、0只表示没有吗?

1).空罐中的金币数量;

2).温度中的0℃;

3).海平面的高度;

4).标准水位;

5).身高比较的基准;

6.)正数和负数的界点;

3、总结

0既不是正数,也不是负数;0是正数负数的分界。

0是整数,0是偶数,0是最小的自然数。

四、探究活动(出示课件):

1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?

若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为 。

2、探究活动二:某大楼地面上共有20层,地面下共有5层,若用正数、负数表示这栋楼房每层的楼层号,则地面上的最高层表示为 ,地面下的最低层表示为 ,某人乘电梯从地下最低层升至地上6层,电梯一共运行了 层。

3、探究活动三:用正数和负数表示的相反意义的量,其中正确的是( )

A、20xx年全球财富500强中对主要零售业的统计,大荣公司年收入为25320100万美元下列,利润为-195200万美元,该公司亏损额为195200万美元。

B、如果+9.6表示比海平面高9.6米,那么-19.2米表示比海平面低-19.2米。

C、收入30元与下降2米是具有相反意义的量。

D、一天早晨的气温是-4℃,中午比早晨上升4℃,所以中午的气温是+4℃。 E、收入与支出是具有相反意义的量

F、如果收入增加18元记作+18元,那么-50元表示支出减少50元

5、探究活动四:如果用一个字母表示一个数,那a可能是什么样的数?一定是正数吗?

答:不一定,a可能是正数,可能是负数,也可能是0

五、探索与思考:

1、例1:一个月内,小明体重增加-2kg,小华体重减少-1kg,小强体重无变化,写出他们这个月的体重增长值;

2、例2 -1小的整数如下列这样排列

第一列 第二列 第三列 第四列

-2 -3 -4 -5

-9 -8 -7 -6

-10 -11 -12 -13

-17 -16 -15 -14

... ... ... ...

在上述的这些数中,观察它们的规律,回答数-100将在哪一列.

3、例3

20xx年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家20xx年商品进出口总额的增长率.

思考 :负”与“正”相对,增长-2就是减少2;增长-1,是什么意思?什么情况下增长是0?

六、 应用与提高

1.、有一批食品罐头,标准质量为每听500g,现抽取10听样品进行检测,结果如下表。(单位:g)

质量 497 501 503 498 496 495 500 499 501 505

质量误差分别为:

如果在罐头的标签上注有:“质量:500g ”,则在所抽取的罐头中是否有不合格的?

七 、课堂练习

1、下列说法中正确的个数是()

1)、带正号的数是正数,带负号的数是负数

2)、任意一个正数,前面加上“-”号,就是一个负数

30、0是最小的正数、

4)、大于0的数是正数

5)、字母a既是正数,也是负数

A.0 B.1 C.2. D.3

2.判 断

(1)0是整数( )

(2)自然数一定是整数( )

(3)0一定是正整数( )

(4)整数一定是自然数( )

3.说明下面这些话的意义:

①温度上升+3 ℃ ②温度下降+3 ℃

③收入+4.25元 ④支出—4.2元

4、“小明这次数学考试成绩下降-20分”这句话的意思 是什么?

5.1)向东走+5m,-6m,0m表示的实际意义是什么呢?

(2)某水泥厂计划每月生产水泥1000t ,一月份实际生产了 950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和 负数表示每月超额完成计划的吨数各是多少?

八、课堂小结 :

1. 正数:以前学过的数中,除0外的数叫做正数;如:+5,+0.23, 8818??

2.负数:在正数前面加上“-”号的数叫做负数;如:-5, -0.54, ??

3、 0既不是正数,也不是负数。

4、一个数前面的“+”、“-”号叫做它的符号

5、在同一个问题中,分别用正数与负数表示具有相反 的意义的量.

附板书:

正数和负数

正数> 0 > 负数

+ 既不是正数-

正号 也不是负数 负号

课后反思:

本节课是让学生在现实情境中了解正负数的意义,会用正、负数描述日常生活中相反意义的量。

1、 练习贴近生活实际,促进学生对所学知识的有效应用联系生活实际的练习,如“分析质量问题,温度问题。“调查体重”使学生体会到数学源于生活,又应用于生活,让学生感受到数学的作用,又对数学产生亲切感。

2、这节课可以用信息技术来创设情境,激发学生的学习兴趣。用一个相对完整的事把温度、收入支出和海拔三个关键词串在一起。这样,学生对所学的知识会更有兴趣。

3、这节课还可以借助信息技术来理解相对意义的量。例如:,出示珠穆朗玛峰和吐鲁番盆地的照片,与海平面比,一高一低。这些都是相对意义的量。有了这些形象的照片,就更有利于学生相对意义的量的理解。

4、 融入多种学习方式,促进有效教学的开展

引导学生自主探索学习,给学生充足时间去尝试,交流方法,让学生从不同角度去分析和解决问题,做到学生间的思想沟通,集思广益,寻找答案,解决问题,体现了学生解决数学问题思维的多样化,个性化。另外,在课堂教学中努力做到:师生互动,生生互动,全班交流,共同学习。

5、在本节课的教学中,还存在着诸多不足,比如如何更好地安排时间,将知识落到实处?”“交流时,如何选择个别交流与集体交流?老师的评价怎么才能更到位。”我想这些都是今后我要努力的方向。

正数和负数的课件 篇5

学习目标:

1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。毛

2、数学思考:体会数学符号与对应的思想。

3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。

重点:进一步理解正、负数及零表示的量的意义。

难点:理解负数及零表示的量的意义。

课前准备

卷尺或皮尺

教学流程安排

活动1、复习正、负数 从学生已有的知识出发,为进一步学习做好知识准备。

活动2、活动安排 使学生进入问题情境,加深对负数的理解。

活动3、举例说明 提高解决实际问题的能力。

活动4、巩固练习 掌握正数和负数。

教学过程设计

活动1

1、 给出一组数,请学生说说哪些是正数、负数。

2、 学生举例说明正、负数在实际中的应用。

师生行为及设计意图

通过上一堂课的学习,让一组同学任意给出一组数,另一组同学找出哪些是正数?哪些是负数?正整数?负分数?复习正、负数的定义。

活动2

1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。

2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的部分用负数表示。)

师生行为

1、老师说出指令:向前1步,向后3步,向前-2步,向后-2步。学生按老师的指令表演。

2、各小组派一名同学汇报完成的情况。

设计意图

通过学生的活动,激发学生参与课堂教学的热情,在活动中巩固所学的知识。

活动3

问题展示

1、 一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重的增长值。

2、 20xx年 商品进出口总额比上年的变化情况是:

美国减少6.4%% , 德国增长1.3%,

法国减少2.4% , 英国减少3.5%,

意大利增长0.2 %, 中国增长7.5%,

师生行为及设计意图

在学生已初步掌握新知识的前提下,由问题1 、2提高学生综合解决实际问题的能力。

活动4

1、 P6 练习

2、 总结:这堂课我们学习了那些知识?你能说一说吗?

3、 作业 P7习题1 .1 4、7、8

师生行为及设计意图

教师巡视、指导。学生交流、完成练习。对所学知识的巩固是教学的一个重要环节,这里的练习可以分散进行。

教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。

学生课后巩固、提高、发展。

正数和负数的课件 篇6

正数与负数

【教学目标】

了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数;会用正负数表示生活中常用的具有相反意义的量;培养学生的数学应用意识。

【内容简析】

本节是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践。能正确识别负数、用正负数表示具有相反意义的量是本节的难点。教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点。教学中应多结合实例加深对负数的认识。

【流程设计】

一、情景创设

1.引导学生回忆小学学过的数,并回答小学学过的最小的.数是谁?是否存在比零小的数?在小学遇到0-2、3-5这类题会算吗?

2.你看过电视或听过广播中的天气预报吗?(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25°c,10°c,零下10°c,零下30°c。

为书写方便,将测量气温写成25,10,-10,-30,再如中国地形图上的海拔标注数据8848.13,-155之类的数是什么意思?怎样用数学来区分高出警戒水位1米与低于警戒水位1米呢?

二、新知探索

1.教师由以上实例归纳出正数与负数的描述性概念。

像25,10,8848,大于0的数叫正数;像-10,-30,-155这样在正数前面加上“-”(负号)的数叫做负数;0既不是正数也不是负数。

给出板书:

正数——大于0的数

负数——正数前面加“-”号的数(小于0的数)

0——既不是正数,也不是负数

说明:①负数前面的“-”号的读法,“-5”应读作“负5”;

②正数前面有时也可加上“+”(正)号,如将“5”写成“+5”;

③“0”是第一个自然数,可看作正数与负数的分界点,“0”的内涵很丰富,它不仅仅表示没有,在实际意义中,“0”是用来表示基准的数。

小资料:世界各国对负数的认识和接受也有一个过程。如1484年法国数学家曾得到二次方程的一个负根,但他不承认它,说负数是荒谬的数。1545年卡尔丹承认方程中可以有负根,但认为它是“假数”。直到1831年还有数学家认为负数是“虚构”的,他还特意举了一个“特例”来说明他的观点:“父亲56岁,他儿子29岁,问什么时候父亲的岁数将是儿子的两倍?”,通过列方程解得x= -2,他认为这个结果是荒唐的,他不懂得x= -2正是说明两年前父亲的岁数将是儿子的两倍。

三、范例共做

例1:所有正数组成正数集合,所有负数组成负数集合。把下列各数中的正数和负数分别填在表示正数与负数集合的圈里:

-11,4.8,+7.3,0,-2.7,-8.12

正数集合负数集合

例2:自己任意写出六个正数与六个负数分别填入相应的大括号里:

正数集合{ }

负数集合{ }

注:由于正数和负数都有无数个,在表示正数和负数的集合中常加上省略号。

例3:规定向前走为正,两个学生一组做游戏,如

甲:向前走2步乙:2

甲:向后走3步乙:-3

甲:-4乙:向后走4步

甲:0乙:原地不动

注:通过设计类似的游戏活动使学生加深对负数的认识。

四、巩固练习

1.-10表示支出10元,那么+50表示

如果零上5度记作5°c,那么零下2度记作

如果上升10m记作10m,那么-3m表示;

太平洋中的马里亚纳海沟深达11034米,可记作海拔米(即低于海平面11034米)。

比海平面高50m的地方,它的高度记作海拨;

比海平面低30m的地方,它的高度记作海拨;

2.下面说法正确的是()

a.正数都带有“+”号

b.不带“+”号的数都是负数

c.小学数学中学过的数都可以看作是正数

d.0既不是正数也不是负数

3.数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作。

4.某物体向右运动为正,那么-2m表示,0表示。

5.一种零件的内径尺寸在图纸上是10±0.05(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸。

五、小结提高

1.正数和负数表示的是一对相反意义的量,哪种意义为正是可以任意规定的。如果把一种意义规定为正,则相反意义的量规定为负。常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;

2.正数是比零大的数,正数前面加“-”号的数叫负数。所有负数小于零,零既不是正数也不是负数。

六、课后思考

1.-a一定是负数吗?

2.在月球表面,“白天”的温度可达127°c,太阳落下后的“月夜”气温竟下降到-183°c,请问在月球上温差是多少度?

正数和负数的课件 篇7

第二课时

三维目标

一。知识与技能

进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。

二。过程与方法

经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。

三。情感态度与价值观

鼓励学生积极思考,激发学生学习的兴趣。

教学重、难点与关键

1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的'量。

2.难点:正数、负数概念的综合运用。

3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量。

教具准备

投影仪。

教学过程

四、复习提问课堂引入

1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?

2.如果用正数表示盈利5万元,那么-8千元表示什么?

五、新授

例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

2.20xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率。

分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.

解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.

2.六个国家20xx年商品进出口总额的增长率分别为:

美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.

归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义。

六、巩固练习

1.课本第5页的第8题。

点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多。

2.补充练习。

若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?

解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处。

七、课堂小结

通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量。

八、作业布置

1.课本第5页习题1.1第4、5、6、7题。

九、板书设计

1.1正数和负数

第二课时

1、复习巩固,例题讲解。

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

正数和负数的课件 篇8

襄城一高初中部七年级数学学案(1)

课型:新授课

执笔:张霞

审核:

审批:

班级:

姓名:

1.两件商品都卖84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后().A.赢利元B.亏本3元C.赢利3元D.不赢不亏

2.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.

3、甲、乙两个工程队分别有188人和138人,现需要从两队抽出116人组成第三个队,并使甲、乙两队剩余人数之比为2:1,问应从甲、乙两队各抽出多少人?

4.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

5三位数的数字之和是17,百位上的数字与十位上的数字的和比个位上的数大3,如把百位上的数字与个位上的数字对调,所得的新数比原数大495,求原数.襄城一高初中部七年级数学学案(1)

正数和负数的课件 篇9

一.知识与技能

进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.

二.过程与方法

经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.

三.情感态度与价值观

鼓励学生积极思考,激发学生学习的兴趣.

教学重、难点与关键

1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量.

2.难点:正数、负数概念的综合运用.

3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量.

教具准备

投影仪

教学过程

四、复习提问课堂引入

1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?

2.如果用正数表示盈利5万元,那么-8千元表示什么?

五、新授

例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.

2.20xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率.

分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.

解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.

2.六个国家20xx年商品进出口总额的增长率分别为:

美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.

归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义.

六、巩固练习

1.课本第5页的第8题.

点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多.

2.补充练习.

若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?

解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处.

七、课堂小结

通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量.

八、作业布置

课本第5页习题1.1第4、5、6、7题.

九、板书设计

正数和负数

正数和负数的课件 篇10

第二课时

三维目标

一。知识与技能

进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。

二。过程与方法

经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。

三。情感态度与价值观

鼓励学生积极思考,激发学生学习的兴趣。

教学重、难点与关键

1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量。

2.难点:正数、负数概念的综合运用。

3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量。

教具准备

投影仪。

教学过程

四、复习提问课堂引入

1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?

2.如果用正数表示盈利5万元,那么-8千元表示什么?

五、新授

例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

2.20xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率。

分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.

解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.

2.六个国家20xx年商品进出口总额的增长率分别为:

美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.

归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的.意义。

六、巩固练习

1.课本第5页的第8题。

点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多。

2.补充练习。

若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?

解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处。

七、课堂小结

通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量。

八、作业布置

1.课本第5页习题1.1第4、5、6、7题。

九、板书设计

1.1正数和负数

第二课时

1、复习巩固,例题讲解。

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

正数和负数的课件 篇11

1.1正数和负数 教学设计(一)

一、教学目标

(一)知识与技能:

1.会判断一个数是正数还是负数

2.能用正、负数表示生活中具有相反意义的量

(二)过程与方法:

经历从现实生活中的实例引入负数的过程,体会引入负数的必要性与合理性

(三)情感态度价值观:

感知到数学知识来源于生活并为生活服务。

二、学法引导

1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识。

2.学生学法:研究实际问题→认识负数→负数在实际中的应用。

三、重点、难点、疑点及解决办法

1.重点:会判断正数、负数,运用正负数表示具有相反意义的量。

2.难点:负数的引入。

3.疑点:负数概念的建立。

四、课时安排

2课时

五、教具学具准备

投影仪(电脑)、自制活动胶片、中国地图。

六、教学设计思路

教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈。

七、教学步骤

(一)创设情境,复习导入

师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?

学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……

师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分。

提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?

学生活动:学生们思考,头脑中产生疑问。

【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求。

(二)探索新知,讲授新课

师:为了研究这个问题,我们看两个实例

(出示投影1)用复合胶片翻四次

在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)

学生活动:看图回答10℃,5℃,零下5℃,零下10℃。

[板书]

10 5 -5 -10 师:再看一个例子,中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?

(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形)。

学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-155米表示吐鲁番盆地比海平面低155米。

【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨论后得出答案,充分发挥了学生的主体地位。

教师针对学生回答的情况给与指正。

师:以上实例中出现了-5、-10、-155这样的数,一般地温度比0℃高5℃、10℃、1.6℃、 ℃记作+5、+10、+1.6、 ,大于0的数为正数;当温度比0℃低于5℃、10℃、2.2℃记作-5、-10、-2.2,像这样在正数前面加“-”号叫负数;0既不是正数也不是负数。

师随着叙述给出板书

[板书]

正数:大于0的数

负数:正数前面加“-”号(小于0的数)

0:既不是正数也不是负数。 【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数、负数的概念,学生不仅认识了什么是正数与负数,还清楚地知识,正数与负数是相对的。

(三)尝试反馈,巩固练习

1.师板书后提问:第二个例子中的8848是什么数,-155是什么数,海平面的高度是哪个数?

2.出示1(投影显示)

例1 所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里“

-11,4.8,+7.3,0,-2.7, , , ,-8.12,

3.自己任意写出6个正数与6个负数分别把它填在相应的大括号里。

正数集合 负数集合

4.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________。

(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?

学生活动:1、2题学生回答,3题同桌交换审阅,4题讨论后举手回答。

【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础。

师:在0℃以上的温度用正数表示,0℃以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度.在实际生活中还有一些与温度、海拔高度类似的量也常常用正负数表示,你能列出一些吗?

学生活动:分组讨论,互相补充,两个学生回答。

教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习。

正数和负数的课件 篇12

学习目标:

1.会用正.负数表示具有相反意义的量.

2.通过正.负数学习,培养学生应用数学知识的意识.

3.通过探究,渗透对立统一的辨证思想

学习重点:

用正.负数表示具有相反意义的量

学习难点:

实际问题中的数量关系

教学方法:

讲练相结合

教学过程

一.学前准备

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

问题1:“零”为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明.

参考例子:温度表示中的零上,零下和零度.

二.探究理解解决问题

问题2:(教科书第4页例题)

先引导学生分析,再让学生独立完成

例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率.

解:(1)这个月小明体重增长2kg,小华体重增长—1kg,小强体重增长0kg.

(2)六个国家20xx年商品进出口总额的增长率:

美国—6.4%,德国1.3%,

法国—2.4%,英国—3.5%,

意大利0.2%,中国7.5%.

三.巩固练习

从0表示一个也没有,是正数和负数的分界的角度引导学生理解.

在学生的讨论中简单介绍分类的.数学思想先不要给出有理数的概念.

在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.

通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

四.阅读思考1页

(教科书第8页)用正负数表示加工允许误差.

问题:1.直径为30.032mm和直径为29.97的零件是否合格?

2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.

五.小结

1.本节课你有那些收获?

2.还有没解决的问题吗?

六.应用与拓展

1.必做题:

教科书5页习题4.5.:6.7.8题

2.选做题

1).甲冷库的温度是—12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.

2.)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?

正数和负数的课件 篇13

一、课题引入

为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

二、课题研究

在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

在正数的`前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

三、巩固练习

例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

日期周二周三周四周五

开盘+0.16+0.25+0.78+2.12

收盘-0.23-1.32-0.67-0.65

当日收盘价

试在表中填写周二到周五该股票的收盘价.

思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

Yjs21.coM更多幼师资料延伸读

正数和负数课件经典


完整而深度的“正数和负数课件”信息幼儿教师教育网小编为您推荐这篇文章,想获得更多信息请关注我们的网站。教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。教案是教师教学的有效手段。

正数和负数课件 篇1

一、感受相反方向的数量,经历负数产生的过程。

(1)这些数很特别,都带上了符号,它们是一种“新数”。 -9、-4.5等都叫负数; +7、+988等都叫正数。你会读吗?请你读给大家听。

注意“-”叫负号,“+”叫正号。

(2)读给你的同伴听。

(3)把你新认识的负数再写两个,读一读。

二、借助实际生活情境的直观,丰富对正负数的认识。

1、负数有什么用?

用正数或负数表示下列数量。

(1向东走200米,用+200米表示;那么向西走200米元用 表示。

1、0既不是正数也不是负数。0是正负数的分界。

2、0只表示没有吗?

⑴空罐中的金币数量;

⑵温度中的0℃;

⑶海平面的高度;

⑷标准水位;

⑸身高比较的基准;

0既不是正数,也不是负数;0是正数负数的分界。

0是整数,0是偶数,0是最小的自然数。

1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?

若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。

2、探究活动二:某大楼地面上共有20层,地面下共有5层,若用正数、负数表示这栋楼房每层的楼层号,则地面上的最高层表示为 ,地面下的最低层表示为 ,某人乘电梯从地下最低层升至地上6层,电梯一共运行了 层。

3、探究活动三:用正数和负数表示的相反意义的量,其中正确的是。

A、全球财富500强中对主要零售业的统计,大荣公司年收入为2530万美元下列,利润为-195200万美元,该公司亏损额为195200万美元。

B、如果+9.6表示比海平面高9.6米,那么-19.2米表示比海平面低-19.2米。

C、收入30元与下降2米是具有相反意义的量。

D、一天早晨的气温是-4℃,中午比早晨上升4℃,所以中午的气温是+4℃。

F、如果收入增加18元记作+18元,那么-50元表示支出减少50元

5、探究活动四:如果用一个字母表示一个数,那a可能是什么样的数?一定是正数吗?

1、例1:一个月内,小明体重增加-2kg,小华体重减少-1kg,小强体重无变化,写出他们这个月的体重增长值;

... ... ... ...

在上述的这些数中,观察它们的规律,回答数-100将在哪一列.

下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,

法国减少2.4%, 英国减少3.5%,

意大利增长0.2%, 中国增长7.5%.

写出这些国家20商品进出口总额的增长率.

思考 :

负”与“正”相对,增长-2就是减少2;增长-1,是什么意思?什么情况下增长是0?

有一批食品罐头,标准质量为每听500g,现抽取10听样品进行检测,结果如下表。(单位:g)

质量 497 501 503 498 496 495 500 499 501 505

质量误差分别为:

如果在罐头的标签上注有:“质量:500g ”,则在所抽取的罐头中是否有不合格的?

3.说明下面这些话的意义:

①温度上升+3 ℃ ②温度下降+3 ℃

4、“小明这次数学考试成绩下降-20分”这句话的意思 是什么?

5.(1)向东走+5m,-6m,0m表示的实际意义是什么呢?

950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和

负数表示每月超额完成计划的吨数各是多少?

正数和负数课件 篇2

正数和负数(第1课时)

教学任务分析学习目标:

1、知识技能:了解正数和负数是怎样产生的;知道什么是正数和负数;理解数0表示的量的意义。

2、数学思考:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

3、解决问题:会用师生合作,联系实际,激发学生学好数学的热情。重点:正、负数的意义。难点:负数的意义及0的内涵。课前准备温度计、文具盒教学流程安排

活动流程及活动内容和目的

活动1问题引入通过活动使学生了解数起源于生活。活动2活动安排使学生进入问题情境。从而引出问题。活动3举例说明用更多事例,丰富问题情境。活动4学习负数的概念说明什么是正、负数。活动5负数概念的应用进一步认识正数和负数。活动6负数概念的巩固全面认识正数和负数。教学过程设计活动1

1、请同学们数一数自己的文具盒中共有几支笔。(若干支笔)

2、请一个同学数一数老师手中的文具盒中有几支笔。(没有笔)

3、用一把小刀把一个苹果切成两半,半个苹果怎样用一个数来表示?

4、书P2图自然数的产生、分数的产生师生行为及设计意图

通过活动说明数的产生和发展离不开生活和生产的需要。原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。通过创设情景问题,向学生渗透“实践第一”的辨证唯物主义观点。

正数和负数课件 篇3

教案背景

初中生爱玩、好动,处于形象思维向抽象思维过渡的阶段,过分抽象的问题,学生往往感到乏味而百思不得其解。而多媒体具有形象、直观的特点,利用它为学生构建思维想象的平台,营造良好的学习氛围,充分调动学生学习的积极性、自觉性,用以达到以快乐的形式去追求知识的目的;新课程标准要求:课堂教学要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,内容的呈现应采用不同的表达方式,以满足多样化的学习需求。教学过程中。要加强学生的动手实践、自主探索与合作交流的意识,并着力培养学生解决实际问题的能力。

1.1《正数和负数》教学设计方案

(第1课时)

人教版 九年级数学 上册

山东省滨州市滨城区滨北街道办事处北城中学 耿新华

邮编:256651 联系电话:15865403584

教材分析:

一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册第一章第一节的内容,本节内容主要是学习正数、负数和零的定义、联系。是本章有理数学习的基础。

二、教学目标

知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。

过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。

2.能结合具体情境出现并提出数学问题,并解释结果的合理性。

情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。

三、教学重、难点

重点:体会负数引入的必要性和有理数应用的广泛性, 能应用正负数表示生活中的具有相反的意义的量。

难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。

教学方法:采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念

教学过程

教师在轻松欢快的音乐中演示第一节首图片为主体的多媒体课件。

环节 教师活动 学生活动 设计意图

创设情境导入新课

自主学习

师生互动

合作探究

达标检测

学习总结

教师出示图片说明自然数的产生、分数的产生.接着

出示问题

问题1 天气预报:滨州市冬季某天的温度为-3~3℃,它的确切含义是什么?这一天我市的温差是多少?

问题2 2.xx年我国花生产量比去年增长1.8%油菜产量比去年增长-2.7%,这里的增长-2.7%代表什么意思?

两个问题中的-3、-2.7%是我们以前没有学过的新数,这说明随着生活和劳动的发展我们以前学过的数,已经不够用了,需要引进新的数。来服务我们的生活。从而导入新课

一、出示本节课的学习目标

1、通过生活中实例认识到引入负数的必要性。

2、知道什么是负数,零,正数。

3、会判断一个数是正数?还是负数?

4、能用正数、负数表示实际生活中具有相反意义的量

二、出示本节课的自学提纲

1、.知识点1:正数、负数的概念---------阅读教材第2页,像3、2、0.5、1.8%这样比0大的数叫,根据需要,有时在正数前面加上“+”,如+5, , , ,…。正数前面的“+”,一般省略不写:而像-3、-2、-3.5%这样在正数前面加上“—”号的数叫。如-6, ,…。“-6”读作 。

2、知识点2:对“0”的理解--------阅读教材第2 页

0既不是 数,也不是 数,它是正数与负数的分水岭。它的意义很丰富,它既可以表示“没有”,也可以表示其它特定的意义。

3、知识点3;用正数和负数表示具有相反意义的量--------阅读教材第3页

相反意义的量必须具有两个要素:一是它们的意义 ;二是它们都具有数量,而且一定是 量。

一、指导学生在本组内交流结果,收集每组不会的问题,试着让其他组解决。

二、教师收集全班不会的问题,帮着解决。

做一做:(出示幻灯片)

正数和负数课件 篇4

各位老师、同行,大家好! 今天我说课的课题是 人教版数学七年级上册第一章 1.1正数与负数。 下面 我将从 说教材,说教学目标,说教学重难点,说教法学法,说教学过程五个方面进行今天的说课内容。

正数与负数是七年级数学第一章第一节的内容,属于数与代数领域的知识。本节课是学生学过的自然数与分数的延续和拓展,又是后面研究有理数的基础,因此起到了承上启下的作用。

2.学情分析:

在本节课学习之前,学生在小学已经学习了自然数、分数等,对数已经有了一定的认识。鉴于初一学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。

二、说教学目标:

1.知识与技能目标:理解正负数的概念,会判断一个数是正数还是负数,明确0既不是正数也不是负数。会列举出周围具有相反意义的量,并用正负数表示。

2.过程与方法目标:通过探索负数的形成过程,建立正数与负数的数感,培养想象能力、理论联系实际能力,并渗透“对立统一”,“实践第一”等辩证唯物主义观点。

3.情感态度目标:实际例子的引入,体验数学来源于生活,服务于生活,激发学习兴趣。

三、说教学重难点:

1.重点:理解负数的意义,学会用正负数表示日常生活中具有相反意义的量。

2.难点:理解掌握负数的意义及0的含义, 培养学生的观察、想象,归纳概括的能 力。

四、说教法学法:

1.说教法:采取启发式教学法及情感教学,辅以多媒体教学,增大教学密度。

2.说学法:鼓励学生积极主动地参与到教与学的整个过程。

正数和负数课件 篇5

第二课时

三维目标

一。知识与技能

进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。

二。过程与方法

经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。

三。情感态度与价值观

鼓励学生积极思考,激发学生学习的兴趣。

教学重、难点与关键

1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量。

2.难点:正数、负数概念的综合运用。

3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量。

教具准备

投影仪。

教学过程

四、复习提问课堂引入

1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?

2.如果用正数表示盈利5万元,那么-8千元表示什么?

五、新授

例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

2.20xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率。

分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.

解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.

2.六个国家20xx年商品进出口总额的增长率分别为:

美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.

归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的.意义。

六、巩固练习

1.课本第5页的第8题。

点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多。

2.补充练习。

若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?

解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处。

七、课堂小结

通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量。

八、作业布置

1.课本第5页习题1.1第4、5、6、7题。

九、板书设计

1.1正数和负数

第二课时

1、复习巩固,例题讲解。

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

正数和负数课件 篇6

第二课时

三维目标

一。知识与技能

进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。

二。过程与方法

经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。

三。情感态度与价值观

鼓励学生积极思考,激发学生学习的兴趣。

教学重、难点与关键

1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的'量。

2.难点:正数、负数概念的综合运用。

3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量。

教具准备

投影仪。

教学过程

四、复习提问课堂引入

1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?

2.如果用正数表示盈利5万元,那么-8千元表示什么?

五、新授

例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

2.20xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率。

分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.

解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.

2.六个国家20xx年商品进出口总额的增长率分别为:

美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.

归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义。

六、巩固练习

1.课本第5页的第8题。

点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多。

2.补充练习。

若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?

解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处。

七、课堂小结

通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量。

八、作业布置

1.课本第5页习题1.1第4、5、6、7题。

九、板书设计

1.1正数和负数

第二课时

1、复习巩固,例题讲解。

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

正数和负数课件 篇7

《正数与负数》是在学生对温度有一定的认识,对负数有了初步感知的基础上进行教学的。下面我将确定教学目标。

教学本节课内容主要是让学生知道什么是正数和负数,它们是怎样产生的,数0表示着怎样的意义及能初步会用正、负数表示具有相反意义的量。

因为授课的对象是初中七年级的学生,他们对数学有了一定的概念,但因每个学生接受知识的能力不同,我将本节课的教学目标分为三类:

①认知目标:在熟悉的生活情景中,了解负数的意义,学会用正、负数表示日常生活中具有相反意义的量,会正确地读、写负数。

②能力目标:感受正、负数和生活的密切联系,享受创造性学习的乐趣。

③情感目标:通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想。

本着新课标,在吃透教材的基础上,我确立了如下的教学重点、难点。

①教学重点:了解负数的意义,学会用正、负数表示日常生活中具有相反意义的量。

学生刚刚升初中,基础不一,为了能让学生都吸收本节课的知识,我采取了以下教法与学法

1、教学方法:

在本节课的讲解中,我采用了讲授法与发现法,主要包括以下方法:情境创设法:通过情境创设,引起学生注意,激发学生的学习兴趣。案例分析法:通过对实例的分析,帮助学生更好地理解所学内容。

2、学习方法:自主探究法:研究实际问题→认识负数→负数在实际中的应用

根据本节课教学内容及数学的学科特点,结合学生的认知水平,我设计了如下教学流程:

下面进行详细阐述:

p首先展示一张标有气温的地图,同时说“同学们有没有看过天气预报呢?”学生回答后,教师就接着说,“那你们看看这张地图上的数字,它们有着怎样的区别呢?”让学生通过观察去发现其特点,根据学生的回答,我及时提出:“那你们知道它表示什么意义吗?”观察学生的反应,引入本节课所要讲解的课题。p此环节的设计目的是创设美好的学习情景,调动学生的积极性,使学生在情境中主动、积极的接受学习任务,激发学生的学习兴趣,让学生带着问题去学习,这样就可以为后面的教学做好铺垫。

在创设了情境,明确了学习任务后,根据学生的特点及本课的重点难点,教师从学生原有的认知结构出发,主要从以下方式进行讲解:从旧经验中引导新学习。首先提出问题:“大家知道,数学与数是分不开的,它是一门研究数的学问,现在我们一起来回忆一下,小学里已经学过哪些类型的数?”然后让学生思考讨论,互相补充回答。接着,教师指出:小学里学过的数可以分为三类:自然数(正整数)分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。

日常生活中,为了表示一个人、两只手,我们用到整数1,2;为了表示一半的事物,我们经常用1/2;为了更能准确的读取尺子上的数值,我们经常要用到小数;当什么都没有的时候,我们总是用0来表示。但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数来表示的。像零下温度、低于海平面某地的海拔高度等等,我们如何去表示呢?某市某一天的最高温度是零上5℃,最低温度是零下5℃要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚,可它们是具有相反意义的两个量,那我们又如何去区别它们呢?接着再进行课本内容讲解;

此环节的设计目的不仅可以让学生巩固旧知识,同时也引导他们发现在所学过的知识中,没有找到相关的知识来回答我所提出的问题,这样就进一步激发他们的学习兴趣,使得课堂在一个在一个积极、主动、愉快的氛围中进行

设计意图:及时掌握学生的学习情况,肯定答对的同学,纠正错误的同学下面是详细的阐述:

学生在明确了教学任务,掌握了一定的基本知识之后,就有一种跃跃欲试的欲望,这时教师应把握时机让学生独立练习,而在学生练习的同时,教师巡回指导,及时掌握学生的学习情况,最后提问一两个同学,肯定他们的能力及纠正其存在的错误,这样学得好的学生感觉自己的能力得到肯定,会更加的努力,同时可以让那些自学能力差的学生及时的学到新知识,不至于掉队。

课堂小结:教师与学生共同回顾本节课的知识要点,帮助学生巩固所学知识。

详细阐述:在这一阶段,教师可以用“这节课,我学会了……”、“通过这堂课的学习,我会做……了”这样的形式来让学生总结,学生一边说教师一边纠正或提示学生,并且显示相应的内容以课件形式展示出来。

为了检验和促进每个学生是否达到预期的目标,发现教学中的问题,对学生的学习效果进行总结是必须的,也是有效的。目的在于加深学生对知识的记忆、理解,使知识成为一个体系。

拓展练习:布置有点难度的作业,培养学生自主探究及知识迁移的能力。详细阐述:

在本节课讲授结束后,我将给学生布置与本节课相关的较有难度的作业,让学生在自我独立完成作业的同时,巩固了所学的知识,也可以从中发挥他们的自主创新能力以及独立思考问题思维。

上面是我对《七年级数学》的这一小节的授课方式,最后,我对本节课进行预测,总结如下:

1、通过情境创设,可以引起学生注意,激发学生的学习兴趣;

2、在新课讲授过程中,使用讲授法和发现法,让学生了解负数的意义,学会用正、负数表示日常生活中具有相反意义的量,会正确地读、写负数;感受正、负数和生活的密切联系,享受创造性学习的乐趣;通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想;

3、让同学们独立完成练习,意在加深同学们对本课内容的理解和掌握他们的学习情况;

4、最后小结及布置作业,让学生掌握本课所学知识,并培养学生的独立思考能力。

正数和负数课件 篇8

教学目标:

1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

:“零”为什么既不是正数也不是负数呢?

学生思考讨论,借助举例说明.

参考例子:用正数、负数和零表示零上温度、零下温度和零度.

思考 “0”在实际问题中有什么意义?

归纳 “0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家这一年商品进出口总额的增长率.

解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.

1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

2.让学生再举出一些常见的具有相反意义的量.

3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

中国减少866,印度增长72,

韩国减少130,新西兰增长434,

泰国减少3247, 孟加拉减少88.

(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

(2)如何表示森林面积减少量,所得结果与增长量有什么关系?

(3)哪个国家森林面积减少最多?

(4)通过对这些数据的分析,你想到了什么?

(课本P6)用正数和负数表示加工允许误差.

问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?

2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是 .

2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

类比例题,要求学生注意书写格式,体会正负数的应用.

2.能把给出的有理数按要求分类.

3.了解0在有理数分类中的作用.

讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

议一议 你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

说明 我们把所有的这些数统称为有理数.

试一试 你能对以上各种类型的数作出一张分类表吗?

做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

把所有正数组成的集合,叫做正数集合.

试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

【例1】 把下列各数填入相应的集合内:

,3.1416,0,,- ,-0.23456,10%,10.1,0.67,-89

【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?

由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

(2)分数集合{};

(3)负分数集合{ };

(4)非负数集合{ };

(5)有理数集合{ }.

3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

教学目标:

1.掌握数轴三要素,能正确画出数轴.

2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.

师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.

【点拨】(1)引导学生学会画数轴.

第二步:规定从原点向右的方向为正(左边为负方向).

第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.

对比思考 原点相当于什么;正方向与什么一致;单位长度又是什么?

(2)有了以上基础,我们可以来试着定义数轴:

规定了原点、正方向和单位长度的直线叫数轴.

做一做 学生自己练习画出数轴.

试一试 你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?

讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?

小结 整数在数轴上都能找到点表示吗?分数呢?

可见,所有的 都可以用数轴上的点表示; 都在原点的左边, 都在原点的右边.

【例1】 下列所画数轴对不对?如果不对,指出错在哪里?

【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.

【例3】下列语句:

①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有( )

【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数.

【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为cm的线段AB,则线段AB盖住的整点有( )

数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.

1.规定了 、 、的直线叫做数轴,所有的有理数都可从用上的点来表示.

2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .

3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是( )

5.数轴上表示5和-5的点离开原点的距离是 ,但它们分别表示 .

6.与原点距离为3.5个单位长度的点有2个,它们分别是 和 .

7.画出一条数轴,并把下列数表示在数轴上:

+2,-3,0.5,0,-4.5,4,3.

8.在数轴上与-1相距3个单位长度的点有 个,为 ;长为3个单位长度的木条放在数轴上,最多能覆盖 个整数点.

教学目标:

1.借助数轴了解相反数的概念,知道互为相反数的位置关系.

2.给一个数,能求出它的相反数.

活动 请一个学生到讲台前面对大家,向前走5步,向后走5步.

交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?

1.观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出.

想一想 (1)上述各对数有什么特点?

(2)表示这四对数的点在数轴上有什么特点?

(3)你能够写出具有上述特点的n组数吗?

观察 像这样只有符号不同的两个数叫相反数.

互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.

总结 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.

2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.

(1)-5.8是 的相反数, 的相反数是-(+3),a的相反数是 ;a-b的相反数是 ,0的相反数是 .

(2)正数的相反数是 ,负数的相反数是 , 的相反数是它本身.

①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.

【例3】 化简下列各符号:

(1)-; (2)+{-};

(3)-{-{-…-(-6)}…}(共n个负号).

【归纳】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.

【例4】 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?

【归纳】 (1)相反数的概念及表示方法.

(2)相反数的代数意义和几何意义.

2.分别写出下列各数的相反数,并把它们在数轴上表示出来.

5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是 .

6.若a与a-2互为相反数,则a的相反数是 .

7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“

正数和负数课件 篇9

教学目标:

1、在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题和现象。

2、在具体的情境中,认、读、写负数,同时渗透“对应”和“集合”的数学思想。

3、培养学生获取信息,并进行分析的意识和能力。

4、进行德育渗透,培养学生科学精神和民族自豪感。

教学重点:

了解负数的意义和负数在生活中的应用。

教学难点:

理解负数的意义。

教学用具:

电脑课件、实物投影仪、温度计。

教学过程:

一、创设情境,导入新知。

同学们,这节课老师和你们一起上数学,数学和什么打交道最多?数学课离不开数,数与我们的日常生活联系得也非常密切。(边说边板书:数数)下面老师要说些数据,请你们认真听,当一名小记录员,看谁能经过思考,将老师所说的数据信息,用你喜欢的方式准确地记录下来。能开始吗?

1、中国队参加足球比赛,上半场进了2个球,下半场输了2个球。

2、寒假开学,我校四年级转进学生7人,五年级转出学生3人。

3、小刚的妈妈卖服装,今年三月份赚了900元,四月份赔了100元。

二、探讨交流,感知新知。

(一)交流记录的数据信息,初步感受正数和负数是表示相反意义的两个量。

1、展示同学们的记录单(随机进行)

根据同学们的记录情况,启发同学进行分析,相互之间交流看法。

谁写完了,举起来让我看看(教师桌间巡视,收集相关信息。)

足球比赛

转学情况

账目结算

上半场2四年级7三月份900下半场

2五年级3四月份100

刚才老师收集了几个同学的记录单,请你们看看,有什么想法?(不能准确地表达老师所说的意思)

看来用我们已有的知识,来记录一些数据,有时候是说明不了问题的。刚才老师说的这些信息进球和输球;转进和转出;赚和赔都是相对应的。(渗透对应的数学思想)表示相反意义的两个量。这张记录单,只把数据记了下来,没有说明情况。请看这张记录单,你觉得怎样?(请学生们交流看法)

足球比赛

转学情况

账目结算

上半场进2个四年级进7人三月份900下半场输2个五年级出3人四月份100

这位同学能把前两条信息准确的记录下来,用的是什么方法?(汉字)这种方法怎么样?(麻烦)

还有不同的记录方法吗?(请同学进一步交流自己的想法,教师分别展示学生不同的记录方法。)

2、小结:你用的符号意思你明白,他用的符号意思他明白,那我们要想让大家都明白,就应该用共同的符号。(视课堂学习的情况而定,如果有用“+”、“-”就来展示一下,让同学们了解。)

3、统一记录的方法和形式看,咱们同学还有用这种方法记录的:

足球比赛

转学情况

账目结算

上半场+2四年级+7三月份+900下半场-2五年级-3四月份-100

谁说说用这种方法记录好在哪儿?(能准确表达老师要说的意思,简单)

小结:这种记录方法中所用的这两个符号“+”、“-”是数学符号,(教师边说边板书:+、-)。数学符号是数学的语言,是帮助大家进行交流的。以前我们见过它,想想在哪儿见得最多?现在它们可有新的名字啦,我们管它“+”叫正号(师边说边板书:正号),跟我读:正号。它“-”叫负号(板书:负号)读:负号,人们在数学中就用这种符号来区别意义相反的量。

(二)认识正数和负数,读、写正、负数。

1、认、读正、负数。

像记录单中这个数+2,我们就读正2(板书:+2)跟我读:正2;它“-2”,读作:负2(板书:-2)跟我读:负2。

用刚才的方法,谁能读出后面的4个数?(指名读,随着生读师板书:+7,-3,+900,-100)

小结:刚才我们用正号和负号能清楚地记录数学信息,从中我们也认识了正数和负数(师板书:正、负)。

练一练:谁能说出几个正数和负数,说的完吗?正、负数是无穷多的。(渗透集合思想)用一个符号表示……(师同时板书)

课件出示:-100,+68,-1.5,+,-,36

请同学们开火车读,其他同学判断。

讨论36是什么数,介绍为了简便起见,正号可以省略不写。

猜猜看,36是正数还是负数?

告诉你,像这样的数是正数,为了简便起见,正号可以省略。同学们想一想,负号可不可以省略,为什么?(区分不开)

在学生充分发表自己的意见后,教师归纳:为了正确的.区分正数和负数,负号不能省略,正号可以省略。我们已经初步的认识了正数和负数,下面老师考考大家,行吗?

2、写数,认识“0”

课件出示练习

做完后同学交流结果。

谁想把你做的结果跟大家交流一下。(学生说,教师同时用课件演示。)

重点讨论“0”的问题,让学生初步感知大于0的数是正数,小于0的数是负数,0既不是正数,也不是负数。

3、介绍负数的历史

通过以上的学习,大家已经认识了负数这个新朋友,其实对负数的认识,我们祖国有着悠久的历史,古代人在很早以前就想出了用不同方法记录正数和负数,大家想知道吗?请看大屏幕。

⑴、出示课件,请同学读上面的信息,其他同学思考:你从中知道了什么?

听了他们的介绍,你们想说些什么吗?

⑵、学生谈感受

使学生了解我国在很早以前就有使用负数的历史,从而培养学生的科学精神和民族自豪感。(进行德育渗透)

(三)寻找生活中的负数,进一步理解负数的意义。

1、从天气预报入手,感知负数的意义。

负数在我们生活中有很多的应用。请看大屏幕,这是20xx年11月3日北京市气温分布图。

出示课件:找同学读一读。

谁能读出上面的气温?

区别-1℃和1℃所表示的意义,感知0是正、负数的分界点。

这个气温分布图上,有这样两个温度:-1℃和1℃,谁能说说它们有什么不同?为什么?(-1℃是零下,1℃是零上)(-1℃比1℃要冷)

小结:在通常情况下,把水结冰的温度定为0℃,把水沸腾时的温度定为100℃,100℃在0℃以上,可用正数表示,0℃以下的温度可用负数表示。由此可见,0℃很关键。

2、在温度计上找温度,体会水银柱越往上升温度越高,水银柱下降温度降低,0℃以上为正数,0℃以下为负数。

把你的温度计准备好,请你在温度计上表示出10摄氏度。(展示同学们的温度计,有两种可能,一种是10℃,另一种是-10℃)从温度计中更能看出0℃的重要性了。

(四)用直线上的点表示正、负数,并总结规律。

正数和负数还可以用直线上的点表示。(边说边演示)请看大屏幕,直线上有无数个点,我们选择其中的一个点为0点,每小格代表单位1,如果我要写正数,在0的哪边写?还可以写好些,正数都在0的右边,那0的左边就是(负数了)。

负数正数

越来越大

-3 -2 -1 0 1 2 3

越来越小

请你观察这个图,从左向右看,你发现了什么?(从左向右数越来越大)还可以从哪边看?你又发现了什么规律?(从右向左数越来越小)从这个图中你能看出0是什么数吗?(板书:0)(0既不是正数,也不是负数)0和正、负数之间有怎样的关系?(0小于所有的正数,大于所有的负数)可以用这个符号“<”把它们连接起来吗?(同时板书:“<”)

三、走进生活,巩固新知。

负数在我们的生活中随处可见。

1、电梯中的负数(出示课件)

下面请同学看大屏幕,叔叔应该按哪个键?阿姨应该按哪个键?

2、存折上的负数。

3、方向问题(出示课件)

我们继续往下看,默读题目,谁读懂了,谁能填空?

4、课本p73例4(出示课件)

请看这幅图,我们以海平面为分界线,图中高于海平面有两点,低于海平面有哪几点?用正、负数读出图中的数据。

5、刘翔跨栏的画面(出示课件)

认识他吗?请你默读信息,思考当时赛场风速每秒-0.4米是什么意思?谁能解释一下?

四、归纳总结,质疑问难。

可见,正、负数在我们的生活中应用得很广泛,以后大家千万要留心身边的生活,在我们的日常生活中,处处都有要学的数学知识。

时间过得真快,马上就要下课了,你们过得高兴吗?说说有什么收获?

看着你们举起的手,大家都有所收获。

哪儿不明白?

我们不仅学会了知识,还学会了思考问题。下节课我们一起讨论解决大家提出的问题。

五、留心生活,完成作业。

作业:1、完成自主丛书p43 1、2、3题;

2、课后思考:还有哪些事物可以用正、负数来表示。

板书:

负数<0<正数

-2+2+正号

-3+7-负号

-100+900

正数和负数课件 篇10

《1.1正数和负数》教学设计

教学目标

1. 通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量(规定了向指定方向变化的量);

2. 进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;

3. 激发学生学习数学的兴趣.

[教学重点与难点]

重点:深化对正负数概念的理解.

难点:正确理解和表示向指定方向变化的量

《1.1正数和负数》同步练习

1、下列说法正确的是( )

A、零 是正数不是负数 B、零既不是正数也不是负数

C、零既是正数也是负数 D、不是正数的数一定是负数,不是负数的数一定是正数

2、向东行进-30米表示的意义是( )

A、向东行进30米 B、向东行进-30米

C、向西行进30米 D、向西行进-30米

3、零上13℃记作 +13℃,零下2℃可记作( )

A、2 B、-2 C、2℃ D、-2℃

4、某市20 15年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高 气温比 最低气温高( )

A、-10℃ B、-6℃ C、6℃ D、10℃

5、 中,正数有 ,负数有 .

6、如 果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作 m,

水位不升不降时水位变化记作 m.

7、在同一个问题中,分别用正数与负数表示的量具有 的意义.

8、甲、乙两人同时从A地出发, 如果向南走48m,记作+48m,则乙向北走32m,记为 ,

这时甲乙 两人相距 m. .

9、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适.

10、2015年我国全年平均降水量比 上年减少24㎜,2014年比上年增长8㎜,2013年比上年减少20㎜。用正数和负数表示这三年我国全年平均降水量比上年的增长量.

11、如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么 意思?这时物体离它两次移动前的位置多 远?

12、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表 示90分,正数表示超过90分,则五名 同学的平均成绩为多少分?

13、某地一天中午12时的气温是7℃,过5小时气温下降了4℃ ,又过7小时气温又下降了4℃,第二天0时的气温是多少?

《1.1正数和负数》同步练习含答案

19.体育课上,对初三(1)班的学生进行了仰卧起坐的测试,以能做28个为标准,超过的次数用正数来表示,不足的次数用负数来表示,其中10名 女学生成绩如下:1、4、0、8、6、8、0、6、-5、-1.

(1)这10名女生的达标率为多少?

(2)没达标的同学做了几个仰卧起坐?

解:(1)这10名女生的达标率为8÷10 ×100%=80%.

(2)没达标的同学做仰卧起坐的个数分别是23个和27个.

正数和负数课件 篇11

1.1.1正数和负数

教学目的:

(一)知识点目标:

1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好?

内容:老师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前两步,向后一步;

向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1.自然数的产生、分数的产生。

2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)

-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材p5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。

巩固提高:练习:课本p5练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本p7习题1.1的第1、2、4、5题。

活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

课后反思

1.1.2正数和负数

教学目的:

(一)知识点目标:

1.了解正数和负数在实际生活中的应用。

2.深刻理解正数和负数是反映客观世界中具有相反意义的理。

3.进一步理解0的特殊意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。

2.熟练地用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:能用正、负数表示具有相反意义的量。

教学难点:进一步理解负数、数0表示的量的意义。

教学方法:小组合作、师生互动。

教学过程:

创设问题情境,引入新课:分小组派代表,注意数学语言规范。

1.认真想一想,你能用学过的知识解决下列问题吗?

某零件的直径在图纸上注明是,单位是毫米,这样标注表示零件直径的标准尺寸是()毫米,加工要求直径最大可以是()毫米,最小可以是()毫米。

2.下列说法中正确的()

A、带有“一”的数是负数;B、0℃表示没有温度;

C、0既可以看作是正数,也可以看作是负数。

D、0既不是正数,也不是负数。

[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。

讲授新课:

例1.仔细找一找,找了具有相反意义的量:

甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。

例2(1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;

(2)xx年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,

英国减少3.5%,意大利增长0.2%,中国增长7.5%。

写出这些国家xx年商品进出口总额的增长率。

例3.下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?

例4.小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?

复习巩固:练习:课本p6练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本p7习题1.1的第3、6、7、8题。

活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?

2023负数课件


幼儿教师教育网的编辑为您整理的“负数课件”将会让您开阔眼界。教师工作的一项重要任务是编写教案和课件,当然教案和课件的内容必须非常完善。规范撰写教案对于推进教育教学工作具有重要意义。只有不断进步,才能拥有更美好的未来!

负数课件(篇1)

教学内容:

义务教育课程标准实验教科书三年级下册第99页例1和做一做,练习二十三第1、4题。

教学目标:

1.使学生理解连乘问题的数量关系,明确解决问题的思路,会用不同的方法解决连乘问题。感受解决问题策略的多样化。

2.培养学生从不同角度观察问题和解决问题的能力。

3.体验数学在生活中的应用价值,感受数学与生活的密切联系,激发学生学数学、用数学的兴趣。

1. 谈话导入:大家刚参加完学校的大课间检查,三年1班的同学都表现得很好。

2. 复习迁移:

我们班在大课间中分组活动,每组5个同学,分了9组,共有多少个同学参与?怎么算?

师:操场上同学们正在认真训练,体育老师打算按图这样安排,同学们算算要多少人?提出问题“3个方阵一共有多少人?”

⑵ 让学生独立收集数学信息。

小结:我们都是观察同样一个方阵,可以从这样一行一行来看,知道了每行有10人,有这样的8行。也可以这样一列一列来看,知道了每列有8人,有这样的10列。

⑶ 整理数学信息,分析数量关系。明确先求1个方阵有多少人,再求3个方阵一共有多少人。

要求:3个方阵一共有多少人?你应该怎样思考?请同位同学互相说一说。

我们抓住每行有10人,有8行这2个数学信息可以先求出1个方阵有多少人?

这是一行一行的观察,我们还可以一列一列的看能不能根据这两个信息每列有8人,有10列要求3个方阵一共有多少人,你该怎样想呢?

不管用哪种方法,我们都是先求1个方阵的人数。还可以写成综合算式。

2、探寻其他解决问题策略。

不同的策略:1.先求:3个方阵的一大行一共有多少人,再求8行一共有多少人。

2.先求:3个方阵的一列一共有多少人,再求10列一共有多少人。

例1的小结:同一个问题从不同的角度去观察去思考,得出解决问题的不同策略,结果却是一样的。今天我们运用所学的数学知识来解决问题。

⑴ 出示题目。

⑵ 让学生独立思考,解决问题。

⑵ 让学生独立思考,解决问题。

⑶ 分小组交流。每个学生说说自己是怎样想的。重点让学生从不同角度观察问题和解决问题。

⑷ 全班反馈解决该问题的思路与方法。

⑵ 让学生审题,独立思考解决问题的方法。

⑶ 给出三个算式,由学生选择出正确算式并表述出解决问题 的思路,重点理解“来回”的含义。

五、拓展练习:第一步,先请同学了解一节数学课的上课时间,一个星期在校几天?如果一个学期按20周计算,同学们在学校待多少分钟?合多少小时?第二步,根据自己计算出来的结果,你有什么感想?记录下来。第三层次是学生在生活中现实问题,极大地调动了学生的积极性,同时,本题又是一道开放题,所有的信息都需要学生自己去寻找,给学生的思维带来了极大的挑战性,很好地培养了学生搜集、处理信息的能力。

教学反思:

1、 收集和整理信息,形成数学思考。

新教材的解决问题,其题材更贴近学生的实际生活,用图画、对话、表格等形式呈现现实的生活场景。这一节课的例1既是一幅情境图,又是一道应用题。例1的图呈现给学生一幅广播操表演的情境图。小精灵明明提出“3个方阵一共有多少人?”的问题。教学时要引导学生进入情境、了解情境,从情境中明确要解决的问题,收集解决问题的必要信息。这一步要求学生仔细地看,充分的讲,观察同一个方阵既可以横着看找到的信息有“每行有10人,有8行”,又可以竖着看找到的信息有“每列有8人,有10列”。从不同的角度观察收集和整理信息,让学生形成数学思考。

2、 分析数量关系,构思解决问题的思路。

应用题教学的目的不仅仅在于找到问题的答案,更重要的在于通过解决实际问题学会思考,体会问题里的数量关系,要突出数量关系的分析,帮助学生形成解题思路。我们用不同的数量关系解决问题的方法不同。如:抓住“每行有10人,有8行”这两个信息就可以先求出1个方阵的人数,再求3个方阵的人数。还能抓住“每列有8人,有10列”这两个信息也可以先求出1个方阵的人数,再求3个方阵的人数。分析数量之间的不同组合的关系,就形成了解决问题的策略不同。如:抓住“每行有10人,3个方阵”这两个信息可以先求出3个方阵一大行一共有多少人,再求8行一共有多少人。这里解决问题的策略就有所不同了。

3、 正确选择算法,独立解决问题。

根据解题思路仔细准确地选择相关的条件,正确的选择算法。

这节课我觉得我可能是急进了点,应该先让学生先从“行”去观察进行列式计算,让后进生理解后再进行“列”的观察从多角度去解决问题可能这样会更好些。而且因为这样导致学生的练习还不够充分。

负数课件(篇2)

为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

对于数的发展(也即数的扩充),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与

5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是意义相反的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数负数.

我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个+号,比如在5的前面添加一个+号就成了+5,把 +5称为一个正数,读作正5.

在正数的前面添加一个-号,比如在5的前面添加一个-号,就成了-5,所有按这种形式构成的数统称为负数.-5读作负5,-5000读作负5000.

于是收入5000元可以记作5000元,也可以记作+5000元,同时支出5000元就可以记作-5000元了.这样具有相反意义的两个数量就有了不同的表达方式.

利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些具有相反意义的量.再如,某个机器零件的实际尺寸比设计尺寸大0.5 mm就可以表示成0.5mm,或+0.5mm;如果另一个机器零件的实际尺寸比设计尺寸小0.5 mm,那么就可以表示成-0.5 mm了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作+2,把乙队的净胜球数记作-2.

借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地硬造出来的一种新数.

例1 博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

思路分析:收入与支出是一对具有相反意义的量,可以用正数或负数来表示.一般来说,把收入4800元 记作+4800元,而把与之具有相反意义的量支出1600元记作-1600元.

特别提醒:通常具有增加、上升、零上、海平面以上、盈余、上涨、超出等意义的数量,都用正数来表示;而与之相对的、具有减少、下降、零下、海平面以下、亏损、下跌、不足等意义的数量则用负数来表示.

再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

例2 周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表: 单位:元

试在表中填写周二到周五该股票的收盘价.

思路分析:以周二为例,表中数据+0.16所表示的实际意义是周二该股票的开盘价比周一的收盘价高出了0.16元;而表中数据-0.23则表示周二该股票收盘时的收盘价比当天的开盘价降低了0.23元.

因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

例3 甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

试计算甲、乙、丙三个队各自的总净胜球数.

思路分析:由表中数据可知:甲队主场以3∶2赢乙队,甲队有1个净胜球;甲队客场又以3∶2赢乙队,又增加了1个净胜球.甲队与乙队的两场比赛中甲队净胜球的总数为2.

甲队与丙队的两场球,甲主场以2∶2与丙队握手言和,甲队净胜球数为0;甲客场以1∶3负给了丙队,这场球甲队的净胜球数为-2.甲队与丙队的两场比赛中甲队净胜球数为-2.

总之,甲队与乙队两场比赛的净胜球数为2,与丙队的两场比赛净胜球数为-2;这样甲队总净胜球数为零. 相信同学们根据上面的分析,自己也能说出乙队总净胜球数为1,丙队总净胜球数为-1.老师可以让学生来试试说说看.

特别提醒:股票的涨跌、球赛的胜负都是当今日常生活中经常遇到的实际问题,作为当代中学生应该主动去接触或了解一些与之相关的实际问题,以丰富学生的生活阅历.同时也充分说明数学本身就是生活的一部分,要尽可能地调动学生的积极性,把我们所学的数学用到实际生活中去.

例4 春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用合适的方法来表示这条河流河水的变化情况.

思路分析:从上面的叙述可见河水的水位是先上涨了,随后又下降了,水位最终又回到了原来的位置.也就是说最终水位的改变量是零,或者说水位的总变化量是零.

与最初的水位相比先上涨的15cm,可以记作+15cm,而随后又下降了15cm,可以记作-15cm,这样水位又回到了原来最初的位置, 水位的总变化量是零,即这个变化量为(+15cm )+(-15cm )= 0cm.

特别提醒:在表示具有相反意义的量时,如果某个量经两次或多次变化后又回到了最初状态,就可以用0来表示总变化量;或者说这个量的最终变化量是零.

对于初一的学生来说,零的内涵极其丰富,因此需要特别关注,在以后讨论有理数的相反数、绝对值、有理数的运算时,需要提醒学生重视零的一些性质,并关注零在这些概念或运算中所扮演的角色.

培养良好的阅读习惯和提高阅读能力,是数学教学过程中需要引起重视的一个重要方面.教学中,我们发现学生绝对不会做的题目很少,但由于没有把问题看懂而造成的不会做的题目却相对较多.一旦老师帮助学生把问题弄明白是怎么一回事之后,学生往往都会说这题其实不难,我也会做,只是没有认真读题罢了.

怎样才能在尽可能短的时间内让学生有效获取题目呈现给我们的信息,做高效的阅读者?这是需要教师认真考虑的问题。教师对阅读习惯的培养和阅读能力的提高应该投入充足时间,而且一定要持之以恒.

教科书是学生学习时最重要的学习材料,但是很多学生却把教科书放到一边,到处去购买一些价值并不高的参考资料,不认真去挖掘教科书蕴含的丰富营养.这些做法或倾向也是需要教师有意识地去调整的,如果教师能从一开始就引导学生有意识地、自觉地养成阅读教科书的好习惯,养成认真阅读数学问题的好习惯,那么学生理解能力的提高、学习能力的提升都会受益非浅.

负数课件(篇3)

教学目标:

1.通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

2.利用正负数正确表示相反意义的量(规定了指定方向变化的量)

3.进一步体验正负数在生产生活实际中的广泛应用,提高解决

实际问题的能力,激发学习数学的兴趣。

教学重点:深化对正负数概念的理解

教学难点:正确理解和表示向指定方向变化的量

教学流程安排

活动流程图活动内容和目的

活动1创设情景,引入新课

活动2揭示规律

活动3知识应用

活动4布置作业及小结通过复习回顾正负数的知识导入新课.

利用温度中的零度来解释与理解数“0”的意义。正负数表示相反意义的量。

通过生活实例理解正负数表示相反意义的量,及零的分界意义

回顾梳理知识,,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。.

教学过程设计

问题与情境师生行为设计意图

[活动1]

复习回顾

正负数的概念

问题1:

有没有一种既不是正数又不是负数的数呢?

问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?师生一起回顾:

上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃

和-5℃,这里+7℃和-5℃就分别称为正数和负数.

那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数·

把0以外的数分为正数和负数,起源于表示两种相反意义的量.“数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.

[活动2]

问题3:教科书第6页例题

展示老师的存折

—1000表示什么意思+1500表示什么意思?

例题6

在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0)。通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。珠穆朗玛峰的海拔高度为8848米,它表示的什么含义?吐鲁番盆地的海拔高度为–155米。它表示什么含义?

例题7

记录帐目时,通常用正数表示收入款额,负数表示支出款额。则收入50元可记为多少元?支出23元可记为多少元?

对两道例题进行分析说明

说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

类似的例子很多,如:

水位上升-3m,实际表示什么意思呢?

收人增加-10%,实际表示什么意思呢?

负数课件(篇4)

教学内容:

六年级下册第2~4页例1、例2。

教学目标:

1.引导学生在生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感。

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向左看(向右看)②向前走200米(向后走200米)③电梯上升8层(下降8层)。(4)李大叔今天挣了500元(亏了500元)(5)知识抢答中,我得了20分(扣了20分)(6)今天温度零上10摄式度(零下10摄式度)……你能举出一些这样的例子吗?

(1)引入实例。

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进神秘数学王国,我们一起来看几个例子(小黑板出示)。

① 六年(2)班上学期转来3人,本学期转走2人。

② 放心商店,二月份盈利3000元,三月份亏损1200元。

③ 与标准体重比,小明重了3千克,小华轻了1千克。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

怎样用数学方式来表示这些相反意义的量呢?试着写出表示方法。

(1)引入正、负数。

谈话:刚才,有同学在3的前面写上“+”表示转来3人,添上“-”表示转走2人(板书:+3-2),这种表示方法和数学上是完全一致的。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+3”是一个正数,读作:正六。我们可以在3的前面加上“+”,也可以省略不写(板书:3)。其实,过去我们认识的很多数都是正数。

请你用正、负数来表示出其它几组相反意义的量。

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

① 同桌交流。

② 全班交流。根据学生发言板书。

强调:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”

(1)看一看、读一读。

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(小黑板出示)。

我们来看首都北京当天的温度,“-5℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5℃又表示什么?

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

2.你知道吗:水沸腾时的温度是____。水结冰时的温度是____。地球表面的最低温度是。

学生交流收获。

负数课件(篇5)

设计说明

本课时是在学生学会用负数表示零下温度的基础上进行教学的。本节课的教学在设计上关注以下几个方面:

1.游戏激趣,寓教于乐。

有人曾研究,当左右脑兴奋达到协调时,脑电波出现同步现象,此时人们会感到心情愉快,头脑清醒,学习效率高。小学生尤其是低年级学生年龄小,在课堂上易于疲劳,注意力容易分散。结合儿童的这种特点,用游戏这种儿童喜闻乐见的形式,可以调节他们的精神状态,唤起学习兴趣,使他们左右脑处于兴奋的同步状态,保持旺盛的求知欲望,这样可取得最佳学习效果。本设计通过游戏互动,使学生初步感知相反意义的量的含义;在游戏中为学生创设氛围,让学生在愉悦的情绪中走进新知的探究环节。

2.借助经验,丰富认识。

教师在教学中应以学生生活中的教学资源为载体,唤醒学生的生活经验,环环紧扣,为学生创设积极主动的学习探究活动,学生的主体地位才能得以充分体现,从而激发学生的学习兴趣,提高学生分析问题、解决问题的能力和创新意识。本教学设计结合学生熟悉的生活情境,通过丰富的实例来唤起学生已有的生活经验,使学生在尝试、展示、交流中逐渐加深对负数的认识,理解负数的出现是生活中表示两种相反意义的量的`需要。

课前准备

教师准备PPT课件

学生准备收集生活中有关正负数的数据

教学过程

⊙创设情境

1.游戏激趣。

师:今天我们一起来做一个“说反话”的游戏。请同学们用最快的速度说出与下面的内容或意义相反的词或句。

(课件出示相关词、句,并结合回答出示答案)

(1)左(右)前(后)高(低)

(2)零上10℃(零下10℃)

(3)向东走40米(向西走40米)

(4)比赛赢两场(比赛输两场)

(5)存款5000元(取款5000元)

2.谈话导入。

(1)“存款5000元”和“取款5000元”都能用5000元表示吗?为什么?(不能,因为存款和取款的意思是完全相反的)

(2)怎样表示“存款5000元”和“取款5000元”这类具有相反意义的量呢?今天我们就一起来学习正负数。(板书课题)

设计意图:通过“说反话”游戏,激发学生的学习热情,使学生在快乐的游戏中初步感受到把相反的词语和具体的数量结合起来就成了一组具有相反意义的量,为学生学习新知扫除障碍。

⊙探究新知

1.结合温度,回顾对正负数的认识。

(1)如何表示零上10℃?

(零上10℃表示为10℃或+10℃)

(2)0℃表示没有温度吗?(不是,0℃是零上温度和零下温度的分界点)

生活中,除温度外,还有其他事物会用到像“+10”“-10”这样的数据吗?下面就让我们一起来看一看。

2.结合相关实例,理解正负数的意义。

(1)了解用正负数表示事物的范围。

(课件出示教材86页4幅情境图)

①从这几个情境中你获得了哪些信息?说一说每个情境中信息的具体意义。

②学生小组内讨论,交流,明确:“+8844.43米”表示比海平面高的高度;“-155米”表示低于海平面的高度。“+10分”表示答对了得10分,而“-10分”表示答错了非但不得分,还要从总分中去掉10分;16900元、15200元表示赢利16900元、15200元,“-127元”表示不仅没有赢利,而且亏损127元。

(2)了解正负号表示的实际意义。

①讨论:结合情境图中的实例,说一说每个数前面的“+”或“-”表示的意义。

②学生小组内讨论、交流、全班汇报。

③归纳:在生活中我们习惯用一种数(正数)表示增加、升高、收入、赢利等量,习惯用另一种数(负数)表示减少、降低、支出、亏损等量。“+”和“-”表示的是意义相反的量。

负数课件(篇6)

教学内容分析

本节课是在学生学过认识万以内的数认识小数、分数的基础上学习的。为六年级进一步认识正负数打下基础。

教材安排的正负数认识,主要以学生生活中比较熟悉的实例为素材,从中进行抽象概括。在前面认识温度的基础上,可以进一步拓展负数的表示范围。通过两个相反意义的量让学生去感知和研究,从中抽象出负数的概念,并指导学生读写。

教学目标分析

教学目标共分三部分:一是在熟悉的生活情境中,进一步体会负数的意义,二是会用负数表示一些日常生活中的问题,三是会读写负数。这三个目标体现了知识与技能,方法与过程,及情感态度价值观三维目标的综合。其中,用负数表示一些日常生活中的问题是这节课的重点,体会负数的意义是本节课的难点。

学生和教学方法分析

刚进入中年级段的学生,无论是课堂教学,还是课后的练习,均应选择学生熟悉的情境。贴近学生的生活实际的情境,这样更能激发学生的学习兴趣,小组比赛贯穿整节课,让学生感到学习知识的过程是很快乐的。我还用多媒体课件准备了小练习,激发他们继续学习的热情。

教具准备分析:

这节课的多媒体课件是在教材内容的基础上进行的情境创设,包含“购物中心”、“营业状况”、“银行存折”三个环节,和练一练,其中,“购物中心大楼”是根据课本的山峰海拔改编而来,用地下一层用负数表示,更贴近学生的生活实际,这样更能激发学生的学习兴趣,“练一练”这题我还专门设置小演示,能帮助老师和学生突破难点,加深学生的印象。

教学过程分析

一、创设情境,谈话导入

先问当天的天气,因为本节课学习时,通常已进入冬季,当天最低温度应该在0度以下,这样既复习了旧知,又为情境的创设埋下伏笔。创设一个学生跟笑笑和家长同行去购物的情境,主要为正负数的学习引路。把学生分成甲乙两组比赛,答对加10分,答错扣10分。也跟本节课知识联系在一起,而且用比赛的方式更能吸引学生很快进入课堂。

二、进入情境,探索新知

1、课件显示购物中心的大楼,

(1)提出问题:这是一幢7层的大楼,女装在3楼,记作“3楼”,你知道超市所在的楼层是怎么作标记的吗?

“对于超市所在的楼层是怎么作标记”这个问题,学生如果平时注意观察,可以根据日常生活讨论回答。

(2)对学生可能出现的“-1楼”“负一楼”。两种回答,教师都应肯定,此时,正好可以引出“-1”读作“负一”。

(3)为学生避免学生产生疑问,小结时要告诉学生在写数时,正数前面的“+”可以不写。

2、进入营业状况

(1)学生观察助民超市3个月的经营情况表,讨论:

3月份盈利16900元,4月份-127元表示什么?5月份的15200元呢?

(2)通过讨论对比,学生很容易得出:-127表示亏损127元。15200表示赚了15200元。

(3)让学生明白:利润如果是正数,表示盈利(或赚了),利润如果是负数,则表示亏损(或赔了),

3、看银行存折

笑笑和妈妈买东西钱不够,学生讨论:如果取出200元,存折上会有怎样的变化?

探究:存折上的正负数的含义是什么?

反馈小结:收入(存钱)用正数表示,支出(取钱)用负数表示。

三、巩固练习

(1)小结一下各组的得分,答对道题,记作,答错道题,记作这样做一方面调动学生的积极性,另一方面也让学生把答对答错的记分与本节课所学的正负数有机地联系起来。

(2)课件出示:“练一练”。让学生明白,第1和第3小题,要填的数表示方向和数值,数前应有正负号,而第2题方向指明,最后一空只需填数,不要正负号。第3小题可能有些困难,可以适时进行课件演示。

四、课堂总结

今天我们不仅跟随笑笑和妈妈去逛了购物中心,还明白了负数在不同的情境中有不同的含义:负数可以表示地下的楼层,可以表示存折上支取的金额,可以表示亏损,还可以表示规定方向的反方向……

五.作业

看课本,哪些情况下也可以用正负数来表示。由于本节课并不是完全按课本进行的讲述,课本内容也可作为本节课的检测内容。

板书设计

板书时,我把黑板分为两部分,左边记正数表示的量,右边记用负数表示生活中的量,还特别写上的负数的读法。同一种事物写在一排,便于横向和纵向的对比总结。

把甲乙两组的得分情况也板书在黑板上,这些课本上虽然没有,但却是学生生活中常接触到的,而且跟本节课所学内容是有同样意义的。

负数课件(篇7)

1、知识技能:了解正数与负数是实际生活需要的,会判断一个数是正数还是负数,会初步应用正负数来表示相反意义的量。

2、数学思考:通过正负数的教学,培养数感,渗透对立、统一的辩证思想。

3、问题解决:通过正数、负数的学习,培养学生应用数学知识解决实际问题的能力。

4、情感态度:从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活,应用于生活。提高学习数学的兴趣。

在现实情境中初步认识负数的意义;用正负数描述生活中的一些简单的具有相反意义的量。

1.情景引入。

①1路公共汽车在昆山宾馆站上来2位乘客,到亭林站下去2位乘客。

②本学期咱们五年级转来25名新同学,转走16名同学。

+2、-2前面的+叫做正号、-叫做负号,正号和负号与以前学的加减号写法相同,但表示的意义却有所区别。今天我们就来学习用正数和负数表示意思相反的量。二、沟通联系,再识正负数

(1)情景呈现。

师:五(2)班的孩子,刚在外面上完一节体育课,外面可真热呀!(课件出示32℃温度计),下课后他们喜滋滋地吃起了冷饮(出示0℃),这些冷饮是工人叔叔从冰库里搬出来的(出示温度-23℃)

(2)师:这三种温度各是多少?根据刚才的学习,可以怎样表示这些温度?

小结:要找准0℃,它正好是零上温度和零下温度的.分界点。零上温度可以用正数表示,零下温度可用负数表示。

2.归纳正数、负数和0的关系。

师:瞧,黑板上有这么多正数、负数朋友了,谁来把他们分一分?

归纳:正数都大于0,负数都小于0.0既不是正数,也不是负数(完成板书:负数正数)。

1.读两个海拔高度,请同学们互相读一读。

2.读温度,先自己读一读,你们会把这些温度从高排到低吗?

(2)刘翔在美国尤金精英赛中,110米栏的成绩是13.23秒,当时赛场风速为每秒-0.4米。

如果风速是+0.4米,你认为比赛的成绩会怎样?

2.多媒体介绍负数的产生史。

教材分析:负数是在学生已经认识了自然数、并初步认识了分数和小数的基础上,结合熟悉的生活情景,来初步认识负数。学习这部分内容,可以拓展学生的数概念,培养数感,也有助于培养学生的应用意识,提高学生运用数学认识世界和解决实际问题的能力。教材是根据学生已有的生活经验,选用气温和温度计这两个熟悉的情境,意在让学生感受负数与生活之间的联系,并没有复杂的概念与计算,知识层次比较浅。

负数课件(篇8)

地位和作用:

负数的相关知识,是过去小学数学老教材里没有的内容。

新教材增选负数的知识

有两个目的:

一、负数在日常生活中的应用比较多,学生在生活中经常看到负数,甚至使用负数。

二、适量知道一些负数的知识,扩展对整数的认识范围,能更好地理解自然数的意义,为进入初中的学习作了基本的铺垫。

这部分内容是在学生系统地认识自然数、小数和分数的基础上进行教学的。通过负数的认识,使学生明白“数”不仅包括正的,还有负的,从而使学生对数的概念形成一个完善、系统的知识结构,为今后进一步学习有理数意义的运算打下基础。

教学内容:

小学阶段只要求学生初步认识负数,能在具体的情境中理解负数,初步建立负数的概念,会描述、辨认正负数,不出现负数数学定义。有关数轴的认识,只是让学生能在数轴上表示出正数、0和负数所对应的点。关于数的大小比较,只要能借助数轴来比较就可以。

基于以上分析,确定教学目标如下:

1、结合熟悉的生活情境,理解负数、正数、零的意义及三者间的大小关系,并会正确的认、读、写。

2、借助熟悉的现实情境,使学生经历数学化、符号化的过程,体会负数产生的必要性与合理性;学会用正负数描述现实生活中具有相反方向的量;

3、初步认识数轴,在数轴上感受数序,渗透“数形结合”的数学思想。

教学重点和难点

教学重点:理解运用正负数表示具有相反意义的量。

教学难点:理解0既不是正数也不是负数,并能对三者初步进行大小比较。

易错点:

1、认读温度计和比较零下温度的高低。首先,借助多媒体课件“化静为动”的优势,学生清楚地看到了温度计上酒精柱的变化过程,再通过引导学生观察酒精柱所处的高低位置,引发了学生对温度进行比较的思考,也为接下来的两个零下温度的比较奠定了必要的知识基础。

最后概括出:两个零下温度的比较,负号后面的数越大,温度反而越低。

2、认识数轴也是易错点。利用温度计教具的优势,将温度计横着放,告诉学生这就像一条数轴,中间是0,让学生说出负数在0的哪边,正数在0的哪边。这样,学生能形象的通过温度计教具,深刻地理解正数、0、负数三者之间的关系。

负数课件(篇9)

1、知识技能:了解正数与负数是实际生活需要的,会判断一个数是正数还是负数,会初步应用正负数来表示相反意义的量。

2、数学思考:通过正负数的教学,培养数感,渗透对立、统一的辩证思想。

3、问题解决:通过正数、负数的学习,培养学生应用数学知识解决实际问题的能力。

4、情感态度:从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活,应用于生活。提高学习数学的兴趣。

在现实情境中初步认识负数的意义;用正负数描述生活中的一些简单的具有相反意义的量。

1.情景引入。

①1路公共汽车在昆山宾馆站上来2位乘客,到亭林站下去2位乘客。

②本学期咱们五年级转来25名新同学,转走16名同学。

【设计意图:以现实生活素材为教学切入口,创设一种具体的生活情境展开教学,凸现数学知识源于生活的理念。同时,在记录数据的过程中,让学生因为需要而思考,因为思考而创造。】

+2、-2前面的+叫做正号、-叫做负号,正号和负号与以前学的加减号写法相同,但表示的意义却有所区别。今天我们就来学习用正数和负数表示意思相反的量。二、沟通联系,再识正负数

(1)情景呈现。

师:五(2)班的孩子,刚在外面上完一节体育课,外面可真热呀!(课件出示32℃温度计),下课后他们喜滋滋地吃起了冷饮(出示0℃),这些冷饮是工人叔叔从冰库里搬出来的(出示温度-23℃)

【设计意图:利用信息技术资源丰富、时效性强的特点,改变教材中提供冬天气温的例题,使学生的学习内容更加丰富多彩】

(2)师:这三种温度各是多少?根据刚才的学习,可以怎样表示这些温度?

小结:要找准0℃,它正好是零上温度和零下温度的.分界点。零上温度可以用正数表示,零下温度可用负数表示。

【设计意图:让学生先读数,再说说读数后的感受,培养了学生的数感。】

2.归纳正数、负数和0的关系。

师:瞧,黑板上有这么多正数、负数朋友了,谁来把他们分一分?

归纳:正数都大于0,负数都小于0.0既不是正数,也不是负数(完成板书:负数正数)。

1.读两个海拔高度,请同学们互相读一读。

2.读温度,先自己读一读,你们会把这些温度从高排到低吗?

【设计意图:充分挖掘习题功能,在展示学生个性化表达的同时,巧妙地运用信息化环境,引出正数和负数的对应关系,体会正数和负数时无限的】

(2)刘翔在美国尤金精英赛中,110米栏的成绩是13.23秒,当时赛场风速为每秒-0.4米。

如果风速是+0.4米,你认为比赛的成绩会怎样?

2.多媒体介绍负数的产生史。

【设计意图:把数学知识从课外移入课内,开阔了学生的视野,丰富了课余知识】

教材分析:负数是在学生已经认识了自然数、并初步认识了分数和小数的基础上,结合熟悉的生活情景,来初步认识负数。学习这部分内容,可以拓展学生的数概念,培养数感,也有助于培养学生的应用意识,提高学生运用数学认识世界和解决实际问题的能力。教材是根据学生已有的生活经验,选用气温和温度计这两个熟悉的情境,意在让学生感受负数与生活之间的联系,并没有复杂的概念与计算,知识层次比较浅。

负数的课件6篇


居安思危,思则有备,有备无患。幼儿园教师在平时的学习工作中,都会提前准备很多资料。资料是作用于人类社会实践的一种可供参考的材料。参考资料我们接下来的学习工作才会更加好!所以,您有没有了解过幼师资料的种类呢?为此,你可能需要看看“负数的课件6篇”,更多相关信息请继续关注本网站。

负数的课件 篇1

[设计理念]:

《数学课程标准》指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课重在让学生在自主探究、合作交流学习过程中去发现、感悟正、负数的秘密和魅力,体验学习数学的乐趣,感受到学习数学知识的价值。

[教学内容]: 北师大课程标准试验教科书第七册第89----90页。

[教材分析]:

很久以来,负数的教学一直安排在中学教学的起始阶段,现在考虑到负数在生活中的广泛应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的生活基础。因此《数学课程标准》安排在小学的第二学段初步认识负数,这是小学阶段数学教学新增加的内容。本节内容意在让学生在熟悉的生活情境中初步认识负数,感受学习的内容就在我们的身边,拓展对数概念的认识。了解负数的意义,会用负数表示一些日常生活中的问题,为第三学段进一步理解有理数的意义和运算打下良好的基础。

[学情分析]:

“负数”这一概念虽然是第一次出现且比较抽象,但学生对此并不是一无所知。本班学生对于正、负数已经有了一定的生活经验。能结合生活情境初步了解负数的意义,基本能读、写负数。

[教学目标]:

1、知识与技能:在熟悉的生活情境中,了解负数的意义,学会用正、负数表示日常生活中具有相反意义的量;会正确地读、写负数。

2、过程与方法:使学生在熟悉的生活情境中,以自主探究、自主合作、自主评价等自我学习方式,让学生在交流中进一步完善对数的认识。经历数学化、符号化的过程,体会负数产生的必要性。

3、情感、态度和价值观:让学生感受正、负数和生活的密切联系,享受自主性、创造性学习的乐趣。

[教学重点]:了解正、负数的意义,应用正、负数表示生活中具有相反意义的量。

[教学难点]:了解负数的意义及0的内涵。

[教学方式]自主探究、合作分享。

[教、学准备]:师:卡片,小黑板

生:课前自主预习并收集生活中正、负数的数学信息。

[教学过程]:

一、利用旧知,创设情境,自探新知(让学生初步自主探究并分享正、负数的秘密)

1、回忆前面所学内容温度计绘制数轴

师:同学们,我们昨天学习、了解了温度,在温度的学习中我们知道了0是什么?

生:0是零上温度和零下温度的分界点。

师:那么零上温度和零下温度是怎么记录的?请举例(同时老师在黑板上画一条直线,把学生举的例子在线上表示)

生1:零上9度记作+9℃,零下5度记作—5℃。

生2:零上3度记作+3℃,零下8度记作—8℃。

......

师:零上温度和零下温度表示的是一组什么样的量?(借助数轴)

生:是一组相反意义的量

2、明确概念,了解正、负数的读法和写法。

师:0左边的数和右边的数还有其他的读法吗?

生1:左边的数读加几,右边的读减几(自定向)

生2:不对,应该读正几,负几。

追问:为什么读作正几、负几。

生1:我是在自学过程中发现的。

生2:我是在在昨天回家汇报学习情况时,妈妈告诉我的。

(师顺势讲解:加号和减号和过去的意义不同,加号叫做正号,减号叫做负号。)

〈 板书:+:正号 — :负号〉

师:大家一起来读一读。(+9,+3,—5,—8)

师:像左边这样的数我们叫做什么?(正数)〈左边板书:正数〉

像右边这样的数我们叫什么?(负数)〈右边板书:负数〉

〈师板书名称:正数 负数〉

师:那么0呢?

生:0既不是正数,也不是负数;

师:那么0是正、负数的。

生齐答:分界点。

追问:我们以前学习的0表示什么?

生1:表示没有。

生2:表示起点。

练习:

抢答:《卡片》+6.8、—1.5、+56、—100是正数还是负数。

抢读:《卡片》—12、12;+36、36

3、自主探究,发现交流正、负数的秘密。

(1)师:同学们请仔细观察这条数轴,然后小组内交流你发现了什么?

〈留足时间让学生自主在数轴上去发现:正数、负数也是表示相反意义的量;正数、负数是无限的;所有的正数比0大,所有的负数比0小;正、负数大小的比较〉

生:独立观察、思考后交流各自的发现。(教师走进学生倾听学生的发现)

(2)汇报交流内容

师:下面请各小组交流你们的精彩发现。

生1:我们组发现了正数有无穷多个、负数是也一样;

生2:我们组发现了正数比0大,负数比0小。

生3:我们组发现了越往左边的正数越大,越往右边的负数越小。

师:引导学生小结《适当板书》

同学们发现了正负数中这么多的秘密:0既不是。(正数),也不是。(负数);正数、负数是。(无限的);所有的正数比0...(大),所有的负数比0...(小);正、负数大小的比较。

(3)巩固练习《小黑板出示》

1、填空

(1)比0大的数用( )表示,比0小的数用( )表示。

(2)0既不是( )数,也不是( )数。

2、判断

(1)+0为正数,—0为负数。 ( )

(2)8读作负八。 ( )

(3)+15可以写作15。 ( )

(4)—2,—5,—10,—100,都是负数。( )

(5)0表示什么也没有,0比负数小。 ( )

(6)+5和—5表示的意思是不一样。 ( )

3、在○里填上“>”“

0○—3 0○—6 —3○—2

8○—80 9○—9 +7○7

二、结合生活、交流分享、运用新知(让学生分享正、负数在生活中的广泛运用。)

师:那负数在生活中有什么应用呢?请把你课前收集到的信息进行最简洁的记录并交流。

1、整理自己收集到的信息

2、小组交流

3、全班交流

生1:我找到的是股市行情:星期一是2236.41点,星期二2201.51点,跌了34.9点,星期三是2216.81点,涨了15.3点。我把跌了34.9点记作-34.9点,把涨了15.3点记作+15.3点。

生2:我爸爸单位9月15日买了20个灯泡,这几天用坏了6个灯泡。记录成爸爸单位9月15日+20个,这几天—6个。

生3:我听写时写对了5个,写错了5个。记录成听写时,+5个,—5个。

生4:我在妈妈的工资本上发现每月5号好发1560元,妈妈每次取钱后工资本上记录的是—200、—100

......

师:同学们表现真出色,收集了这么的信息,原来在生活中有许多事情我们都在运用正负数作记录。这样做有什么好处。

生1:可以节约记录时间。

生2:可以让别人快速明白。

师:对,省时、省力。老师也收集了些信息想与大家一起分享。请完成小黑板上的内容:

1、电梯中的正、负数。

叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?

2、海拔高度中的正、负数。

珠穆朗玛峰比海平面高出8844.43米,记作“+8844.43米”;

吐鲁番盆地比海平面低155米,记作_____米。

3、方向中的正负数。

下图中,每个小格代表1米,小华开始的位置在0处。

(1)小华从0点向东行5米,表示为+5,那么从0点向西行3米,表示为( )米;(2)如果小华的位置是7米,说明他是向( )行( )米。(3)如果小华的位置是-8米,说明他是向( )行( )米。

4、运动中的正负数

刘翔在第十届世界田径锦标赛半决赛中,110米栏的成绩是13.42秒,当时赛场风速为每秒-0.4米。(1)小组讨论:风速怎么还有负的?(2)反馈并组织学生进行简要表演。

三、课堂小结:

在今天的课堂上,我们只是初步的认识了正、负数,〈板书课题:正负数〉其实负数在我们生活中还有着广泛的应用。希望同学们能用数学的眼光观察生活、走进生活,去发现更多更有趣的知识。

负数的课件 篇2

借助丰富的生活资源,提升数学的应用价值第七册《生活中的负数》课堂教学实录及评析

执教:中国人民大学附属小学 金立文

评析:海淀区教师进修学校 束春华

教学内容:北师大版教材四年级上册第84-86页《生活中的负数》。

教学目标:1.结合生活情境了解负数的意义,学会用正负数表示日常生活中具有相反意义的量;会正确读写负数。

2.结合具体情境使学生感受符号的简洁及使用负数的优越性。

3.切身感受负数在生活中的应用。结合负数史料引发学生的民族自豪感。

教学重点:了解正负数的意义,应用正负数表示生活中具有相反意义的量。

教学难点:了解负数的意义及对0的再认识。

教学过程:

活动一:创设情境,记录数据,体会负数产生的必要性。

谈话:我们在日常生活中经常要记录数据,老师这儿有两组数据,请同学们来记录。我们记录数据要准确、简捷、快速。第一组数据:小红的妈妈正在减肥,九月份体重减掉4千克,十月份又反弹了2千克。第二组数据:蓝猫商店,九月份盈利5万元,十月份亏损1万元。(学生填表写下表)

生1:我记录成减掉4千克,反弹2千克;盈利5万元,亏损1万元。

师:有没有比他记录的还要简单的?

生2:我记录成减4千克,增4千克;盈5万元,亏1万元。

师:还有更简单的记录方法吗?

生3:我记录成4千克,2千克;5万元,1万元。

师:请你们来评价一下这种方法,先说优点再说不足。

生4:优点是思路上想简单但分不清是增加的还是减少的了。

师:那怎么办呢?

生:可以添上增加或减少。

生:可以记成↓4千克,↑2千克。↑表示增加,↓表示减少。

生:我记录盈亏和他的方法一样。

师:这种符号很简捷。

生:我记录成:(笑脸)4千克,(哭脸)2千克。

师:真有意思。

生:我记录成:-4千克,+2千克;+5万元,-1万元。

师:谁能评价一下这种记录方法?

生:简捷明了。

师:这种记录方法创造性地用到了负数。减4千克可以读成负4千克,加2千克可以读成正2千克。+5万元、-1万元又可以怎么读呢?

生:正5万元、负1万元。

【教师反思:根据课堂实际生成的结果粗略统计,使用“+”、“-”的约占20%;使用“↓”、“↑”的约占10%;使用其它符号的约占10%;写成“盈利5万元”、“亏损1万元”的约占40%;写成“盈5万元”、“亏1万元”的约占10%;还有约10%的学生写成了:5万元、1万元。从这组数据来看应该说预期的目的达到了,大部分学生在动脑筋想办法力求使自己记录的形式简捷明了。另外,从学生的情感来看,他们对数据本身的内容也很感兴趣,因为这些事就发生在他们的身边。】

【点评:创设记录数据这一情境,呈现了学生的原认知状态。活动要求:记录数据时要准确、简捷、快速,这个活动的目的性强,有思考的价值,也易于操作,所以通过尝试,学生逐渐体会到了数学符号的优越——简捷明了。同时也让学生经历了一种数学化的再创造的过程:由繁到简、由文字叙述到符号表达,充分感悟了负数产生的必要性。】

活动二:①介绍有关负数的史料。

师:同学们,最早使用负数的国家是咱们中国。

(屏幕显示:中国是世界上最早认识和应用负数的国家。早在两千多年前的《九章算术》中,就有正数和负数的记载。在古代人民生活中以收入为正,以支付的钱为负。在粮食生产中,以产量增加为正,以产量减少为负。古代的人们为区别正、负数,常用红色的算筹表示正,黑色的算筹表示负。而西方国家认识正、负数则要迟于中国数百年。)

【教师反思:此环节的设计意图是了解关于负数的史料,增强民族自豪感。如果增加一些有关负数史料的图片要比只看文字介绍效果好。】

②回忆自己见过的负数。

师:负数一直延用至今,请你说一说你在哪见过负数?

生1:每天的天气预报中,零下的温度就用负数表示。

师:老师正好收集了这方面的资料,请大家来看一看。(播放2005年3月8日中央台预报长春、哈尔滨、沈阳的天气预报)

生2:我还在电梯里见过,地下一层用-1表示。

生3:我还在计算器上见过。

师:(出示计算器)请你来演示一下。

生:拨出7-9=-2

师:(出示存折)谁能说一说-600是什么意思吗?

生4:表示从银行取出600元。

师:那+2000元表示什么呢?

生5:存入2000元。

【教师反思:预设学生会说出很多,如:天气预报中用负数、计算器中有负数、电梯、股市、存折、账单上、冰箱中、玩电脑游戏的计分……从现场教学来看,大多数学生对天气预报用到负数、计算器中会有负数是比较熟悉的,对其它方面了解得比较少。】

【点评:激活学生的已有生活经验并对这些零散的知识进行梳理,适时引导与点拨,恰到好处。】

③读出温度计上的温度。

师:下面我们就从天气预报入手,深入研究负数。(屏幕显示:有关上海、南京、北京的景物图片,每个图片旁有温度计显示当天的温度。)谁能从温度计上读出上海的温度?

生1:零上2摄氏度。

生2:不对,应该是零上4摄氏度。

师:谁能说清楚到底是零上2摄氏度是零上4摄氏度。

生:温度计上看:从0度到10度平均分成了5份,每份是2度,第2格就应该是4摄氏度。

师:你很善于观察。我也推荐给大家一个验证的方法,假定这是2摄氏度,顺着往上数2、4、6、8,10度反而成8度了,说明2度是错的,4度是对的。

师:南京多少度呢?

生:0摄氏度。

师:北京呢?

生:零下4摄氏度。

师:零摄氏度可以记作:0℃,零上4摄氏度可以记作:+4℃或4℃。那么零下4摄氏度可以记作什么呢?(写在纸上)

生:-4℃。

师:“-”这个符号表示什么?

生:表示的是零下的温度。

师:+4℃、-4℃表示的是同一个温度吗?

生:不是,+4℃是零上的温度,-4℃是零下的温度。

【教师反思:结合天气预报中的温度,了解负数的意义。学生在生活中都见过温度计,但多数同学不能熟练认读温度计。所以,简单介绍温度计时是很必要的。预设学生会把老师出示的温度计上的一格误认为是1℃,这时引起学生的争论从而明确一格表示2℃。在此,老师又介绍了一种方法来证明一格是2℃,目的是渗透多角度思维的意识。】

④比较两个负数的大小。

师:(屏幕出示同一地点不同时间的景象:同一个小孩在甲图中穿的是薄的衣服,显示-5℃;在乙图中穿的是羽绒服,显示-20℃)请你说一说图中显示的温度谁高谁低?

生:负5摄氏度比负20摄氏度高或者说负20摄氏度比负5摄氏度低。

师:为什么呢?

生:可以通过图上的景色判断:甲图无雪,乙图有雪。甲图上小孩穿的是薄衣服,以图上小孩穿的是厚衣服。

师:还可以用当时的温度计上的温度来验证。(温度计显示-5℃和-20℃)

生:对,-5℃的红色水柱高,-20℃的红色水柱低。

【点评:在具体情境中比较两个负数的大小有实际意义。学生刚刚接触负数,所以必须在具体的情境中比较负数的大小,避免过早地研究抽象的数学概念;同时培养学生仔细观察周围事物,多角度思考问题的意识。】

⑤在温度计上拨出温度的变化。

师:我们国家有一个地方在同一天里温差很大,你们知道是哪里吗?

生:不知道。

师:(出示图片)新疆吐鲁番地区在九月份,早晨的气温在0℃以下,中午的气温可以升到40℃以上。请你们在温度计上拨出这个温度变化。

生:独立动手拨温度计。

师:请一个同学到前边为大家演示一下你拨的过程,请其他同学配合温度变化做出动作或用语言描述出温度的变化。

(学生操作及配合语言动作)

师:从温度计来看,越热说明度数越高,越冷说明什么呢?

生:度数低。

师:北京某一天白天的最高气温5℃,夜晚最低降至-5℃。请你在温度计上拨出这个温度变化。

(学生操作)

师:你能知道5℃和-5℃相差多少度吗?

生:10℃。

师:你是怎么知道的?

生1:从温度计上一格一格数出来的。

生2:5℃比0度高5度,-5℃比0度低5度,2个5度正好是10度。

【教师反思:从现场教学来看预设的效果达到了,学生确实看到正负5距0刻度都是5个格,感受的到两个相反数的位置关系。】

【点评:在具体情境中感受正负数的大小变化。每个学生都来拨温度计,激发他们学习的兴趣,并用语言活动作表示出冷暖,让他们切身感受到负数大小的变化,在具体情境中充分感知相反数和两个温度之间的差。】

⑥用正负数表示海拔高度。

师:刚才吐鲁番的温度变化与它的地理特征有关系。(出示图片)如果把海平面定为零,吐鲁番比海平面低155米利用正负数的知识可以怎么记?珠穆朗玛峰比海平面高8844.43米又可以记作什么呢?请你读出来。

生:负155米,正8844.43米。

师:你能把说的记录在纸上吗?

(学生记录)

【点评:学会用正负数表示海拔高度并记录下来这样做可以把基础知识学习和基本技能的训练落到实处。】

⑦分类,界定正负数和零。

师:把-155米、+8844.43米、5℃、-5℃、+2千克、-4千克的单位名称去掉,这些数怎么分类吗?

生:-155、-5、-4是负数类; +8844.43、+5、+2是正数类。

师:(师板书:正数负数)-9、+2.3、0、99、0、-129、0分别是正数还是负数?请你把它们贴到黑板的相应位置(-9、+2.3、0、99、0、-129、0分别写在纸上,课前发给了7位学生)。你若认为说不清楚的,就贴在说不清的下面(是贴上写有说不清的纸条)。

(学生活动后把写有-9、-129的纸条贴到负数的位置,把写有+2.3、99的纸条贴到正数的位置,三个人都把写有0的纸条贴到了说不清的位置。)

生1:(急切地说)0可以是正数也可以是负数。

生2:0即不是正数也不是负数。

师:(顺势)在黑板上点上一点,这一点表示0的位置,这一点不包括正数和负数,你说的是这个意思吗?

生:是。

生:0是分界点,它比负数大但比正数小。

师:(顺势)把负数、0、正数用小于号连接。你能结合温度计或海拔高度说一说你的理由吗?

生:温度计上0以上是0上的温度,0以下是零下的温度,0即不是零上的也不是零下的,所以0单独是一类。

生:海平面看作0,海平面以上是正数,海平面以下是负数,0是标准,所以它单独是一类。

师:你们答得太精彩了。

【教师反思:把数量去掉单位名称并分类是本节课的难点,所以设计了这个分类的活动。从现场教学来看,对于0的认识这个难点抓得很准,而且用这种形式处理也很好地突破了难点。尤其让学生结合温度计和海拔高度来说一说对0的认识,使教学落在了实处而不是“虚晃一枪”。】

【点评:营造学生的认知冲突,引起争论深化认识和理解过程,培养了学生的分析问题能力和抽象概括能力。】

⑧在数轴上认识正负数。

师:淘气有问题要请教你们了。他把温度计横着来看,以0℃为界,哪边的温度可以用正数表示?哪边的温度可以用负数表示呢?

生:0右边的温度可以用正数表示,0左边的温度可以用负数表示。

师:让温度计继续变化,它就变成了以后我们要深入学习的数轴了。(指数轴)这是+1,这是几呢?

生:+2。

师:这是几?

生:+3。

师:-1在哪?

生:在数轴上指出相应的点。

师:-2在哪?

生:在数轴上指出相应的点。

师:-3在哪?

生:在数轴上指出相应的点。

师:+5、-5分别在哪?

生:指出+5的相应位置(数轴上没标出-5的点,学生疑惑)。

师:难道就没有-5了?

生:有。在这(指出-5的大致位置)。

师:负数多少个?

生:无数个。

师:正数多少个?

生:无数个。

【教师反思:从现场教学来看,以温度计为基础认识数轴很“妙”。学生真正感受到0是分界点,再由课件上显示出的变化使学生真正感受到正负数有无限个。】

【点评:借助温度计“做足文章”。以温度计为基础认识数轴,在数轴上能找到数的相应位置,感知正负数的个数有无限个,很有创意。】

活动三:巩固练习,拓展提高。

师:请你写出几个正数和负数。

生:+8、+100、+34、-7、-8、-9

师:+ 是正数吗?

生:是。

师:-0.25是负数吗?

生:是。

师:真的有正分数和负小数吗?以后再来研究。

师:我们一起来回忆这节课所学的内容。(屏幕逐次一对一对显示)

零度以上 零度以下

海平面以上 海平面以下

地面以上 地面以下

收入 支出

盈利 亏损

…… ……

(学生在轻柔的音乐声中静静地看,静静地想)

师:你还想说什么?

生1:左边一列的数据都可以由负数表示,右边一列都可以用负数表示。

生2:左右的意思是相反的。

师:你很善于总结概括。意义相反的量就可以用正负数来表示。

生3:我还想补充:前进后退可以分别用正数和负数表示。

生4:增加减少可以用正负数表示。

【点评:给学生提供可回忆的材料,引起学生的思考,培养学生的反思、自省意识,而不是随便问问学完这节课你有什么收获,草草收场。】

【课后总评】

本节课中教师能整体把握教学内容,精心预设教学的各个环节,给学生提供了较大的思考空间,创设了多个贴近学生认知规律且适合学生学习的教学情境,为学生的进一步学习生成了丰富的教学资源。教师钻研教材,理解数学内涵比较深入,课堂教学过程中显示出了独有的教学风格——细腻。本节课细细揣摩有以下几个方面是值得借鉴的。

1.从实际生活的真实情境中呈现学生的原认知, 由此深入展开对问题的探究。

“我们在日常生活中经常要记录数据,请同学们来记录小红妈妈减肥情况和蓝猫商店盈亏情况这两组数据。要求记录时做到准确、简捷、快速”这样开放性的活动,以实际生活的真实情境为研究素材,呈现出了四种不同的记录结果,透视出学生的原认知状态,在此基础上展开对新问题的研究,既让学生充分感受了研究负数产生的必要性,又能针对本班学生的实际情况调整教学策略。为实施有效的教学做好了充分的准备。

2.运用多种教学活动方式,突出活动的实效性。

教学中,教师运用了多种活动方式。从天气预报中听一听;在存折上认一认;根据各地的气温读一读;在实际生活中举例说一说……让学生体会生活中大量存在的具有相反意义的量,体会数学与生活的密切联系。

本节课教师充分利用温度计这个教具“做足文章”,从温度计上读出温度;尝试写出温度-5℃、-20℃;在温度计上拨出指定温度;把温度计横放后抽象出数轴,这些都为学生认识正、负数提供了非常形象的依据,学生学习起来有具体的事例做依托,抽象的概念就容易理解。

活动中老师在充分发挥学生的主体作用同时也没有忽略自己的主导地位,多次在关键处设问“上海(零上4摄氏度)和北京(零下4摄氏度)的温度相同吗”“-5℃、-20℃比较谁低,谁高”“+5℃、-5℃之间相差多少度“……在活动中学生不仅动手做,而且动脑思考问题,再通过交流就能使学生掌握重要的数学的思想和具体的学习方法,这样的数学活动实效性就明显。

3.深挖知识背后折射出的数学思想、方法,正确引导学生认识客观世界。

《生活中的负数》这个内容如果把握不好极易片面理解,单单强调负数而忽略另一方面。客观事物都是相互依存的,没有“正”也就谈不上“负”,事物的两个方面缺一不可,这是辨证法的基本观点。通过这个教学内容要传递给学生的也是这样一种思想,要提到这样一个高度上来认识。所以,整节课中教师紧紧围绕两个相反意义的量让学生接触、认识、研究,最后才有了课的结尾学生感悟到的:“前进后退可以分别用正数和负数表示”。“增加减少可以用正负数”“意义相反的量就可以用正负数来表示”……这样一些正确的认识和理解,这里面教师的引导功不可没。

分类是认识事物的基本方法,人们在认识周围事物时大都是先按标准将其分类,然后再辨析,最后获得对其完整的清晰的认识。在认识正负数时教师也采用了分类的方法,同时重点研究0的问题。分类时学生就把0放在了“说不清”这样一个位置上,通过辨析与解释,得出了结论“0既不是正数也不是负数”。

以上这些设计可以反映出老师研究问题比较深、透,视角开阔,不局限于教材设定的一个局部空间内,而是广集资源,充分研发,为我所用。

提出一个小建议:教学中教师还要加强研究生成的资源如何巧妙地利用,如:学生出现了几种记录盈亏的方式后要充分利用,比一比各种表示盈亏的记录方法,让学生自己比较后感受到使用符号的优越性,增强学生的符号感,突出“数学味”。

负数的课件 篇3

教学内容:

义务教育课程标准实验教科书数学六年级下册一单元例题1、2。

在具体情境中经历负数产生的过程,体会负数在生活中的作用,认识负数,掌握正、负数的读、写法;知道正负数和“0”的关系。会用正、负数描述现实生活中的现象。

(2)过程与方法:

让学生经历知识形成的过程,培养学生观察、比较、归纳、推理和创造性的学习能力。

(3)情感、态度、价值观:

让学生体验数学和生活的联系,获得积极的情感体验,进一步激发学习数学的兴趣。

师:同学们好!非常高兴能和大家一起学数学,你们欢迎吗?

1.师:平时喜欢看新闻节目,关心时事的同学请举手?

师:给大家介绍两位新闻人物,请看,你认识他吗?(课件出示),他们俩可都是牛人啦,一个是阿里巴巴总裁,你觉得谁更厉害?

师:一起来看看他俩的新闻。他们可都是“fu翁”,两个“富翁”的意义相同吗?你是怎样理解的?

师:两个富翁虽然只有一字之差,但表示的意义完全相反(板书:意义相反)

2.师:老师今天来给大家上课,还带着一项任务,这需要大家的配合,你们愿意帮助我吗?是什么任务呢?请看:(出示课件)

3.学生在记录单上自主记录,教师巡视。

4.教师选取学生的记录单进行展示,让学生说说是怎样记录的?

师:比较一下,你认为哪种记录的方法更直观明了?这样记录有什么好处?

师:如果有一位同学的身高正好等于标准身高,你觉得用哪个数字表示比较合适?“0”板书

师:如果把纪录单上的数字分成两类,你觉得可以怎样分?

(教师根据学生的回答板书)这样的数字你认识吗?想了解吗?请看:(课件出示)

师:其实,负数就在我们身边。请看:这是今年3月中央台某一天三个城市的气温预报图。

师:对比三个城市的气温,你有什么发现?在表示城市温度时,用到了哪些数?北京的—5和5一样吗?

师:通常我们用温度计来计量温度,老师带来了一个温度计的模型,这里的每一小格代表1,如果要在上面表示六个温度吗?行吗?为什么?(必须先确定“0”的位置)

师:瑞典科学家摄尔休斯把自然状态下水结冰的温度定为0,这个0正好是零上温度和零下温度的分界点。

出示活动要求:在温度计模型上标出—10,—6,—5,5,8,22六个温度的位置。(不需写单位)

学生上台展示反馈,先说说是怎样确定这几个温度的位置,再说说发现了什么?

师:从“0”往上看,你有什么发现,往下看,又能发现什么?

(从“0”开始,越往上,温度越高,数就越大,从“0”往下,温度就越低,数就越小)

师:估计一下,此时室内的温度大约是多少摄氏度?用什么数表示?

师:—10会感觉怎么样?还有比—10更低的温度吗?你大胆地说一个吧,有比22更高的温度吗?如果要将这些温度都标上去,得怎么办?(课件演示温度计两端刻度可以延伸)

师:0是代表没有温度吗?观察它的位置,你有什么发现?

师:原来“0”既不是正数,也不是负数,而是正数和负数的分界点(教师板书)

四.了解负数起源和文化。

师:通过今天的学习,我们认识了负数(板书课题),其实负数的产生和应用是有故事的,让我们一起来了解。(播放视频)

1.请完成题卡(学生自主完成,教师巡视)组织学生汇报订正。

师:1-5号中,谁最高,实际身高是多少厘米?谁最矮,身高是多少?

如果让你算出他们的平均身高?想一想,能找到简便的方法吗?

指名学生说说自己的方法。

教师小结:看来,学习负数后,不仅让我们认识了更多的数,还可以使计数和计算变得更简便。通过这节课的学习,你有什么收获?

数是人类在生产劳动中创造的,是智慧的结晶,人类的智慧是无穷的,所以数也是无穷,还有更多的关于数的知识有待我们去学习和探究。

负数的课件 篇4

ˎ̥教学内容:五年级(上册)数学p1-3例1、2,练习一1-6。

教学目标:

1、在现实情境中了解负数产生的背景,理解正负数及零的意义、联系,掌握正负数表达方法。

2、能用正负数描述现实生活中的现象,如温度、收支、海拔等具有相反意义的量。

3、体验数学与生活密切相关,激发学生对数学的兴趣。

教学重点:在现实情境中理解正负数及零的意义

教学难点:掌握正负数表达方法,用正负数描述生活中的现象。

教学过程:

一、教学例1:

1、情景导入例1:播放天气预报节目片头。

师生谈话,伴随着学生熟悉的音乐,教师出示收集的用温度计表示的四个城市某天的最低气温。

香港:20℃;上海:4℃,南京:0℃;北京:零下4℃。

2、教学例1:

(1)根据学情,教师以香港温度来介绍看温度计的方法。教师介绍℃(摄氏温度)和℉(华氏温度)的含义,指出我国采用的是用摄氏度来计量温度的。

(2)让学生说说从其他几个城市的最低气温图中分别知道什么,教师根据学生叙述板书各城市温度。

通过学生交流明确各城市的温度并比较各地温度的高低。

(3)质疑:北京和上海的气温一样吗?

通过师生谈话使学生明确两地气温以0℃为界限,一上一下,正好相反,教师根据学生回答进行小结。

(4)启发:你知道在数学上怎样区分这两个温度吗?你是怎么知道的?

3、教学读写方法:

学生尝试书写,估计有些学生会表示,如果学生不知道就由教师进行介绍。

并指导学生认识负号—、指导读法。

小结:零上4℃用+4℃或4℃表示,读作正4℃或4℃。

北京:零下4℃;用-4℃表示,读作负4℃

4、完成试一试。

学生根据图片中温度计表示出各地气温,针对学生中的不同情况(零上温度加+或不加+)引导学生讨论,明确两种表示方法都正确。

二、教学例2:

1、介绍海拔高度

小资料:在同一时间,不同地方存在着温度差;同一地区的同一天里也会存在着明显的温度差,例如平时所知道的最高气温和最低气温。介绍温差非常大的吐鲁番地区,有早穿棉袄午穿纱,围着火炉吃西瓜的说法。是什么原因造成吐鲁番地区在同一天里有着如此大的温差呢?和它的地形特点(盆地)和海拔高度有关。

出示书本海拔图:

教师介绍海拔高度的含义:以海平面为标准,某地与海平面相比较得到的相对高度。

2、说说你从图上知道些什么?

(1)珠峰比海平面高8848米,海拔高度可以记作+8848米或8848米;

(2)吐鲁番盆地比海平面低155米,海拔高度可以记作-155米。

三、认识正负数:

1、分组讨论:

利用黑板上的数据,学生小组合作进行分类并交流。

2、小结:

像+4、20、+8848等这样的数都是正数;像—4、—11、—155等这样的数都是负数。(板书正数、负数及分类)

3、探究:那0是正数还是负数呢?

温度、海拔等都以0作为分界,0既不是正数也不是负数。正数都大于0,负数都小于0。

4、体会正数、负数与0的大小关系。

5、阅读书本。

四、生活中的正负数:

1、学生举例说说生活中的负数,并说明这些负数的意义。(电梯升降、存折)

2、完成练一练1、2,指名学生交流后讲评。

3、练习一第2、5,阅读理解数据。

五、总结与收获:

总结:通过今天的学习,你有什么收获?

教师通过学生交流,完成课题板书认识负数。

教师指出:在生活中,像零上温度与零下温度、海平面以上和海平面以下、地面以下楼层和地面以上楼层、收入与支出、得分与失分、股价上涨与下跌等都是相反意义的量,都可以用正数或负数来表示。课后请同学们收集一些负数在生活中应用的资料,以便下节课进一步研究。

六、作业:

练习一第1、3、4、6。

第6题适当指导,刻度要注意平均分

负数的课件 篇5

义务教育课程标准实验教科书数学五年级上册(苏教版)第1—3页上的例1、例2,书上的”做一做”

1、在熟悉的生活情境中,使学生了解负数产生的背景,初步认识负数,知道正数和负数的读写方法,知道0既不是正数也不是负数。

2、通过观察和讨论,分析比较,培养学生的观察能力和概括能力,并在教学中渗透对立、统一的辨证思想。

3、通过实列巩固,让学生感知到数学知识来源于生活,应用于生活,提高学习数学的’兴趣。

认识负数,理解运用正负数表示具有相反意义的量。

理解正数、负数与0之间的关系。

多媒体课件,没有0刻度的温度计。

一、巧设情境、感知引入–引出负数。

1、选择喜欢的方式记录下列各数:

(1)、在一场足球比赛中,育明小学上半场进了2个球,下半场丢了2个球。

(2)、我校本学期转进学生6人,转出5人。

(3)、李叔叔做生意,10月份赢利1800元,11月份亏损500元。

师:出现在信息中的两个量都是怎样的两个量?

生:是有相反意义的两个量。

独立思考怎样表示这些相反意义的`量?把想法记录下来。

2、小组合作交流,选择最为简练的记录方法。引出:+(正号)、—(负号)。

小结导入:在生活中,有许多意义相反的情况存在我们都要用到正负数,今天这节课,我们一起来认识负数。

二、体验内化、探求新知–认识负数。

1、借助温度计进一步理解负数的意义。

用温度计显示四个城市的的天气情况(课件出示)。

学生用已学的知识读一读温度计上的温度,并用数表示各城市的温度情况。

2、学生动手拨一拨,感知0与正负数的关系。

质疑:0是正数还是负数?

通过实际操作得出结论:在温度计上0摄氏度是0上温度和0下温度的分界点,所以0既不是正数也不是负数。

3、出示存折上的存入与支出数。

让学生说说存折上的数各表示什么,并得出结论:存入用正数表示,支出用负数表示。

4、介绍正负数的读写。

师:正数前的符号可以省略不写,如+500可以写作500;

师:正号可以省略,负号呢?

生:不可以,那样正数和负数就分不清了。

三、回归生活,拓展应用–应用负数。

1、快速抢读并判断(书上做一做第一题)。

2、珠穆朗玛峰大约比海平面高8844米,记为(),吐鲁番盆地大约比海平面低155米,记为()。

学生交流后回答,并请两位学生上台表演相对而跑。

四、课堂总结、知识延伸–拓展负数。

师:这节课你有什么收获,有什么地方需要提醒其他同学注意的吗?

师:你对负数还想了解什么呢?

教学目标:1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负......

负数的课件 篇6

没有端点,可以向两端无限延伸,这种线叫直线。

只有一个端点,向一端无限延伸,这种线叫射线。

直线、射线与线段有什么联系和区别?

①、直线和射线都可以无限延伸,因此无法量出长短。

②、线段可以量出长度。

③、线段有两个端点,直线没有端点,射线只有一个端点。

2、角的计量单位是“度”,用符号“°”表示。把半圆平分成180等份,每一份所对的、角的大小是l度。记做1°

3、角的大小与角的两边画出的长短没关系。角的`大小要看两条边叉开的大小,叉开得越大,角越大。

直角=90°,

大于90而小于180°的角叫做钝角,

特别注意:因为直线射线都无法度量,所以在判断题中,与直线射线比较长短的都是错误的。

平行四边形对角相等,邻角和等于180°,只需要量一个角的度数,就可以知道其他几个角的度数,

n为边的条数。数线段的方法也如此。

9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

11、长方体的表面积=(长×宽+长×高+宽×高) ×2 公式:S=(a×b+a×c+b×c)×2

两位数乘两位数课件通用13篇


每个老师在上课前需要规划好教案课件,每个人都要计划自己的教案课件了。教师应该根据学生的学习兴趣来制定教案,如何写出一篇好的教案?以下是我们为大家收集的“两位数乘两位数课件”,仅供参考,欢迎大家阅读本文!

两位数乘两位数课件(篇1)

一、备课内容

人教版三年级下册,P46。

二、备课背景

两位数乘两位数笔算,这个内容在小学计算教学中有着极其重要的作用——理解和掌握两位数乘两位数“乘的顺序和积的书写位置”(算理及算法),是进一步学习多位数乘法笔算的基础。

教材的编排,展现的正是该课最常见的教学模式:出示问题情境,列出算式→利用点子图进行思考,多种思路求出答案→借助一种思路教学竖式,算理算法沟通→练习,巩固算法。

上述教学模式可称“先算理后算法”,很好地体现计算教学的基本理念:算理算法并重,以算理理解引算法掌握。日常的教学,完全可以将此思路细化并实施。

但是,用这个思路进行教学时,老师们可能遇到一个“尴尬”之处——学生在探究14×12的答案时(或借助点子图进行思考时),方法的多样化会占据课堂的大量时间。如按教材预设的14×4×3和14×(10+2)之外,学生还有会出现14×6×2,或出现将14拆成7×2、10+4,甚至出现14和12都拆的情况(10+4、10+2)。这些方法都是可行的,无非就是不同角度的分配律和结合律而已(两个数都拆,情况略不一样)。可以想象,课堂上如果放手学生探究了,丰富的思路及其展示与交流,一定是极费时的。如此一来,竖式教学的时间不充分是必然的结果,所以,有些课到了练习巩固环节,学生对竖式的分层记录却还是有障碍。

一个可行的应对之法,就是干脆放大算法的多样化,单设一个课时引导学生充分经历,另一个课时再集中力量教学竖式。北师大版教材就是如此编排的,感兴趣的老师可以查阅教材。

那么,如果按照人教版教材的现有编排,我们怎么解决算法多样化和竖式教学的矛盾呢?

我们认为,一个教学内容能追求的目标很多,但可以视实际情况作出一定的区别对待或取舍处理。于本节课而言,这个竖式是学生第一次接触分两层记录的乘法,学习的难度是不小的——学生既要明白分层记录的原理,又要掌握这种新的算法模型;既要一步一步口算,又要理解每次口算结果的书写位置;既要算乘,又要算加,有时还有进位问题。但即使再难,理解算理、掌握算法,那还是本课必须要达成的目标。所以,在这样的情况下,弱化算法多样化的目标,而把教学重点放在竖式的算理算法教学上,应当是一种现实的选择。

三、我们的思考

那么,用怎样的方法才能让学生深入地思考算理,牢固地掌握算法,又适度体验算法的多样化呢?

我们首先对学生的能力水平和学习心理进行了测试。

A卷:

题1:你能想办法计算出24×12的结果吗?请把你思考的过程写下来。

题2:你会用列竖式的方法来计算24×12吗?请你试着写一写。

结果,全班42人中有61.9%的学生能正确求出结果,思路基本都是拆分的方法;30.9%的学生能列出正确的竖式,差别就是第二层积末尾的0写与不写。

B卷:

给出24×12的标准竖式。【注:数字选得不好,可能会造成混淆】

题1:你能看懂上面这个竖式吗?把你看得懂的.地方圈一圈,并在旁边的空白处写一写它表示的意思。

题2:这个竖式的哪一部分是你看不懂或有疑问的,请你在竖式中圈一圈、写一写。

只有11.9%的学生能正确解释竖式中每一步的意义,但对竖式存在疑问的学生却很多,且疑问也是各种各样(如下图)。

从两份前测卷的数据可见,算法多样化这事的确并不太难,对学生而言,最难的就是对这个竖式的理解。想想也是,三年级的学生,既要接受第一次见到的分层记录结果的形式,又要掌握记录结果时的各个细节(如错位、省略0等),面临的困难自然是很多的。

通过前测,我们也意识到,有近三分之一的学生已经会列竖式,这是不容忽视的学情信息;同时,无论会与不会的学生,对竖式的书写、含义等,存在很多的疑问,这些疑问都是极有价值的教学资源。

因为这些疑问,正好指向于算法背后的算理。

那么,这节课是否就可再次采用我们尝试过的“先算法后算理”的教学模式:课始就让学生尝试列竖式,暴露正确算法或不同算法,引发学生产生针对算法的疑问→学生提出问题,以问题为驱动,激发学生主动思考→学生借助学习材料开展探究(适度感受算法多样化),理解算理,接受算法→教师示范,多样练习,掌握算法。

教学框架设想如下:

环节1:情境引入,竖式计算

环节2:算法暴露,引发提问

环节3:自主探究,感悟算理

环节4:思维碰撞,理解算法

环节5:练习巩固,掌握算法

这样的设计,是否更能显现“以学定教,顺学而导”的理念呢?是否真的能借助学生的疑问,化解学生学习的难点呢?可否使这节课的教学打破传统思路,更显大气与灵动呢?

四、讨论话题

1.对“先算法后算理”的教学思路,您怎么看?

2.您觉得按照上述思路,学习情境(学习材料)该如何设计?

欢迎以留言的方式发表您的宝贵意见。让我们一起研究,共同进步!

两位数乘两位数课件(篇2)

教学内容:

人教版小学三年级数学下册第63页内容。

教材分析:

这节课是在学生掌握了一位数乘多位数口算、笔算的基础上,学习探讨的。为了便于学生掌握笔算方法,教材把分步演算的过程呈现出来,然后再导入主课,使学生初步明确两位数乘两位数的计算方法。这一内容是本单元的教学重点,因为它体现了两位数乘法的基本算理和算法,掌握了它,多位数乘法就可以在此基础上迁移、类推。

学情分析:

这是一节计算课,学生学习有兴趣。学习前,学生会两位数乘一位数的笔算,会用估算的方法来解决问题。学生在口算的基础上,尝试体验两位数乘两位数(不进位)的计算过程。

教学目标:

1、让学生经历发现两位数乘两位数计算方法的.全过程,体验计算方法的多样化。

2、通过比较各种方法的优点和不足,寻找最佳方法,训练学生掌握优化策略的思想和方法。

3、学会两位数乘两位数的笔算方法。

重点难点:

重点:学会计算两位数乘两位数的乘法(不进位)。

难点:培养学生养成自主探索、合作交流(包括自我检查、互相改错)的良好习惯。

课前准备:

多媒体课件、小投影

教学过程:

一、创设情境,提出问题。

出示主题图。

1、你得到哪些信息?生汇报交流。

2、生理解题意,列式。

3、师:请你先帮他估一估,大约付多少钱?

学生回答,并评判每种估算值与准确值的大小比较。(三种方法)

4、怎样才能知道正确答案呢?

二、探索尝试,找寻方法。

1、用你学过的方法试一试。

(1)先独立思考,再汇报交流。学生评判优劣。

(2)学生多种方法中,师生共同优化出一种(拆数法):

24×10=240 24×2=48 240+48=288

2、尝试笔算24×12

今天我们来研究两位数乘两位数的笔算乘法。(板书课题)

(1)、尝试解决问题:你能列竖式计算出得数吗?试试看。

先独立思考,书写再练习本上,再小组交流。

(2)、全班汇报交流。

在投影仪中一一展示算式,学生评判对错,说出每一步的由来。

(3)、学生分组讨论:哪种方法比较简便?

3、研究笔算的方法:

抽学生口述你们知道每一步的意思,师板书,重点说算理。

学生讨论交流(特别乘得的积的第二行个位空位的道理。)

24 24

×12 ×12

4、小结笔算方法:学生交流汇报。

(1)计算方法是什么?(拆数法)

先( )和( )相乘,再( )和( )相乘,最后两个乘积相加。

(2)计算时要注意什么?

书写数位要对齐;乘法口诀准确;加法计算准确。

5、试一试:

32×12 41×21 13×31

(1)学生独立完成。

(2)投影仪展示,学生评判。

(3)师强调出现的问题。

三、巩固方法,实践应用

1、游戏:智闯马虎宫,找找开门密码(P63页“做一做”)

23×13 41×21 23×31 32×12 43×12 22×14

抽生板演,先自我检查,再其他学生上台评判对错,错误要改正。

2、森林医生:

针对学生易犯错误,判断对错,找出原因,并改正。

3、计算:P64页第1题。

学生独立完成,并自我检查。

投影仪展示作业,学生评判对错。

4、应用:P64页第3题。

学生独立完成,全班交流。四、归纳梳理,总接收获。

学习这节课,你有什么收获?还需要提醒大家什么?

五、板书设计:

两位数乘两位数(不进位)

24×10=240 24

24×2=48 ×12

240+48=288 4 8……2×24的积

2 4……10×24的积

2 8 8

两位数乘两位数课件(篇3)

教学内容:

数学书76页例2。

教学目标:

会正确笔算两位数乘两位数的进位乘法。

教学用具:投影仪,多媒体课件

教学过程:

一、课前练习

10×9= 9×9= 19×19=

二、揭示目标

本节课的学习目标是什么呢?请看:(出示投影,生齐读)。

过渡:要达到本节课的学习目标,还要靠大家认真自学,怎样自学呢?请看自学指导。

三、自学指导

认真看课本65页例2,看图,看文字并填空,重点看笔算乘法进位的方法。思考:

1.先用哪一位上的数去乘哪个数?相乘时,如果满十怎么办?

2.再用哪一位上的数去乘哪个数?相乘时,如果满十怎么办?最后算什么?如果不懂的,可以问同学,或者举手问老师。

4分钟后,比谁会做与例题类似的题。

四、先学

1、过渡:现在自学竞赛开始,比谁自学后,能做对检测题。

2、看一看:

生看书自学,师观察督促学生紧张自学。(要保证学生看够4分钟,学生可以看看、想想,如果学生看完,可以复看。)

3、做一做:(课本第76页的“做一做”)

a、过渡:同学们看完了吗?看完的请举手。下面,就要考考大家。要比谁做得又对又快,比谁字体端正,数位对齐,数字要写得大些,数字间要有一定的间距(要划出学生板演的.位置)。

b、板演练习,请2名后进生上台板演(65页“做一做”的1、3题,其余同学做在练习本上。教师巡视,要找出学生中的错误,并板书。

讲述:做完的同学,请认真看黑板上的练习。(要求:学生认真看板演的同学做的是否有错误,还要检查自己做的是否正确。)

五、后教

1、学生更正:

教师指导:发现错了的请举手!点名让学生上台更正。提示:用红色粉笔改,哪个数字错了,先划一下啊,再在旁边改,不要擦去原来的。

2.讨论。

过渡:到底谁对、谁错呢?下面请大家讨论,还要说出“为什么”。

(1)讨论几道题的第一步。

①师:哪个对呢?为什么?(手指一下不同的答案)

学生回答:教师要启发学生注意:a、进位的数字有无写错。b、进位的数字要写到前一位的右下角。C、要小一些。(如果学生写的不合格,要指出并更正)d、有无加到前一位上去。

②师:这个学生错在哪里?(忘了加上进位1…….)

③打“√”或“×”。

师:认为第2小题第一步对的请举手?(方法同第小题的第一步)

④小结:根据刚才的讨论,同学们想一想,相乘时如果各位上满几十怎么办?(幻灯出示:相乘时,个位满几十,就向前一位进几,进几就在前一位上加几。)

(2)讨论几道题的第二步。

①师:哪个对呢?为什么?(手指不同答案)

②师:这个同学错在哪里?(忘了加上进位1)

③小结:根据刚才的讨论,同学们想一想,相乘时如果十位上满几十怎么办?(幻灯出示:相乘时,十位满几十,仍向前一位进几,进几就在前一位上加几。)

(3)师:请同学们看几道题的最后一步对不对?为什么?(把两次乘得的积相加)

(4)给第二题打“√”或“×”。

(5)同桌互改。

讲述:a、同学们请把作业本交换一下,看看同桌做得对不对,对的打对号,如错打错号。b、全对的请举手?c、做错的同学请举手,错在哪里?请说一下。

(6)拓展练习

数学课本第66页第3、4题。

六、全课小结

小结:同学们,咱们学习了两位数乘两位数进位的笔算方法,会做的请举手,请说说计算时,要注意什么?(学生说对,教师不必重复)

①相同数位对齐,先从个位乘起。

②用第二个因数的个位去乘第一个因数的每一位,积的末尾和个位对齐。

③用第二个因数的十位去乘第一个因数的每一位,积的末尾和十位对齐。

④哪一位乘得的积满几十就要向前一位进几,进几就要加几。

⑤再把两次乘法得的积相加。

两位数乘两位数课件(篇4)

教学内容:九年义务教育六年制小学数学教科书(人教版)第三册第18页例2。

教学目标:

1、 让学生探索并掌握两位数减两位数退位减法的计算方法,并体会计算方法的多样化。

2、 初步培养学生估算的意识和解决实际问题的能力。

3、 在教学中培养学生小组合作的意识。

教学重点:让学生掌握两位数减两位数退位减法的计算方法。

教学难点:探索并掌握两位数减两位数的计算方法。

一、情境引入:

今天,我给大家带来了数学王国里的两位小精灵,你们看,是谁?(出示:聪聪、明明)

同学们掌声欢迎。

1、教师讲述:聪聪、明明在来的路上,恰好碰到了数字娃“5、8、1、6”在玩“两位数减两位数”找家的游戏,他们正得欢,忘记了回家。聪聪对明明说:我们来帮助他们,好吗?明明说:这容易,他们就是58-16、56-18、……。同学们,你们能帮他们找着自己的家吗?引导学生有序地思考,并随机板书:

61-58、 81-56

68-51、 81-65

68-15、 85-61

65-18、 85-16

86-15

86-51

你们帮数字娃找到了家,他们非常高兴,聪聪、明明也夸奖大家是爱动脑筋的好孩子。

【设计意图:编制低年级学生喜闻乐见的数学童话,使抽象的数学知识儿童化,既激趣,又有引起学生主动参与新知识的产生和发展的过程,培养科学精神,激发创新意识。】

2、明确课题。

58-16等于几?你会算吗?

学生口答后教师说明,这是我们上节课学习的两位数减两位数不退位的减法。

56-18等于几?你能猜想一下吗?

学生猜想后引导学生比较58-16和56-18有何异同?

【通过编题、比较、讨论、交流等活动,引导学生参与知识发生过程,主动感知和明确问题,为进一步解决新知识问题的探索活动作好准备。这是创造性教学的第一个环节。】

二、展开:

1、 猜测活动。

怎样列竖式计算58-16和56-18。

2、 试一试。

用竖式计算58-16和56-18。不会做的可以先用小棒摆一摆,再做。(指名板演、随练)

3、 你在计算时遇到了什么问题?

请学生小组讨论,再汇报讨论结果

【这里的尝试练习实际上是对猜想的计算方法的验证。】

4、 大家讨论。

怎样计算56-18的?(这里讨论一定要充分,随机板书:个位不够减,从十位退1。)

(1)借助表象:理解从十位退1。

竖式计算时,首先遇到“6减8不够减,怎么办?”这个问题,教师引导学生摆小棒,突破难点。

(2)讨论:怎样表示从十位退1,你有什么好办法?

尝试让学生发现要在竖式中被减数的十位数上面点一个退位点。

(3)十位要算几减几?

引导回忆操作过程,弄清从十位上退1,十位上的数就少了1的道理。

5、比较58-16和56-18的异同。

6、阅读教材。

7、小结:以学生为主。

【展开阶段是创造性教学的核心环节。在这个教学阶段,组织和指导学生积极主动地参与解决新知识所提出的问题的猜测、探索、验证、阅读、讨论、交流、概括等到一系列活动,并在活动中理解和掌握知识经验,发展数学素质。】

三、目标检测。

5、 专项练习。

不用计算,判断开始时的10道题是否要退位,若要退位就拍掌三下。

6、 选择其中4道题进行计算。(对比练习)

分小组练习,指名板演,教师巡视。

65-18= 61-58=

85-16= 85-61=

练习后比较:85-16 和85-61所得差的十位为何不同?

7、 请你当医生。树林时里有许多树生病了,你会帮它们治吗?

出示树上写的式题的练习。课本第21页第7题。

4、聪明题。

83

-4□

减数的个位上填哪些数时,是不退位减法,填哪些数时,是退位减法?

四、总结:

学习了今天的知识,你有什么问题想提醒同学们?

五、作业。

用“1、4、7、9”这四个数字,组成两位数减两位数的减法式题,现把它们分分类,找一找它们之间的联系和区别,可以和你的小伙伴一起算一算。

【布置课外活动题的目的是减轻课业负担,以动激趣,发展智力。本题旨在让学生通过编制和排列算式、分类、比较与合作交流,讲讲算算的活动,进一步满足学生成功的心理需求,从而培养和发展学生学习数学和智力水平,激发创新意识。】

两位数乘两位数课件(篇5)

一、教材分析

1、教学内容

人教版小学数学二年级下册P91-92例一,练习十九第一题。

2、教材的地位和作用

口算两位数加两位数是前几册100以内口算的延续,是在100以内口算基础上教学的,掌握这部分口算,不仅在实际中有用,而且是以后学习笔算的基础。教材在91页呈现了二年级同学准备做船“去鸟岛”的热闹场景。图中给出了二年级四个班各班的人数和船的限乘的人数,为引出两位数加两位数提供了现实背景。

3、本节课的教学目标

(1)、鼓励学生构建起适合自己的两位数加两位数的口算方法,能够正确地口算两位数加两位数;能够表达解决问题的过程,并尝试解释所得的结果。

(2)、让学生经历解决问题的过程,体验教学与生活的紧密联系,体验解决问题策略的多样性,体验算法多样化,感受成功的喜悦。

4、教学重难点:理解两位数加两位数的口算的算理,掌握口算的方法。

二、教学设想

为了让计算教学不再枯燥、抽象,以学生乘船去鸟岛春游为主线,创设生动有趣的情境,发现数学问题,解决数学问题,并辅以多媒体教学手段,给整节课赋以生机。

1、创设生动的情景,激发探索的乐趣,让学生感受数学与生活的联系。

课的引入以鸟岛美丽的画面,配以声音吸引学生,接着创设了去鸟岛参观的情境,观看鸟的动态的形象。在练习中,把枯燥的练习题变成了一分钟比赛的形式、鸟儿出题、购买鸟岛纪念品一系列有趣、有挑战性的形式,激发他们的好奇、好胜的心理,从而诱发他们主动寻找解决问题的策略。

2、鼓励算法多样化,让学生的学习呈个性化发展。

我们的教育要关注个性化学习,由于学生生活情景和思考问题的角度不相同,所运用的方法必然多样化。因此,在新授内容中,充分尊重学生的想法,让他们设计合理的“乘船方案”,鼓励学生先独立思考,充分尊重学生自己的计算方法,然后小组交流,再向全班同学汇报,并通过“还有不同的算法吗”激发学生的求异思维来提倡算法多样化。这一环节,使学生与学生、学生与老师之间的教学交流提供较大的空间,使每个学生都能充分发展自己不同的想法。

3、充分利用教材提供的课程资源,创造性使用教材。

教学中我们应把教材视为教与学的素材,基于教材又再生教材。我以教材提供的主题图为素材,加工处理成连贯性的“情景链”,并从中赋教学所需的“问题串”,对教学中加法的处理作了适当调整,利用乘船的第二方案,按班级顺序上船后会出现什么情况,由学生提出相应两个问题后,尝试减法的口算方法。练习“一分钟比赛、小鸟出题、购买鸟岛纪念品”练习设计由浅入深,使学生在教学活动中得到不同的发展。

新课程倡导学生是学习和发展的主体,教学要关注学生的个性差异和不同的学习需求,爱护学生的好奇心、求知欲,充分激发学生的主动意识和进取精神。因此,将教学方法确定为促进学生自主、合作的问题情境法和探究学习法。

4、在知识的学习过程中,重视非智力因素的培养

一个人的学习效果虽然离不开他的智力因素,但非智力因素可使人的全部心理活动处于积极状态而且具有动力性质。因而在学习中,务必重视情感、态度、能力等非智力因素的培养。在教学过程中,我尽量放手让学生去说、去做、使学生在学习知识的同时,归纳整理能力、语言表达能力得到不同程度的发展。

5、重视数学思想的渗透

口算两位数加两位数,本质上是两位数加一位数、整十数两种情况的组合。如23+31,可以分解为:23+30=53,53+1=54。他们的算理完全相同,可以通过迁移类推来学习。因此,在教学本节课的时候,我注意渗透这种转化的思想,将新知识转化成旧知识。

三、教学程序

以更好地实现教学目标为目的,构建主义理论为指导,我将本节课的教学过程分为4个部分:

●创设情景,激活原有的认知结构;

●合作探究,引导主动进行认知结构;

●巩固应用,强化已形成的认知结构;

●拓展延伸,运用新的认知结构解决问题。

这样的安排,参照了小学数学认知建构课堂教学模式,目的是要让每个学生都会用自己内心的体验和主动参与去学习数学,积极参与整个学习过程,并引导学生在已有的认知基础上,产生学习动机和解决问题的欲望,从而获得新知识,建构新的认知结构。

(一)、创设情境,引入新课

这一个环节的设计,主要是为了迎合学生依赖情境,产生学习欲望的学习心理,让他们在这个动态的场景中交互情感、态度,产生学习的需要。

以学生熟悉喜欢的春游为情境,嘉乐小学二年级四个班去鸟岛,怎样做船才合适?让学生讨论交流,学生自然就会得出两个班坐船去最好。那么哪两个班去最好 呢?又是学生必须得解决的问题?继而引出学生练出算式:23+31、39+32、39+31、39+23、32+31、32+23 这一系列的算式为两位数加两位数算法口算算法的分析提供了很好的学习素材,也让学生的思考具有很高的目的性。

(二)尝试探究,解决问题。

这一个环节是构建算法模型,优化算法多样的`重要部分。主要分三个层次:第一层次:借助直观,产生算法。23+31,你会算吗?和同桌小朋友交流一下。

第二层次:展示交流、描述算法。估计学生会出现多种计算方法,20+30=50,3+1=4,50+4=54;3+1=4,20+30=50,50+4=54;23+30=53,53+1=54。

第三层次:归纳、提炼、优化算法。这里一是要缩小个体差异,二是尽可能的选择大多数学生接受、理解、掌握的算法,三是有效构建了算法模型。因此教师在此层次特意安排两个提问:“在这么多算法中,你最喜欢哪几种算法?为什么?假定你是老师,你想推荐哪几种算法给你的同伴?为什么?”来突出重点突破难点,有效构建数学模型。

但在这个环节的处理上有一些困惑:教科书上在教学23+31=?和32+39=?时出现的方法是不一样的,在计算方法上该如何进行有效的优化。如何缓解这两种方法之间的矛盾。

(三)、巩固新知

这一环节是巩固本节课所学知识,灵活应用这些知识解决问题,我以教材提供的主题图为素材,加工处理成连贯性的“情景链”,并从中赋教学所需的“问题串”,对教学中加法的处理作了适当调整,利用乘船的第二方案,按班级顺序上船后会出现什么情况,由学生提出相应两个问题后,尝试减法的口算方法。练习“一分钟比赛、小鸟出题、购买鸟岛纪念品”练习设计由浅入深,使学生在教学活动中得到不同的发展。

(四)拓展延伸

小虎在做一道加法题时,把第二个加数35看成了53,结果算出来的和是76,你知道正确的得数是多少吗?( )+ 35= ( )+ 53=76

这一环节能让学生利用已有知识建构新的知识体系,也为下一节学习两位数减两位数做了铺垫。

两位数乘两位数课件(篇6)

教学内容:

人教版三年级下册数学第63页例1及“做一做”

教材分析:

本课是在学习了笔算多位数乘一位数的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。两位数乘两位数的笔算是本单元的教学重点。因为,学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的.因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。

教学目标:

1.使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。

2.在探索计算方法和解决实际问题的过程中体会新旧知识的联系,培养迁移类推的能力和解决实际问题的能力。

3.培养学生书写工整、认真计算的学习习惯和善于思考的学习精神。

教学重点:

掌握笔算方法并正确计算。

教学难点:

解决乘的顺序和第二部分积的书写位置。

教具准备:

课件

教学过程:

一、复习铺垫——启动数学列车

1.口算。

13×2= 34×2= 24×2=

13×10= 34×20= 24×10=

2.笔算。

23×3=

二、探究新知——进入数学乐园

1.出示课本63页例1的情境图:小红和妈妈来到书店买书。

(1)学生观察:从图上你知道了什么数学信息?

(2)那小红遇到了什么问题?她会在思考呢?

(3)要算一共付多少钱,该怎么列式呢?(24×12)为什么用乘法计算?

(4)(师指算式)这是一道几位数乘几位数的算式?

2.揭示课题:(两位数乘两位数)

3.那24×12大约是多少,你会不会估算?(指名学生说估算)

生估:大约是有200

师:还有比200更接近的吗?

生:240

师:那24×12的准确得数,比240更大,还是更小呢?

生:小

师追问:你怎么知道的?

生:因为24×10=240,还有24×2=48,所以24×12的得数比240大。

师:说得真好!现在我们就来算算24×12的准确得数,好不好?

生:好

师:好的,请在课堂练习本上写出你的计算过程.

师巡视,收集算法.

4.全班交流,整理算法

投影出示:略

师:先出示问:这是什么方法?(口算)我请这位同学说说你是怎样想的?

师:再出示问:这是什么方法?(竖式)这位同学做对了吗?(没有)那它这里有做对的地方吗?还要再算什么?

师:最后出示,我们再来看看这种方法,做对了吗?哪里又出现问题了呢?

(生说:第二步是24×10=240,不是24×1=24)

说得真不错,掌声送给他.

5.教学笔算:

好!下面我们就是学习两位数乘两位数的笔算.(板书:笔算)

师板演竖式

师:我们先算什么?(24×2)

师:再算什么?(24×10

师:最后算什么?(240+48

6、指导看书,发现问题

同学们说得真不错,下面请你们打开课本第63页,请看例题中的笔算,你发现了什么?

生:240的0可以不写。

师:说得真好!师把0擦掉。为什么这个0可以不写呢?(强调:因为1个十乘24得24个十,所以为了简便,这个0可以不写)

师板书:(1个十乘24得24个十)

师:这个0不出现的时,我们该怎么列竖式呢?咱们一起来看看吧!(课件演示)

学生跟着一起做。

师:同学们,现在你们会做了吗?

好,下面我们就来练一练吧!

(老师出一题让学生练)

7.小结两位数乘两位数的笔算方法

师:好,下面谁来说说笔算两位数乘两位数要注意什么?

(1)相同数位要对齐;

(2)用第二个因数各个数位上的数依次去乘第一个因数;用哪一位上的数去乘,积的末位就写在那一位的下面;

(3)把两次乘得的积加起来。

三、巩固提升——畅游数学乐园

1.计算密码:2小题

2.老虎森林:老虎每秒跑32米,21秒跑多少米?

3.游戏:计算比赛。(学习卡1)

4.(学习卡2)

四、回顾反思

这节课你学到了什么?

附:板书设计

两位数乘两位数

笔算

2 4 × 1 2 =288(元)

2 4

× 1 2

4 8 …… 2 4 × 2的积

2 4 0 …… 2 4 × 1 0的积

2 8 8 …… 1个十乘24得24个十

两位数乘两位数课件(篇7)

【教学内容】

人教版小学数学三年级下册,两位数乘两位数不进位笔算乘法。教科书第63页例1及“做一做”。

【教学目标】

1、使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。

2、培养学生准确计算的能力。

3、培养学生书写工整、认真计算的学习习惯及善于思考的学习品质。

【教学重点】

掌握笔算方法并正确计算。

【教学难点】

解决乘的顺序和第二部分积的书写位置。

【教具准备】

课件

【教学过程】

一、启动数学列车——复习铺垫

1、口算(指名说得数并说出怎样口算的)

30×40= 80×30= 900×10= 60×70= 21×20= 88×10= 13×30= 32×20=

2、笔算:

24×3=38×2=

『设计意图:兴趣是最好的老师。新课开始,我便以准备带同学们去一个神秘的地方,充分调起学生的胃口,然后再以邀请

同学们乘坐数学列车的方式吸引孩子,让孩子在愉悦的氛围中,轻松完成准备题。』

二、进入儿童乐园——探究新知

1、出示课本63页例1的情境图

(1)学生观察:你收集到了哪些数学信息?提出了什么问题?

(2)要算一共付多少钱,该怎么列式呢?(24×12)为什么用乘法计算?

2、揭示课题:(两位数乘两位数)

3、分小组讨论,尝试计算

4、全班交流,整理算法

方法一:

把12分成2和10两部分,我们先求出2本书多少钱,再求出10本书多少钱,然后再把这两部分的钱加起来就是妈妈要付的钱。

12=2+10

24×2=48(元)

24×10=240(元)

48+240=288(元)

方法二:笔算

2 42 4 4 8

× 2 × 1 0 +2 4 0

4 82 4 0 2 8 8

5、设疑:刚才我们求妈妈买12本书用288元,计算时一共用了3个竖式,那能不能把这3个竖式给合并起来写成一个竖式呢?

6、生尝试用笔算方法计算

7、师生共同分析24乘12的笔算方法

2 4

× 1 2

4 8 .24×2的积2 4 0 24×10的积

2 8 8 24×12的积

说明:在把两个积加起来的时候,个位上是计算8加0,0只起占位作用,为了方便,这个0可以省略不写,边说边把0擦去。

8、小结两位数乘两位数不进位乘法的笔算方法

(1)相同数位要对齐;

(2)用第二个因数各个数位上的数依次去乘第一个因数;用哪一位上的数去乘,积的.末位就写在那一位的下面;

(3)把两次乘得的积加起来。

『设计意图:苏霍姆林斯基说:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者,而在儿童的精神世界中,这种需要特别强烈。”为此,我创设了有趣的教学情境,引导学生主动探索、研究算理与计算方法,让孩子在不断的探究与交流过程中理解算理,掌握了两位数乘两位数的笔算方法。学生在操作探究过程中,也培养了合作意识,口头语言表达能力,张扬了自己的个性。』

三、畅游儿童乐园——巩固提升

1、计算密码:

完成课本63页的做一做

2、避开陷阱(每条路上都有一道题,如果错了说明有陷阱,对了可以顺利通过。)

2 13 32 3

╳ 2 3 ╳ 1 3 ╳ 3 2

6 39 94 6 4 2 3 36 9

1 0 5 3 2 9 7 3 6

3、进入老虎园解决问题

老虎每秒跑32米,21秒跑多少米?

4、请你当个小雷锋,计算出正确的门票收入

2 ■╳ ■ 4■ 8■ 67 ■ 8

动物园的阿姨把今天的收入清单弄脏了,你能帮她算出今天的门票收入吗?

『设计意图:练习是数学学习中巩固新知,形成技能、发展思维,提高学生分析、解答能力的有效手段。本环节通过闯迷宫、避陷阱等游戏来调动学生学习的积极性,让学生在“乐”中练,加深了学生对新知识的理解和掌握。』

四、回顾反思

这节课你学到了什么?关于两位数乘两位数的笔算乘法你还有什么不清楚的吗?

『设计意图:课尾对本课知识及时进行回顾反思,可以加深学生对法则的理解、对法则的应用,更好的领会两位数乘两位数笔算乘法的计算方法。』

五、布置作业

完成练习十五第1、2题

两位数乘两位数课件(篇8)

一、回顾整理,建构网络

出示: (一组混乱的计算题)79×52≈ 700×50= 15×20 = 40×60 =

18×26 = 15×21≈ 39×60≈ 16×42=

师:能将上面的计算题按一定的规律重新分类吗?

生:(教师依据学生的回答板书,若与教师思路发生冲突可逐步引导)

课件显示:(按一定的先后顺序出现)

口算 估算 笔算

40×60= 39×60≈ 18×26=

15×20= 15×21≈ 16×42=

700×50= 19×52≈

这也是我们这个单元所学的内容,如果把这些知识做成知识网你会吗?我们一起来试一下好吗?首先想一下我们本单元题目是什么(两位数乘两位数)板书

都学了有关两位数乘两位数的哪些知识?板书

口算 估算

两位数乘两位数 笔算 不进位乘法 进位乘法

解决问题

二、重点复习,强化提高

不同的题目有不同的解决方法,我们先来算一下第一组的题目要用什么方法呢?

1、口算的判断及方法的梳理

2、(1) 学生独立计算,开火车交流,选二题说说算理。

(2) 师:说说这类题目的特点 生:他们的末位都是零,是整十、整百数乘整十数。

师:能说说你算这种题目的思路吗?

生:用0前面的数去相乘,再在乘得的数的末尾

添写0,两个因数末尾共有几个0,就在得数末尾添几个0。

师:什么样的计算题用口算?怎么口算的?

生:比较简单的计算,也即数字是整十整百的计算。

3、估算的判断及方法的梳理

(1) 学生独立计算

(2)反馈 师:你为什么要将39看作是40?21看作20? 生:因为39和21离整40和整20很近?

师:那38和19离39和21也很近啊? 生:它们虽说也很近但数字计算起来不方便。

师:那也就是说我们在估算时所看作的数字既要比较接近原数也要计算起来比较简便,最好是看作整十整百的数。

师:那你是怎么知道这组题要用估算来计算的? 生:因为它是约等于。

师:(归纳)题目对结果的要求不是很精确的情况下我们用估算就可以了,估算应遵循简单好算、离准确值近的原则。

3. 笔算方法的回顾

(1)指名2位同学上台板演,其他学生做在练习本上

(2)展示计算结果,同时说说笔算两位数乘两位数要注意什么?

(3)教师根据学生所说的进行肯定和补充,同时强调用竖式计 算时,每次乘得的数的末位应该和那一位对齐,还要注意记住进位数,正确处理进位问题。

(4)像这样比较难算得要用笔算

4、解决问题

三(2)班去春游, 每人交12元钱,如果全班53人参加,

共收到:

面值 /元 50 20 10 5 2 1

张数/张 2 12 15 24 18 14

(1)学生独立思考,再把你的想法跟小组里人员交流。

(2)组长汇报交流结果。

三、自主检评,完善提高

1、口算

70×30= 90×30= 20×60= 80×40= 80×80=

50×70= 15×20= 400×20= 23×20=

2、估算 19×29≈ 12×41≈ 11×89≈ 99×91≈ 39×33≈ 45×29≈

3、笔算:

16× 42= 18× 65= 31× 32= 27× 34=

4、比较大小

12 ×13 ○ 21 ×13

15 ×24 ○ 24 ×15

61 ×35 ○ 35 ×62

54 ×12 ○ 540

21 ×43 ○ 20×43+43

(1)同桌讨论后,把答案写在答题纸上

(2)21 ×43 20×43+43 提示学生从乘法的意义来思考。

5、北小有1200人去春游,现有31辆大客车,每辆大客车可乘坐42人,一次能坐下吗?

师:这题如何思考?

生:先求出31辆大客车能坐多少人?然后与1200比较大小。

师:很好,那么用什么方法来计算31乘42呢?

小组交流。反馈:

生甲:用笔算最好了,只有算出准确值与1200比较大小才能知道是否坐得下。

生乙:不必要那样做,用估算更快。

生丙:估算的不是准确得数怎么能知道是否坐得下呢?

生乙:因为31看作30,42看作40,估算得1200,得出的得数肯定比准确的得数小,看小了之后都有1200,人数也是1200,所以能坐下,用估算也可以。

师小结:说的真好,题目也没有一定要求我们算出准确值,而我们用估算也能更好更快的解决问题,当然可以用估算了。

四、拓展练习思考题

三(2)班去春游, 每人交12元钱,如果全班53人参加,共收到:

面值 /元 50 20 10 5 2 1

张数/张 2 12 15 24 18 14

请你们帮他们算一算,他们交上来的钱对吗?

(1)学生独立思考,再把你的想法跟小组里人员交流。

(2)组长汇报交流结果。

五、总结并揭题

这节课我们复习了两位数乘两位数的口算、估算、笔算(板书课题),并用这些知识解决了一些生活中的问题。

两位数乘两位数课件(篇9)

一、说教材

本节课的教学内容是三年级上册教材第四单元“加和减”的第一课时,口算两位数加两位数(和不超过100)。在此之前,学生们已经学习了口算两位数加一位数、整十数,以及掌握了千以内笔算加法,这些知识都为本节课的教学打下了坚实的基础。同时,本节课的学习又为以后解决实际问题作了必要的铺垫。教材以学生自主尝试为主,让学生经历算法的发现过程,并在相互交流中,理解并掌握正确的口算方法。例题以学生们感兴趣的购买玩具为题材,以生活中到处可见的知识提出数学问题:

二、说教学目标

《标准》将数学课程的总体目标细分为四个方面:知识与技能、数学思考、解决问题、情感与态度。由此,本节课的教学目标可以这样的制定:

1、让学生经历探索两位数加两位数口算方法的过程,能口算和在100以内的两位数加两位数,以及进位的整百数加整百数。

2、让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,能运用所学的知识解决一些相应的实际问题。

3、使学生在学习数学的过程中,感受数学与日常生活的密切联系,体验数学的价值,增强应用数学的意识。

4、在数学活动中获得成功的体验,进一步增强学习数学的兴趣和信心,初步形成独立思考、探究问题的意识和习惯。

教学的重、难点:让学生掌握两位数加两位数的口算方法,能够正确的口算出结果。

三、说教法、学法

教学中,我采取创设情境,直观形象的教学方法。安排学生在一个熟悉的生活场景中,通过观察,抽象出题目中所蕴藏的数学信息,由这些信息而产生出相应的问题,从而激发其学习的兴趣,诱使其主动的投入到学习当中来。

新课程标准指出,“自主探索、合作交流也是一种重要的学习方式”。因此,本节课学生的学习方法采用自主探索、合作交流的学习方法。让学生成为学习的主人,经过讨论比较,互动合作的这样一个过程,让学生在探索和交流中解决实际问题。

四、说教学设计

1、创设情境,引入新课。

同学们,你们都喜欢玩具吗?今天啊,有两个小朋友自己去买玩具了,可他们在付钱的时候发现自己数学知识不够,不知道付多少钱,你们能帮他吗?(板书课题)

这一段的设计,可以培养学生的独立自主性,让小学生明白数学知识源于生活,又高于生活,最后又服务于生活。为了让孩子体会到数学知识与生活的关系。在言语上,我激发学生的积极性,让他们能够放开胆子,去尝试购买自己喜欢的东西。同时,还用两个小朋友购买东西产生的数学问题来引发学生求知欲望,顺利的引入新课的教学。

2、自主探索,合作交流

师:你们能口算出小男孩该付多少钱给这位阿姨吗?怎么列式,同学们分组讨论,把想好的方法跟同学们好好的说一说。指名问答,互相交流。反馈:通过交流学生可能得出以下算法(1)先算44+20=64,再算64+5=69;(2)先算44+5=49,再算49+20=69;(3)先算40+20=60,再算4+5=9,最后算60+9=69;(4)先算4+5=9,再算40+20=60,最后算60+9=69。只要方法正确、合理,教师要给予充分的肯定,及时的表扬对孩子们来说是非常重要的。对于孩子们来说,新课程要求算法多样化,算法的最优化。在这儿,让学生们互相讨论,比较出最优秀的口算方法,教师加以总结。

师:这位小妹妹该付多少钱呢?如何列式呢?师板书。你们还能口算出结果吗?大家分组讨论一下。反馈:通过交流学生可能得出以下算法(1)先算44+30=74,再算74+8=82;(2)先算44+8=52,再算52+30=82;(3)先算4+8=12,再算40+30=70,再算12+70=82。对每一位回答出答案的同学都要及时表扬。

3、对比分析,提高能力

比较两道算式的异同点。(小组讨论交流)

通过讨论得出:第一道算式相加时不需要进位,第二道算式相加时需要进位。对表现出色的小朋友进行表扬。

4、巩固练习,拓展提高

(1)、算一算、比一比。(“想想做做”第1、2题)

师:刚才同学们学的都那么好,现在我们小组间来个比赛,看哪个小组算的又快又好。

(2)、想一想、填一填。(“想想做做”第3题)

让学生根据要求在书上填写。并说说自己是怎样想的,怎样算的,为什么这样算?

(3)、比一比,算一算。(“想想做做”第4题)

(4)、估一估,算一算。(“想想做做”第5题)

(5)、解决实际问题。(“想想做做”第6、7题)

多媒出示第6题。

仔细看图,根据提出的从熊猫馆到老虎馆有哪几条路?你打算用什么办法解决这个问题?引导学生先估算,在估计以后,让学生在组内交流是怎么样想的,再算一算估计得对不对。

多媒出示第7题。

让学生弄清题中的条件和问题。

学生独立在书上列式计算。

小组交流,把自己分析思考的过程说给大家听听,同学间相互补充、相互评价。

5、评价鼓励,全课小结

小结:今天我们每一位同学都开动了脑筋,老师真为你们高兴。今天我们学习了什么?你学会了什么?

两位数乘两位数课件(篇10)

一、教学目标:

1.知识与技能目标:

(1)、进行两位数乘两位数的估算、计算、巧算的巩固练习。

(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。

2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。

3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。

二、教学重难点

教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。

教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。

三、教学方法

启发诱导法、讲授法、探究法

四、学习方法

练习法、探究法、小组交流法、观察法

五、教学过程:

(一)引入新课

师:同学们,今天的数学课,我们先从画画开始!

(老师在黑板上画出对称图形的一半)

师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?

(让学生补充完整)

师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。

(老师点击屏幕,出现——好人)

师:大家想象着:如果在好人的后面也存在着那么一条对称轴的话,根据读音对称应该是:(大家一块说)人好。(点击第二个)我爱你——你爱我

蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!

(二)新课教学

同学们,你们知道吗,在我们学过的两位数乘两位数中也有这样的对称现象,我们今天就来复习两位数乘两位数(板书课题),让老师随手写几个两位数乘两位数的算式,好不好?

(老师出示21×36、41×28、36×42、96×46),老师写了几个算式,想一想,如果在这几个算式的后面也存在着一条对称轴,和它们对称的算式是什么?(提问)可见,在两位数乘两位数中,还真的有这样的对称现象,是不是?是!可是,老师觉得,我们就这样写出几个对称算式,也并没有什么了不起,如果我们能够发现,这每一组对称算式之间的一些秘密,那是不是就更棒了?如果我让你们去研究,那你们会试着研究什么问题呢?或者说,你们会有些什么猜想呢?有没有?你们有没有觉得这两个算式之间会有什么联系呢?

【设计意图:课始,老师利用对称算式引入,既使新知保持一种神秘感,又能让学生积极主动地投入学习活动之中。】

学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!

哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!

生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。

生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。

生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。

师:奇怪了!用估算方法算出来的每组两道算式的积有时相等,有时却不相等。那么,用估算方法能否判断每组算式的积是否相等呢?(不能)那可以用什么方法来判断呢?

生:笔算。

那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。

看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。

(学生交流计算结果)那通过我们的计算,你们能得出什么结论?

(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)

(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):

两位数乘两位数,两个“对称算式”的乘积相等。

(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。

老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”

(老师板书)对于“不完全归纳法”,有一个非常美丽的故事:那就是华罗庚爷爷讲给他的中学生听的,今天我也想把这个故事将给大家听,好不好?听完这个故事,我们再来说一说这个结论你是否相信,好吗?

故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。

好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。

师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?

(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!

(一个孩子举例说明14×16不等于61×41)

师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!

提问:(一个孩子举例)46×61不等于16×64。

师:我们都没有计算,只有他在计算,我想问一问大家,如果看到这组对称算式,你能否判断他们的乘积是否相等呢?你看的出吗?

我看到已经有同学举起了智慧的手!

(提问)这位同学的发言有值得我们学习的地方,他想到了估算,46×61他把这两个数都往小里估,把46估成40,61估成60,结果是2400,而16×64,把它们都往大里估,把16估成20,把64估成70,结果是1400,因为40×60=2400,20×70=1400显然这里不是等号,而是一个大于号,好了同学们,我知道大家很多同学都找到了反例,但是我们知道只需要一个反例,就可以说明这个结论是有问题的,那我现在问一问大家,你们失望吗?费了那么大劲找到的结论居然是错误的,什么不失望,为什么不失望?是的,我们并不失望,因为我们最起码通过自己的努力,证明了这个结论是有问题的!哎,我想现在有些同学的心里肯定有这样的疑问;为什么老师写的算式都符合这个规律,而同学们写的算式却不符合这个规律呢?难道老师写的算式里隐藏着什么秘密吗?有吗?

(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)

师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)

得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。

【设计意图:在“找到规律——怀疑规律——验证规律——否定规律——完善规律”过程中,学生不断肯定与否定自己的想法,不再轻信别人口中甚至于书中的答案,整个课堂充满了思辨的气息。学生学到的不仅仅是数学知识,更培养了有益于一生的思维品质;不仅激发了学生的探究欲望,而且培养了思维的灵活性。】

师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。

……

【设计意图:在这一过程中,老师的一个反问,又一次激发了学生的探索欲,让学生对不同的方法进行思考、交流。长此以往,数学的奥妙、数学的美就会深深扎根于学生的心里,学生怎会不喜欢学习数学呢?】

好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!

两位数乘两位数课件(篇11)

一、教学目标:

1.知识与技能目标:

(1)、进行两位数乘两位数的估算、计算、巧算的巩固练习。

(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。

2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。

3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。

二、教学重难点

教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。

教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。

三、教学方法

启发诱导法、讲授法、探究法

四、学习方法

练习法、探究法、小组交流法、观察法

五、教学过程:

(一)引入新课

师:同学们,今天的数学课,我们先从画画开始!

(老师在黑板上画出对称图形的一半)

师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?

(让学生补充完整)

师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。

(老师点击屏幕,出现——好人)

师:大家想象着:如果在好人的后面也存在着那么一条对称轴的话,根据读音对称应该是:(大家一块说)人好。(点击第二个)我爱你——你爱我

蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!

(二)新课教学

同学们,你们知道吗,在我们学过的两位数乘两位数中也有这样的对称现象,我们今天就来复习两位数乘两位数(板书课题),让老师随手写几个两位数乘两位数的算式,好不好?

(老师出示21×36、41×28、36×42、96×46),老师写了几个算式,想一想,如果在这几个算式的后面也存在着一条对称轴,和它们对称的算式是什么?(提问)可见,在两位数乘两位数中,还真的有这样的对称现象,是不是?是!可是,老师觉得,我们就这样写出几个对称算式,也并没有什么了不起,如果我们能够发现,这每一组对称算式之间的一些秘密,那是不是就更棒了?如果我让你们去研究,那你们会试着研究什么问题呢?或者说,你们会有些什么猜想呢?有没有?你们有没有觉得这两个算式之间会有什么联系呢?

【设计意图:课始,老师利用对称算式引入,既使新知保持一种神秘感,又能让学生积极主动地投入学习活动之中。】

学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!

哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!

生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。

生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。

生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。

师:奇怪了!用估算方法算出来的每组两道算式的积有时相等,有时却不相等。那么,用估算方法能否判断每组算式的积是否相等呢?(不能)那可以用什么方法来判断呢?

生:笔算。

那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。

看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。

(学生交流计算结果)那通过我们的计算,你们能得出什么结论?

(如果孩子们得不出结论,让提出猜想的'孩子复述他的猜想)

(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):

两位数乘两位数,两个“对称算式”的乘积相等。

(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。

老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”

(老师板书)对于“不完全归纳法”,有一个非常美丽的故事:那就是华罗庚爷爷讲给他的中学生听的,今天我也想把这个故事将给大家听,好不好?听完这个故事,我们再来说一说这个结论你是否相信,好吗?

故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。

好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。

师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?

(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!

(一个孩子举例说明14×16不等于61×41)

师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!

提问:(一个孩子举例)46×61不等于16×64。

师:我们都没有计算,只有他在计算,我想问一问大家,如果看到这组对称算式,你能否判断他们的乘积是否相等呢?你看的出吗?

我看到已经有同学举起了智慧的手!

(提问)这位同学的发言有值得我们学习的地方,他想到了估算,46×61他把这两个数都往小里估,把46估成40,61估成60,结果是2400,而16×64,把它们都往大里估,把16估成20,把64估成70,结果是1400,因为40×60=2400,20×70=1400显然这里不是等号,而是一个大于号,好了同学们,我知道大家很多同学都找到了反例,但是我们知道只需要一个反例,就可以说明这个结论是有问题的,那我现在问一问大家,你们失望吗?费了那么大劲找到的结论居然是错误的,什么不失望,为什么不失望?是的,我们并不失望,因为我们最起码通过自己的努力,证明了这个结论是有问题的!哎,我想现在有些同学的心里肯定有这样的疑问;为什么老师写的算式都符合这个规律,而同学们写的算式却不符合这个规律呢?难道老师写的算式里隐藏着什么秘密吗?有吗?

(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)

师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)

得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。

【设计意图:在“找到规律——怀疑规律——验证规律——否定规律——完善规律”过程中,学生不断肯定与否定自己的想法,不再轻信别人口中甚至于书中的答案,整个课堂充满了思辨的气息。学生学到的不仅仅是数学知识,更培养了有益于一生的思维品质;不仅激发了学生的探究欲望,而且培养了思维的灵活性。】

师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。

……

【设计意图:在这一过程中,老师的一个反问,又一次激发了学生的探索欲,让学生对不同的方法进行思考、交流。长此以往,数学的奥妙、数学的美就会深深扎根于学生的心里,学生怎会不喜欢学习数学呢?】

好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!

两位数乘两位数课件(篇12)

教学内容

教科书第68页例2、例3。

教学目标

1崩斫饬轿皇减两位数的算理,掌握两位数减两位数的计算方法,会竖式计算两位数减两位数的减法,能所学知识解决生活中的简单问题。

2碧剿鞑煌的算法,继续培养学生的创新和探索发现能力。

3比醚生体验到探索发现的乐趣,获得积极的情感体验。

教学重点

理解两位数减两位数的算理,掌握两位数减两位数的计算方法,会竖式计算两位数减两位数的减法。

教学准备

教师准备

每组学生准备第68页的数位图和小圆片。

教学过程

一、复习引入

教师:我们在前面学习过两位数减一位数和两位数减整十数,下面请同学们你们掌握的计算方法算一算。43-5=47-2=51-6=22-4=43-30=47-20=78-40=42-30=

学生独立完成后,抽学生说一说自己是怎样算的,重点要求学生说出相同数位上的数对齐相减。

教师:我们在学习两位数减整十数和两位数减一位数时,要求相同数位上的数对齐相减,这节课我们学习两位数减两位数的减法,看我们原来掌握的计算方法在两位数减两位数的减法中适不适。

板书课题。

二、教学新课

1苯萄2

出示第68页的情景图。

教师:从图中知道些什么?

引导学生说出从图中知道左面有39个茶杯,右面有25个茶杯盖。

教师:茶杯和茶杯盖是一一对应的吗?

教师:求还差多少个茶杯盖,应该怎样列式?

教师:为什么要这样列式?

引导学生说出这是两个数量进行比较,把39个茶杯分成两个部分,一部分是和茶杯盖同样多的茶杯,另一部分是比茶杯盖多的茶杯,39-25就是减去和茶杯盖同样多的茶杯,剩下的就是比茶杯盖多的茶杯,也就是还差的茶杯盖。

教师:怎样计算39-25呢?我们在数位图上摆一摆小圆片。谁告诉我,先摆哪个数?然后怎么办?

引导学生说出摆39-25时,先要摆出39,再从十位和个位上分别分掉25。

教师:为什么要强调在十位上和个位上分别去掉25呢?同学们还是采什么方法来计算39-25的呢?

引导学生说出还是相同数位上的数相减的方法来计算的。

教师:同学们小圆片算一算。

学生小组小圆片拼摆计算39-25,教师作必要的

指导。学生算完后抽一组的学生在

上来摆一摆,一边摆一边说自己的计算过程,全班集体订正。

教师:如果不摆小圆片,你怎样计算39-25?让学生说出没有小圆片,可以口算或竖式来计算。

教师:把你们的小圆片收起来,大家从刚才两种算法中选一种来自己计算。

学生计算,教师作必要的指导。

教师:有选择口算计算的学生吗?说一说你是怎样算的。

指导学生指着算式说把39分成30和9,30-20=10,9-5=4,10+4=14。

教师:你认为在口算39-25时,要注意什么问题?能给同学们提个醒吗?

指导学生说出在口算时,要注意十位对着十位上的数减,个位对着个位上的数减。

教师:也就是说要相同数位上的数对齐相减,这是口算的同学提醒我们注意的。有竖式计算的同学吗?到黑板上来介绍一下你的算法。

让学生在黑板上边板书边讲解自己的算法。

教师:减法竖式的写法和加法是不是相同的呢?它们哪些地方相同?哪些地方不同呢?

让学生理解减法竖式的写法和加法很多地方都是相同的,都要先在上面写出第一个,也就是被减数,然后在第二排相同数位上的数对

齐写出减数,在减数的左边写上减号,最后相同数位上的数对齐相减。不同的是加法要写加号,而减法写减号;加法是对齐数位相加,减法是对齐数位相减。

教师:你认为在竖式计算两位数减两位数时,要注意些什么呢?

指导学生说出要注意相同数位上的数对齐相减。

教师:同学们再一次说到了相同数位上的数对齐相减,看来这个计算法则非常重要,不管摆小圆的方法算,还是口算,还是竖式计算,都要遵守这条规定,教师把这条规定写下来。教师板书。

教师:这样我们就算出还差14个茶杯盖。下面请同学们同样的方法计算出79-33和97-26,要求79-33口算,97-26竖式计算。

学生独立计算后,抽学生汇报。口算要求说己的口算过程;竖式计算的在

上展示出学生的竖式的同时,要求学生说一说自己的算法。

全班集体订正。

2苯萄3

出示第68页例3图。

教师:刚才我们学习了两位数减两位数的计算方法,下面我们这种方法来解决生活中的简单问题。这是两辆汽车,它们的座位是不一样的,你能算出小客车比大客车少多少个座位吗?

学生计算后,抽学生的作业在

上展出,让学生说一说自己的算法,在学生说算法的过程中教师作如下的追问。

教师:为什么要45-23呢?让学生说出因为这是两辆汽车的座位数进行比较,把大客车的座位数分成两个部分,一部分是和小客车的座位数同样多的座位数,另一部分就是比小客车多的座位数,所以要45-23。

教师:你什么方法计算45-23的呢?计算时要注意些什么?

要求学生明白不管是口算还是竖式计算,都要注意相同数位上的数对齐相减。

三、巩固练习

出示第69页课堂活动第1题第二横排的题目。

教师:同学们看一看这两幅小圆图,看图列出算式并口算出结果。

学生口算后填算式。

抽一个学生的作业在

上展出,全班集体订正。

教师:请同学们竖式计算43-42,56-33。

学生计算后,抽一个学生的作业在

上展出,全班集体订正。

四、课堂

教师:这节课学习了什么内容?从中你知道了些什么?计算两位数减两位数的算式时要注意些什么?

五、课堂作业

第70,71页练习九第4,5,6题。

两位数乘两位数课件(篇13)

第五单元

两位数乘两位数

整十、整百数乘整十数的口算乘法58和练习十四(第1—6题)

教学目标:

1.使同学经历整十、整百数乘整十数的口算乘法的过程,能比较正确熟练地进行口算。

2学会运用整十、整百数乘整十数的口算乘法解决简单的实际问题。

3.培养同学的观察能力,口头表达能力和演绎推理能力

教学重、难点:

引导同学发现整十、整百数乘整十数的口算乘法的规律,正确进行口算

教学准备:实物投影仪。

教学过程:

师生活动

一、 复习

1、听算:

20×5 30×6 4×70 100×5 3×200

3×200 500×3 1000×6 23×2 12×3

7×11 5×60 50×4 22×3 15×3

2、指名任选一道题说说口算方法。

3、抢答:

(1) 3个十是( )? 30是( )个十?

(2) 300是( )个百? 60是( )个十?

(3) 9个十是( )? 3个30是( )?

小结:以上的练习同学们回答的都很好,今天,我们能否用这些知识做铺垫,来学习新知识呢?

板书:口算乘法

二、、创设情境,提出问题:

1、、出示情景图:引导同学观察,邮递员叔叔每天工作的情况。同学们从图中发现什么信息?你能根据图中所提供的信息提出用乘法计算的问题吗?

2、分小组讨论交流。

三、合作交流,探究新知:

教学例1

1、 指名说说你从图中获得什么信息?可以提什么问题?根据同学回答,教师整理板书如下:

问题A邮递员叔叔工作10天,要送多少份报纸?要送多少封信?

(1) 你会解决这些问题吗?

(2) 怎么解决?

根据同学回答,师板书:第一个问题算式

300×10 60×10

(3) 说说算式表示的意义。

(4) 口算上面算式的结果。(同桌交流口算方法)

(5) 指名汇报口算方法:(可能会有以下几种)

a.300×10 因为10个100是1000,所以10个300是3000,则300×10=3000(份)

b.300×10 先算3×1=3,接着在3的末尾添上300和10后面一共有的3个0。

所以300×10=3000(份)

同理:60×10=600(封)(10个10是100,10个60是600)

2、用你喜欢的方法解决第2个问题

问题B:邮递员叔叔工作30天要送多少份报纸?要送多少封信?

(1) 同学独立解答。

a.300×30, 60×30分别表示什么?

(2) 汇报口算方法:

b.你怎么口算?

(3) 小组讨论:比较两种方法,寻找较简便的口算方法。

3、同学回答后教师引导同学小结并把课题写完整—两个因数末尾都有0

两个因数末尾都有0的乘法,口算时只要先把0前面的数相乘,再看两个因数的末尾一共有几个0。就在乘得的.积的末尾添上几个0。

四、巩固新知。

第58页做一做。(1)看谁算的对又快。

(2)指名汇报口算结果。

(3)任选一题说说你的口算过程。

五、应用知识,解决问题。

1、第60第3题。(1)独立完成。(2)同桌交流。

2、开火车口算竞赛。第60页 第1、2两题

(得数答错的同学自身编一题再答,若学习有困难的可请其他同学协助)

六、作业:第61页 第5、6题

七、小结:本节课你有什么收获?还有不明白的或需要提醒大家的吗?

认识负数课件


居安思危,思则有备,有备无患。当幼儿园教师的教学任务遇到困难时,往往都需要参考一下我们提前准备参考资料。资料一般指代可供人们参考的信息知识等。参考资料有助于我们的工作进一步发展。所以,你有哪些值得推荐的幼师资料内容呢?或许你需要"认识负数课件"这样的内容,请马上收藏本页,以方便再次阅读!

认识负数课件(篇1)

1、知识技能:了解正数与负数是实际生活需要的,会判断一个数是正数还是负数,会初步应用正负数来表示相反意义的量。

2、数学思考:通过正负数的教学,培养数感,渗透对立、统一的辩证思想。

3、问题解决:通过正数、负数的学习,培养学生应用数学知识解决实际问题的能力。

4、情感态度:从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活,应用于生活。提高学习数学的兴趣。

在现实情境中初步认识负数的意义;用正负数描述生活中的一些简单的具有相反意义的量。

1.情景引入。

①1路公共汽车在昆山宾馆站上来2位乘客,到亭林站下去2位乘客。

②本学期咱们五年级转来25名新同学,转走16名同学。

【设计意图:以现实生活素材为教学切入口,创设一种具体的生活情境展开教学,凸现数学知识源于生活的理念。同时,在记录数据的过程中,让学生因为需要而思考,因为思考而创造。】

+2、-2前面的+叫做正号、-叫做负号,正号和负号与以前学的加减号写法相同,但表示的意义却有所区别。今天我们就来学习用正数和负数表示意思相反的量。二、沟通联系,再识正负数

(1)情景呈现。

师:五(2)班的孩子,刚在外面上完一节体育课,外面可真热呀!(课件出示32℃温度计),下课后他们喜滋滋地吃起了冷饮(出示0℃),这些冷饮是工人叔叔从冰库里搬出来的(出示温度-23℃)

【设计意图:利用信息技术资源丰富、时效性强的特点,改变教材中提供冬天气温的例题,使学生的学习内容更加丰富多彩】

(2)师:这三种温度各是多少?根据刚才的学习,可以怎样表示这些温度?

小结:要找准0℃,它正好是零上温度和零下温度的.分界点。零上温度可以用正数表示,零下温度可用负数表示。

【设计意图:让学生先读数,再说说读数后的感受,培养了学生的数感。】

2.归纳正数、负数和0的关系。

师:瞧,黑板上有这么多正数、负数朋友了,谁来把他们分一分?

归纳:正数都大于0,负数都小于0.0既不是正数,也不是负数(完成板书:负数正数)。

1.读两个海拔高度,请同学们互相读一读。

2.读温度,先自己读一读,你们会把这些温度从高排到低吗?

【设计意图:充分挖掘习题功能,在展示学生个性化表达的同时,巧妙地运用信息化环境,引出正数和负数的对应关系,体会正数和负数时无限的】

(2)刘翔在美国尤金精英赛中,110米栏的成绩是13.23秒,当时赛场风速为每秒-0.4米。

如果风速是+0.4米,你认为比赛的成绩会怎样?

2.多媒体介绍负数的产生史。

【设计意图:把数学知识从课外移入课内,开阔了学生的视野,丰富了课余知识】

教材分析:负数是在学生已经认识了自然数、并初步认识了分数和小数的基础上,结合熟悉的生活情景,来初步认识负数。学习这部分内容,可以拓展学生的数概念,培养数感,也有助于培养学生的应用意识,提高学生运用数学认识世界和解决实际问题的能力。教材是根据学生已有的生活经验,选用气温和温度计这两个熟悉的情境,意在让学生感受负数与生活之间的联系,并没有复杂的概念与计算,知识层次比较浅。

认识负数课件(篇2)

  [教学目标]:

1、在熟悉的生活情境中,产生学习负数的必要性,了解负数的意义,会正确地读、写负数。

2、知道0既不是正数,也不是负数。

3、会读写温度,会比较两个温度的大小。

4、感受正、负数和生活的密切联系,享受创造性学习的乐趣。

[教学重点]:

了解正、负数的意义,应用正、负数表示生活中具有相反意义的量。

[教学难点]:

了解负数的意义及0的内涵,会比较两个温度的大小。

[教学准备]:

记录表,电脑课件等。

[教学过程]:

一、利用生成资源,体验负数产生过程

(一)提出问题,亲身体验

师: 同学们每天我们都要跟数打交道,你们对学过的数熟悉吗?

老师说几件事,你们能把听到的数据信息准确地记录下来吗?请选择自己喜欢的方式记录在表格上,关键是让别人一眼就能看懂你要表达的意思。 足球比赛,中国国家队上半场进了2个球,下半场丢了2个球。

②学校四年级共转来25名新同学,五年级转走了10名同学。

③张阿姨做生意,三月份赚了6000元,四月份亏了2000元。

学生独立填表,教师巡视收集信息。

(二)有序反馈,集体讨论

师:这样记录,大家有什么看法?(在投影上展示第一种情况。

)

生:这样无法看出是进2个球还是丢2个球。

师:都是2个球,但一个是进球,一个是丢球,意思正好怎么样?(转来和转走的意思呢?赚和亏呢?)仅仅用我们学过的数,还能区分这些意义相反的量吗? 有的同学想出了其他方法,我们一起来看。

师生交流第二种情况

师生交流第三种情况(可能不会出现这种情况)

师:快说说你怎么想到这两个符号?

生:我认为张阿姨赚6000元心里肯定特别高兴,所以用笑脸表示;而亏了2000元就用哭脸,表示她心里很难过。(其他学生发出会心的笑。)

师:看得出来,大家很欣赏这种方法。像这样用符号表示的方法还有呢?(师随即展示其他同学使用的不同符号。)同学们的想法都很有创意。可不知同学们想过没有,你用的符号你明白,他用的符号他明白,我用的我明白,但是,数学符号是数学的语言,是帮助我们相互交流的,怎样才能让大家都明白呢? 生1:需要找到一种大家都能看懂的符号。

生2:需要找到一种统一的形式。

师生交流第四种情况

师:这是哪位同学记录的?快说说你的想法。(这位同学真了不起,你的做法和数学家的是一样的,这种表达有什么好处?)

小结:现在人们就是用这样的数来区分意义相反的量。想上面这样的数都是什么数吗?

生1:正负数

师:板书正数负数

二、认识负数

1师:板书,把六个数分两类,板书在黑板上,会读吗?并让生起读。 师:很明显,这里用到的+号与-号在这里又有了想的意义,正号与负号

2快速抢答:师出示-7

+4.1 35

讨论35是什么数。 +4\5 -5.2-1\3

师:为了简便,+35可简写成35,如果去掉正号,这些数你们熟悉吗?负数前面的负号能去掉吗?

刚才通过分析与讨论我们已经认识了正数与负数,关于正数与负数的认识我们中国有着悠久的历史。古代人遇到这样问题时也想出了不同的方法。想了解下吗?

3一起走进负数的历史,出示小资料,看到这,你有什么感受?

师:"(是啊,我们的祖先早在2000多年前就发现了负数,比西方国家

要早数百年,身为中国人,我们应该感到无比荣耀)而刚才同学们通过自主学习,也发现了生活中的负数,老师更为你们感到骄傲."

接下来的时间就到我们自己的生活中了解负数,认识负数,好不好。(完整板书)

你在生活中哪儿见到过负数吗?生举例,师出示计算器、存折、电梯和天气预报里的负数。

(二)重点理解,体会负数

1、温度的.读法

课件出示:这是二月份某天的气温情况:

上海:0℃——8℃ 北京:-5℃——5℃ 哈尔滨:-15℃——-3℃ 谁愿意当小播报员,来播报这3个城市的气温?

生读:零摄氏度——(零上)八摄氏度零下五摄氏度——(零上)五摄氏度

零下十五摄氏度——零下三摄氏度

他把负数的温度读做零下几摄氏度,你读的和电视台的主持人一样规范。 还有不同读法吗?

生读:负五摄氏度 负十五摄氏度 负三摄氏度

他们读的有什么不同?两种读法都可以吗?

2、0度的理解

北京气温中的-5℃和5℃,这两个5表示的温度一样吗?(不一样,一个是正数,一个是负数)或(不一样,一个在0℃以下,一个在0℃以上)他比得很有特点,都在跟谁比?(0℃)在0上的是正数,在0下的是负数,

看来先确定0的位置很重要。0上的是正数,0下的是负数,这说明0是正负数的??

(看来0刚好是正数和负数的分界点) 板书:0

师:那气温是0度的时候是什么感觉啊?(课件出示:瑞典的科学家摄尔休斯把水结冰的温度定为0摄氏度。这几天我们这里的温度如何?当温度降到0摄氏度,你的手里也捧着冰时,你有什么感觉?)

3.在温度计上拨出-5---5

师:测量温度常用的工具是什么?介绍温度计(出示教具)这是一个大号的摄氏温度计,一个小格代表1摄氏度,中间红色的这一稠带代表水银柱,上下可以动,你们能在温度计上表示温度吗?同学们想想看,刚才这些温度如果在温度计上如何表示呢?

师:谁能把5摄氏度表示出来?(请一生上来拨一拨,并说拨的过程) -5摄氏度的位置也表示出来吧。怎样才能把-5的位置表示出来呢?怎样才能表示出0下的温度呢?

在这样温度计上即要能表示出0上的温度,又要表示出0下的温度,先得找到谁的位置?

师:“为什么要先确定0摄氏度的位置?”老师再把温度计上表示出刻度。 再让生拨一拨,

(2)-15℃和-5℃

再拨出-15℃,将-15℃和-5℃比较, -15℃和-5℃哪个更冷?

你怎么知道?(零上的是数字越大越暖和,零下的是数字越大越冷) 课件出示哈尔滨的冰雪图,想象一下如果此时你站在哈尔滨的冰雪大世界里,-15℃的温度,你会有什么感觉?用动作或表情表示一下

(3)最冷的温度

这还不是中国最冷的地方呢!中国最冷的地方在漠北地区:-52.3℃

如果在这张温度计上再画下去,大约在哪里?比划一下

你知道世界上最冷的地方在哪里吗?南极-94℃ 北极-74℃

在温度计上大概在哪个位置

你知道中国最热的地方在哪里吗?新疆的吐鲁番 摄氏46多度吧

在温度计上大概在哪个位置

三、结合具体情境,渗透数学思想

(1)整理范围 对于黑板上的这些数,可以怎么分类?

刚才我们在温度计上了解了一些正数负数,你还能再说几组正数和负数吗?举得完吗?那用一个什么符号表示?说明什么?

正数的个数是无限的,负数的个数也是无限的。

(2)比较大小:假如老师把温度计横着放了,这就像一条数轴,中间是0(板书:0)

①在数轴上,0的右边都是什么数?越往右的数会怎样?

0的左边都是什么数?越往左的数会怎样?

那所有的正数跟0比的话有什么关系;那么所有的负数跟0比呢? ②负数、0、正数三者比较,谁大谁小?

板书:负数<0<正数

四、在情境中提升对正负意义的理解

下面我们就应用今天所学的知识来解决一个实际问题。

1、王叔叔要到5楼开会;李阿姨要去地下一层停车场取车,他们分别要按哪个键?

2、通常我们规定海平面的海拔高度为0米,

珠穆朗玛峰的海拔高度记作( )米,

吐鲁番盆地的海拔高度记作( )米。

3、下图中,每个小格为1米,小华刚开始的位置在0处。

认识负数课件(篇3)

认识负数

教学目标:

1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

教学重点:初步认识正数和负数以及读法和写法。

教学难点:理解0既不是正数,也不是负数。

教学具准备:多媒体课件、温度计、练习纸、卡片等。

教学过程:

一、游戏导入(感受生活中的相反现象)

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

说明什么是相反意义的量(意义正好相反)

3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例

1、认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

负号能不能省略不写?为什么?

② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

四、小组讨论,归纳正数和负数。

1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

2、学生交流、讨论。

3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

① 如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

4、小结:什么是正数、负数?

师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0.5、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

五、联系生活,巩固练习

1.练习一第2、3题

2.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 。

3.讨论生活中的正数和负数

(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)

(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

六、课堂小结

这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

第一课时教学反思

经过一学期“生本对话”课题研究,全班已基本形成课前自学的习惯。在此基础上,本学期提高了对预习的要求(不仅要完成课后“做一做”,而且要尝试提出有思考价值的数学问题),也想逐步改变教学方式,以学生的问题带动全课的教学推进。

今天,学生在例1环节只提出了教材中的一个问题“16℃和—16℃的意义相同吗”,并追问了“为什么”,再无其它疑问。对于“为什么”也回答得很清晰,看来生活积淀为负数的学习打好了坚实的基础。在此,我补充了认识温度计上的温度这一知识点。主要出于以下两点考虑:一是为第二课时数轴上表示正负数做准备;二是联系生活实际,提升学生的数学应用意识。我所绘制的温度计是以5℃为一个单位长度,在练习中发现部分学生读或指温度时有错误,主要是—16℃与—14℃易混淆。在此引导学生辨析,并教给他们方法。

在例2中学生质疑的问题明显增加。有(1)“正数、负数的意义是什么”;(2)“正数、负数的区别是什么”;(3)“为什么0既不是正数,也不是负数”;(4)“算式中的会有负数吗?如果有,它和减号如何区分?”其中前三个问题是本节课内容,后一个问题涉及到初中的代数知识。学生们答疑的水平较高。如第一问,回答问题的学生不是像教材那样用举例子的方式来描述正、负数的意义,而是用抽象概括的语言总结其含义。“大于0的数是正数,小于0的数是负数”,多棒呀,看来学生的能力不可小瞧!第三个问题是由我解释,从而帮助学生了解其原因。最后一个问题为帮助学生更好实现中小衔接,我也进行了补充介绍,提升他们的学习兴趣。

但学生的此次质疑还不够全面,主要表现在对读法较忽视。为此,我补充提问了“+”号可以省略吗?省略后怎样读?它还是正数吗?“—”号可以省略吗?为什么?怎样读?强调读法及正负数的表示方法。

最后,根据本班学情,我补充了下列练习,提升综合应用能力。下面记录的是3位学生的期末数学考试成绩。以他们的平均成绩为标准,把平均分记为0分,超过平均分记为正、不足的分数为负,在表格中用正、负数表示他们的分数。

认识负数课件(篇4)

认识圆

教学目的:

1.知识目标:掌握圆各部分名称以及圆的特征;会用圆规画圆。

2.能力目标:借助动手操作活动,培养学生运用所学知识解决实际问题的能力。

3.情感目标:渗透知识来源于实践、学习的目的在于应用的思想。

教学重、难点:掌握圆各部分的名称及圆的特征。圆的画法的掌握。教具准备:多媒体课件、圆规、直尺等

学具准备:各种不同的圆形实物、剪刀、彩笔、直尺、圆规、圆形、纸片等 教学主要过程:

一、结合实际、谈话引入新课。

谈话引入:今天非常高兴能和六

(五)班同学一起来学习、研究一个数学问题。我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?(生举例 师强调——指物品的表面)

师:看来大家平时非常留心观察。课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?

师:把它们举起来,大家互相看一看。回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)

(圆是没有棱角的,边是弯的;圆的边是一条曲线。)

师:同学们观察得真仔细。圆的边是弯曲的,跟以前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。(板书课题)

二、引导探究新知。

1.导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。最后看看谁的收获多。(1分钟)

2.学生动手操作,讨论交流。几分钟后分别从圆心、半径、直径各方面纷纷展示汇报。(5分钟)

师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。

3.展示探究结果,结合多媒体课件辅助,完整认识圆的特征。(8分钟)

谁来告诉老师,你有哪些新发现?那是什么原因呢?你怎样发现的?

结合学生交流、汇报探究结果,及时引导梳理。主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。

预设板书:

圆的认识——平面曲线图形。

圆心(o)圆中心一点确定圆的位置。

半径(r): 线段连接圆心到圆上任意一点确定圆的大小长度都相等〈在同一个圆里〉。

直径(d)线段通过圆心两端都在圆上长度都相等〈在同一个圆里〉。

半径和直径的关系 d=2r r=d/2。

4.学习画圆(5分钟)

你是如何画圆的?

课件展示如何画圆。然后学生动手练习,并强调画圆时应该注意些什么。——揭示圆大小位置的确定

学校要修建一个直径是20米的花坛,你能帮学校画出这个圆吗?生演示操作。

三、应用拓展。

1.基本练习(4分钟)

〈1〉投影出示,找出下列圆的半径 直径。

〈2〉半径、直径的相关计算。

〈3〉概念的判断和识别。

2.应用练习。(10分钟)

〈1〉车轮为什么做成圆形的,车轴应安装在哪?如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示

〈2〉你能用今天学习的圆的知识去解释一些生活现象吗?(举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?平静的湖面扔一小石子,会有什么变化?为什么?月饼为一般都做成圆形的,为什么?)

看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

〈3〉同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个迷语。有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面)先请同学们猜测一个字。(很多学生都说可以猜“样”)再学生猜两个字的水果名,学生在启发下猜出草莓(草没的谐音)。

师:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的最大范围有多大好吗?(用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的最大范围是一个圆,拴羊的绳子与这个圆有什么关系吗?(是这个圆的半径)钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),这说明圆的半径与圆心与圆有什么关系呢?(圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。)

四、总结全课(3分钟)

1.质疑(篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)

2.这节课你都学会了什么?

不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。(句号是圆形的)

延伸:

1.用圆作画。

2.谈谈我眼中的圆。

认识负数课件(篇5)

我说课的内容是人教版数学六年级(下册)第一单元负数的第一课时,本课知识点包括第2~3页列1、列2及相应的“做一做”

《负数》是学生已经认识了的自然数、并初步认识了分数、小数的基础上进行学习的、负数的引入是数系的一次扩展。通过学习,可以适当拓宽学生对数学的认识,并对学生进一步理解有理数的意义以及进行有理数的运算打下基础。

本课的目标有三个:

1、在熟悉的生活情境中了解负数产生的背景,初步认识负数,知道负数和正数的读写方法,知道0既不是正数也不是负数。

2、通过观察和讨论,分析比较,培养学生的观察能力和概括能力,并在教学中渗透对立、统一的辨证思想。

3、通过实列巩固,让学生感知到数学知识来源于生活,应用于生活,提高学生学习数学的兴趣。

本课的重点是认识负数,理解运用正负数表示具有相反意义的量,而对0的认识以及理解正数、负数与0之间的关系是本课的难点。

为了很好的达到本课的教学目标,我设计了以下几个教学环节:

我们都知道,课堂应该是点燃学生智慧的火把,而给予他火种的是一个个具有挑战性的问题,于是,我改变原有课本呈现的室内室外温度教学,一开始,让学生记录三条意义完全相反信息,(课件出示)让学生先独立思考,选择自己喜欢的方法记录,并强调要让别人一眼就能看明白。等学生用形形色色的方式记录完以后,我紧接着又抛出一个问题:刚才大家表达的只能自己明白,能不能找到一个统一的记录方法呢?让学生利用小组交流,优化方法。

创设这三个情景,其目的有两个:一、这些情景都是学生比较熟悉的,比赛中的进球丢球;学生的转进转出;生意的盈利亏损比教材中的温度学习更能激发学生的学习兴趣。二、这些情境中隐含了本节课的重点,用正负数来表示相反意义的量,我也预设学生可能出现的答案,,比如有用符号“√”“×”来表示,还可能会用箭头来表示,用文字表达,当然,也有学生会用正负数来表示,虽然他们的答案形式各样,但都有本质上的联系,在小组合作讨论中动态生成学习目标:认识负数,用正负数来表示意义相反的量,这里不禁让人觉得“负数”真是一场“及时雨”啊!这样的引入,使学生自身产生“需要找到一种统一的形式”的内需,这时的学习,已化被动为主动。引出负数后,我又适时的介绍有关负数的小知识,(出示课件)让学生感受到我们的祖先是最早认识和使用负数的,这是多么的了不起啊!

学习完了上一环节后,我让学生联系生活,想一想生活中的负数,从每天都有的天气预报入手引入四个城市某日用温度计测出的天气情况,要求学生读出温度计上的温度,初步明确零上温度和零下温度的不同表示方法。这里学生边读,教师边板书。在介绍完温度计的基本知识后,让学生动手拨出5℃和零下5℃,(课件出示)学生在没有给出0刻度的温度计上轻易的拨出了5℃,但是学生在拨零下5℃时,发现应该确定0℃。加深了他们对分界点0的认识。设计学生拨一拨这个环节,其目的有两层意思:一、由静态化为动态,通过小小的“拨”,唤起了更深层次的思考,是学生明确感悟到:温度中,0℃是区分零上温度与零下温度的分界点,比0℃高的用正数表示,即正数都比0大,比0℃低的用负数表示即。其二、学生动手操作,兴趣盎然,即将正数、负数、零的概念有机的整合到了一个新的概念中,实现了对0的再认识,突出了本节课的教学重点,通过对0的质疑,突破了0既不是正数也不是负数的难点。

接着,用课件出示银行存折上的存入与支出情况,(课件出示)通过让学生说一说存折上的各数表示什么,使学生更进一步的认识正负数。介绍正负数的读写方法时,通过领读、齐读等不同的形式巩固正负数的读法。并指出正数书写时可以省略+号,通过提问强调负数在书写时不能省略负号。

既然负数是在生活发现的,那么我们就应该“取之于生活,用之于生活”,在练习环节,我为学生提供了大量生活中的信息,运用数学知识解决自己身边的问题,使学习变得既有趣又有用。

这一环节中我设计了三种练习:

1、基础性练习:以书上做一做第一题为基础,我将题型以“快速抢读并判断”的游戏方式出现来刺激学生的思维,既能活跃课堂气氛,又能在不知不觉中让学生熟练的掌握知识。再用书上做一做第二题作巩固,山峰的海拔高度和盆地让学生再次感受“份额数真的是无处不在”啊!另外我还增加了一个类似的习题,多样化的练习,既不枯燥,又检查了学生对负数的理解。

2、形成性练习。课件演示平时生活方位中的负数,向北走几步,向南走几步,这些不仅针对教学重点“用正负数表示意义相反的量”,而且又紧密联系生活,学生好学、乐学。

3、拓展性练习。我借助刘翔这个不仅是小学生会关注、大人会关注乃至全世界都会关注的任务的跨栏成绩的研究,把学生的积极性提到最高处。刘翔比赛时风速是每秒-0.4米,-0.4米/秒是什么意思呢?这里给予学生讨论的空间,并用肢体语言表示出来,借助两位同学的表演相对而跑,造成风向阻力,揭示出负数是表示相反意义的数。再让学生想想如果风速是每秒+0.4米,又会出现什么情况?这些有价值的问题,我想,学生是愿意去思考的。

这个环节主要让学生总结本节课的知识,并说说有那些地方需要提醒其他同学注意的,这种生生互动,效果远比教师总结好得多。为了提高学生对负数知识的学习兴趣,提问:你还想了解那些与负数有关的知识?这样,不仅能让课堂画上圆满的句号,还激发了学生继续探究的热情!

认识负数课件(篇6)

【教学目标】:

1、在具体情境中了解负数产生的背景和意义,认识负数,掌握正、负数的读、写法,知道正负数和0的关系。会用正、负数描述现实生活中的现象。

2、培养学生观察、比较、联想、猜测推理等思维能力和独立思考、合作交流等学习能力。

3、让学生体验数学和生活的联系,获得积极的情感体验,进一步激发学习数学的兴趣。

【教学方法】:

情境创设法、观察比较法、小组合作法、归纳概括法等

【教学过程】:

一、提出课题,直接引入。

(同学们,今天我们一起来学习一种新的数,叫负数(板书),大家有听说过吗?见过吗?)(控制语速)语速

(学情预设)S:电梯:电梯按钮去1楼以下的;天气预报,温度计:温度计上0度以下都用负数来表示;股票,涨跌;水表,电费......

二、初步认识负数

1、你会写这样的负数吗?在本子上试试,谁上来写?

T:如果我接下来请同学上来写一个负数,下面再请几个,最好和他们写的不一样。(请学生上台写出自己心中的负数)T:好,谁能在

图里面写上负数(叫5个学生)记住,如果能写得跟别人与众不同的,那就是最棒的)

2、他们写的都是负数吗?你是从哪里看出来的他们是负数的?

3、谁来说说负数有什么特点?

T:有人认为这是减号;有人认为这是负号。其实,这个符号在运算过程中是减号,在单独的数字上则是负号。

T:除了这个特点,还有什么共同的特点吗?(预设)S:负数都要比0小。

T:真棒!这位同学不仅看到了负数的表面,还看透了负数的本质。透过现象看本质,火眼金睛。谁能来总结一下负数的特点。

(预设)S:负数有负号而且比0小。(你说呢?多叫几个学生,进一步巩固负数的特点)

T:恩,说的真不错。好,同桌之间说一说。说完以后在纸上写几个负数。(实物投影展示一两个)再同桌之间相互读一读,学生读完时,请大家一起读一读黑板上面的负数。

三、认识正数

T:数学就是有意思,既然有负数,那么相对的,肯定有(S:正数)

T:谁能上来写一下正数,一人写一个,有没有跟他们不一样的(直到学生写+)(此环节要注重分析:先确认有+号的一类是正数(0有意先避开,再告诉学生没正号的、我们以前学过的1、2、3……都是正数,再去突破0)

T:我也写个数,0,认为是正数的请举手;认为是负数的请举手;没有举手的请举手,好,你来说一下为什么不举手?(预设)S:0既不是正数,也不是负数。(如果学生答不上,就告诉孩子0既不是正数,也不是负数)

(这一环节一定要看学生的反应,临场发挥)

T:为什么呢?也就是说正数要有什么共同的特点?T:好我们来看这些同学写的数,有什么不一样?

(预设)S:有正号(T:+号在运算中是加号,在单独的数字上则是正号)

T:那不写正号还是正数吗?(预设)S:是。

T:看来有没有正号不是正数的关键;那你认为,正数的的共同特点是什么?

(预设)S:比0大。

三、借助数轴感知负数、0、正数之间的关系。

T:好的。刚才说到0,0除了表示数,还能表示什么?

(预设)S:表示起点。 T:好的,这是数轴(PPT出示数轴),负数应该写在0的哪边?

(预设)S:左边。

T:(PPT数轴显示负数)没有负数的时候,数轴是一条什么线?(射线)有了负数呢?(直线)而这个0就是他们的(分界点);

T:(出示PPT5个-2)这里有5个-2,四人小组讨论下,然后把这里-2的意思按你的跟同学说一说。 【生活举例,深入体会分析】

【海平面】T:某盆地的海报高度是-2.我们先来看第一个-2,谁已经理解盆地海拔-2米的请举手,先给大家介绍一下海拔?听懂的请举手,掌声送给他。(PPT出现海拨)盆地在哪里?这个盆地是要比什么还要低?为了准确的表示某一个地方的高度,我们都把海平面所在的高度看成什么?(0米)好,现在谁能换句话说说某盆地的海报高度是-2米,是什么意思?好,下面鲍老师随便点一个地方,你觉得它的海拔高度是正数还是负数?有谁知道我们地球上最高的海拔高度在哪里吗?最低的呢?这2个数一正一负,分别表示什么含义,你能不能,结合海平面来具体的说一说,同桌一人说一个

【气温】T:路桥最低气温-2,第二个-2,这是温度计,画的好不好?对不对?确定吗?很坚决,那好,我也带了了4个温度计,大家找找哪个才是真正的-2°。同意第一个举手……千万不要看他是0下面一格就是-2摄氏度。来说说这些是几度?

【楼层】T:张老师把车停在-2楼。第三个-2,楼房中什么是0?(预设)S:地面

【银行卡】T:(第四个-2,我的银行卡还剩-2,PPT显示)这个专业术语叫透支。想知道鲍老师为什么卡里还剩2块钱吗?(PPT显示)我的银行卡还剩98元,买电影票用去100,还剩(),买爆米花又刷去10元,还剩()。回到银行,赶紧给卡里冲了200元,现在卡里还剩()。

【身高】T:我弟弟身高记作-2cm,到底是什么意思?

T:(PPT出示我国13岁男孩的平均身高约是150cm)现在知道-2cm是什么意思了吗?谁来说一下?

(预设)S:比平均身高矮2cm

T:在这里我们把哪一个身高看做了0,如果用140cm做标准,我每指一个人,看你能不能理解他真正的身高是多少?这里有一个人的身高很标准,谁?因为他是0,正好是平均身高(+3,143;-2,138;-4,136)看来身高能成为负数,那体重能不能成为负数?

T:我们在做这些题目的时候都在找一个数,是什么?(预设)S:0 T:我们现在回顾一下,这里的5个负数都是用谁当做0的?看谁反应快,我就知道谁今天掌握的做好。

T:这些0都一样吗?(预设)S:不一样。

T:是的,有的时候0是约定俗成的,有的时候是要去规定的所谓的“0”也就是标准,

四、小结揭题,质疑延伸。

这节课要结束了,回头反思一下,感觉有收获吗?关于负数,你还想了解些什么呢?

五、总结:

正数都比“0”大

负数都比“0”小

0既不是正数也不是负数

教学反思

《认识负数》一课是让学生了解负数产生的背景,初步认识生活中的负数,感知负数在生活中的广泛应用,并让学生借助数轴,学会比较负数的大小。负数在生活中比较常见,但这个概念对学生来说是陌生的,因此我在教学时紧密联系生活,把生活中的负数引入课堂,使学生既感到熟悉,又感到亲切。本班学生思维活跃,课堂上能从多个不同的角度积极提出问题,并解决问题,全员参与,热情高涨。应当说在学生的共同努力下,本节课比较好地完成了预定的教学目标。

不足之处:

对学生的知识结构了解不深,有些内容设计的不够谨慎和细小,比如数轴的认识,课中只能是描述性的定义,只要让学生会在数轴上表示正数、0和负数就可以了,应该再加入比大小的部分,使得知识更加贴切和牢固。

认识负数课件(篇7)

教学内容:

六年级下册第2~4页例1、例2。

教学目标:

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

教学重、难点:

负数的意义。

教学过程:

一、谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

二、教学新知

1.表示相反意义的量。

(1)引入实例。

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

① 六年级上学期转来6人,本学期转走6人。

② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

④ 一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

(2)尝试。

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法。

……

(3)展示交流。

……

2.认识正、负数。

(1)引入正、负数。

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试。

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识。

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

① 同桌交流。

② 全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:… …)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”。

(1)看一看、读一读。

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

哈尔滨:-15 ℃~-3 北京: -5 ℃~5 ℃ 深圳: 12 ℃~23 ℃ 温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说。

我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

你能很快找到12 ℃、-3 ℃吗?

(3)提升认识。

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

(4)总结归纳。

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

(完善板书。)

5.练一练。

读一读,填一填。(练习一第1题。)

6.出示课题。

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

7.负数的历史。

(1)介绍。

其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放): “中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:?两算得失相反,要令正负以名之古代用算筹表示数,这句话的意思是:?两种得失相反的数,分别叫做正数和负数并且规定用红色算筹表

示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

(2)交流。

简单了解了负数的历史,你有什么感受?

《认识负数》教学反思

六年级下册的第一堂数学课就是《认识负数》,对于学生来说是一个全新的概念,但又不是一无所知,可能在平时的生活中见过或听过。因此在备课时从教材出发,又和生活联系起来,设计了一个让学生熟悉而又觉得有趣味的教学过程。

一、从生活实际出发,引出课题

课的开始从“剪子包袱锤”的游戏入手,通过游戏让学生感受到相反的意思,为学好负数的意义做好铺垫。学生玩得很开心,在玩的过程中,学生首先建立一个表示相反意义的量的意识。接下来,她又设计了让学生根据信息记录相反意思的量,从而引出了负数的意义,并要求学生读、写负数,让学生感受到正数、负数都有无数个,就有了负数的集合,这样抓住了负数与过去所学的数之间的联系,感受了数的发展。

二、交流信息,使学生感到负数在生活中的广泛应用

在学生已经认识负数之后,利用温度计,使学生进一步理解0与正负数之间的关系,紧接着又列举了生活中的一些实例:坐电梯到地下的楼层应按哪个数字键?冰箱里的鱼、水中的鱼、刚烧熟的鱼该与哪个温度相连?海平面是怎么回事?高山和地面的高度如何测量,又如何表示?东、西方向的数轴是怎么回事?这部分内容的安排通过借助生活实例让学生对负数有了更深一层的了解,并在解决这些问题的同时,使学生感知负数在生活中的广泛应用,为学生解决生活中的问题奠定了基础。

三、巧妙利用时机,对学生进行爱国主义教育。

在小学数学教学中有机渗透德育教育,也是新课标倡导的理念之一,这节课上,在对学生进行负数产生史介绍时,让学生感受到了中国人民的勤劳与智慧,增加学生作为一个中国人的自豪感。在课的最后,胡老师安排了刘翔跑步中的风速问题,既让学生感受到可以利用负数的知识,解决生

认识负数课件(篇8)

第一课时:

认识负数(一)

教学内容:

苏教版五年级数学下册 第一单元 P1—3 练习一 1—5题

教学目标:

1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。

3、体验数学与日常生活密切相关,、激发学生对数学的兴趣。

教学重点:

在现实情景中理解正负数及零的意义。

教学难点:

用正负数描述生活中的现象。

一、教学例1

1、情境引入。

电脑播放天气预报片头

师:老师收集了某天四个城市的最低温度资料,并用温度计显示。

2、教学用正负数和0表示几个城市某一天的最低气温。

出示图片:香港19摄氏度

师:那一天香港的最低气温是多少度?

师:你是怎么看出来的?

老师介绍温度计的看法。

出示图片:上海3摄氏度

师:上海的气温是多少摄氏度?

出示图片:南京0摄氏度

师:南京呢?和上海比,南京的气温怎样?

出示图片:北京零下3摄氏度

师:和上海比,北京的气温怎么样?

同时出示上海、南京、北京三地的气温图片。

师:上海和北京的气温一样吗?

师:在数学上怎样区分零上3摄氏度和零下3摄氏度的呢?

3、介绍正负数的读写法。

师:规定零上3摄氏度记作+3摄氏度或3摄氏度,规定零下3摄氏度记作-3摄氏度。

教学正数和负数的读写法

师:“+3”读作正三,再写的时候,只要在3前面加一个“+”——正号,“+3”也可以写成3。“-3”读作负三,书写时,只要先写“-”——负号,再写3。(教师板书)

师:现在,我们可以说那一天上海的气温是+3℃,北京的气温是-3℃

4、练一练

(1)选择合适的数表示各地的气温

(2)小小气象记录员

二、感知生活中的正数和负数。

1、认识海拔高度的表示方法

师:从上面的资料中可以看出,不同的地区有温差,在我国同一地区同一天也有很大的温差。

出示教科书上的“你知道吗”

2、练一练

三、描述正数和负数的意义

出示:+3,-3,40,-12,-400,-155,+8848

师:你能将这些数分分类吗?按什么分?分成几类?小组讨论。

师:象+3,40,+8848这样的数都是正数,像-3,-12,-400,-155这样的数都是负数。

师:从温度计上观察,0摄氏度以上的数都是正数,0摄氏度以下的数都是负数。海平面以上的数都是正数,海平面以下的数都是负数。

师:0是正数和负数的分界线,0既不是正数也不是负数。正数大于0,负数小于0。

练一练

1、先读一读,再把数填入适当的框内。

-5,+26,9,-40,-120,+203

正数 负数

2、每人写出5个正数和5个负数。

读出所写的数,并判断写的是否正确。

3、出示“你知道吗?——中国是最早使用负数的国家”

小结:今天这节课,你有哪些收获?

四、寻找生活中的正数和负数。

师:在生活中,在哪里见到过负数?

学生说出存折,电梯面板等等,并要求说明这些负数的意思

练习一 4

选择合适的温度连一连

冰箱中的鱼 水中的鱼 烧好的鱼

认识负数课件(篇9)

教学内容:

苏教版五年级数学下册第一单元P3-5练习一6-10题

教学目标:

1、使学生在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。

2、体验数学与日常生活密切相关,、激发学生对数学的兴趣。

教学重点:应用正数和负数表示日常生活中具有相反意义的数量。

教学难点:体会两种具有相反意义的数量。

教学具准备:教学挂图、温度计

教学过程

一、复习导入

读一读,分一分。

+3000+4200-1800+2700-900+3700

正数负数

二、教学例3

1、情境引入。

师:老师收集了新光服装店今年上半年每月的盈亏情况,列出统计图。

月份一二三四五六

盈亏(元)+3000+4200-1800+2700-900+3700

2、教学用正数与负数表示盈亏情况的具体意义。

师:通常情况下,盈利用正数表示,亏损用负数表示。

表中哪几个月盈利?哪几个月亏损?

从表中你还能知道些什么?

3、试一试

根据新光服装店去年下半年的盈亏情况,填写下表。

七月份:亏损1200元;八月份:亏损850元;

九月份:盈利2500元;十月份:盈利4300元;

十一月份:盈利3700元;十二月份:亏损250元;

月份七八九十十一十二

盈亏(元)

介绍一下服装店七至十二月份盈亏情况。

三、教学例4

1、出示情境图,辨别方向。

2、教学用正数和负数区别表示相反方向运动的路程。

师:小华从学校出发,沿东西方向的大街走了2100米,到了什么地方?

生:小华如果向东走2100米,到达邮局。

小华如果向西走2100米,到达公园。

师:如果把向东走2100米记作+2100米,那么向西走2100米可以记作什么?

师:可以把向西走2100米记作+2100米吗?那么向东走2100米记作什么?

3、表示南北方向运动的路程

从学校出发,沿南北方向的大街走1240米可以走到哪里?根据行走的方向和路程,分别写出一个正数和一个负数。

在小组里说说你的想法。

4、试一试:

(1)你会填一填、读一读吗?

-5-2-10124

说一说你是怎样想的?

(2)-2接近2,还是接近0?

正数和负数在数轴上的排列方向是怎样的?

5、练一练

1、小明家今年六月份收入和支出的记录。你能说一说小明家各项收入和支出的情况吗?

2、(1)如果张军向东走30米,记作+30米,那么李刚向西走52,记作()米。

(2)如果张军向北走40米,记作+40米,那么李刚走-40米,表示他向()走了()米。

四、巩固练习。

练习一第6题。

某市20xx年每个季度的平均气温如下表。

季度第一季度第二季度第三季度第四季度

平均气温(℃)-101520-5

你能在温度计上表示出这些温度吗?

练习一第7题。

你能在括号里填上合适的数吗?

(1)升降机上升8米记作+8米,下降5米记作()米。

(2)一幢大楼18层,地面以下有2层。地面以上第3层记作+3层,地面以下第1层记作()层,地面以下第2层记作()层。

(3)学校举行自然科学知识竞赛,抢答题的评分规则是答对一题加100分,答错一题扣10分。如果把加100分记作+100分,那么扣10分应记作()分。

练习一第8题

你能说说存折中红线框处的数各表示什么吗?

妈妈于6月10日又存入2000元,在存折上应记作()元;6月25日取出400元,在存折上应记作()元。

阅读:你知道吗?

五、全课总结

布置作业:练习一第910题。

[课后札记]

认识负数课件(篇10)

【教学过程】

课前谈话:

同学们,在我们生活中,存在着很多意义相反的现象,比如说……你能举出一些这样的现象吗?

一、用正号和负号记录相反意义的量

1.师:像这样相反的现象,在我们学校也是随处可见的,比如说:(出示班级人数变化表)你们班本学期的人数和上学期相比,发生了什么变化?其他班呢?指名说说。

有的班的人数……了,有的班的人数……了,人数增加和减少是一组表示相反意义的量,你觉得老师这样记录能把他们区分开来吗?那你有更好的方法进行记录吗?用你自己喜欢的方法记录。

学生填表。

指名展示台上反馈,说说自己的想法。

师:你觉得哪一种是最具有数学味的?这样记录有什么好处?

是的,数学家们也喜欢采用这种既简洁又方便的方法来表示这样具有相反意义的量。而加号和减号在这里应该读作正号和负号,现在你会读这些数吗?谁来试一试?师带大家读。那我们就一起用正号和负号重新记录一下好吗?

2.师:现在你会用正号和负号来记录其他表示相反意义的量吗?(出示)

一辆公共汽车经过某站台时有12人上车,7人下车。

张阿姨二月份存入2900元,三月份取出1200元。

一个蓄水池夏季水位上升0.05米,冬季水位下降0.04米。可以怎么记录?

二、教学例题

1.师:老师收集了几个城市同一天的最低气温,我们一起来看一看:(出示城市图片和温度计)

放大温度计:这是什么?你会看温度计吗?怎么看?谁能来给我们介绍一下?(师借机说明℃和?SPAN>F)

红色液柱显示:上海零上4℃南京0℃北京零下4℃

师:上海的气温是多少?南京呢?北京呢?那我们可以怎么记录这三个城市的气温呢?(板书)+4℃也可以省略正号写成4℃,(师板书)那么负号可以省略吗?为什么?

2.师:还有三个城市的气温,你也来试着记录一下好吗?

出示:香港19℃哈尔滨-11℃西宁-7℃

学生记录,展示台上反馈。

3.这一天南极的温度是—40℃,赤道的温度是40℃。

如果把我们的温度计分别拿到南极和赤道,会有什么反应呢?你能在温度计上画一画吗?

展示台上反馈。

4.出示例2:比海平面高8844米 ,通常称为海拔高度8844米,我们可以怎么记录?比海平面低155米呢?

师:我国最大的咸水湖——青海湖高于海平面3193米,可以怎么记录?世界最低最咸的湖——死海低于海平面400米呢?

某地的海拔高度是0米,你是怎么理解的?

5.练习一2

三、分类归纳

师总结:你们觉得这些数面熟吗?像……这样的数我们就叫它……(正数)是的,正数其实都是我们以前学过的数,那么这样的数呢?(都是负数),而负数是我们这节课刚认识的。(板书课题:认识负数)0呢?是什么数?师画出数轴。

负数是不是就只有这么几个呢?你能不能再举几个例子?说得完吗?那我们应该加上什么?(……)正数呢?

你在生活中有没有见到过负数?(浏览)

四、巩固练习

1.P3练一练1

2.练习一5(增加:我国成功发射的飞船在太空中向阳面的温度为100℃以上,而背阳面却低于-100℃,但通过隔热和控制,太空舱内的温度始终保持在17-25℃,非常适宜宇航员工作。)

读了这些数,你有什么感受?

3.练习一4

4.实验中学对初三男生进行了引体向上的测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示:

5.某食品厂生产的120g袋装方便面外包装上印有“(120±5)g”的字样,小明购买一袋这样的方便面,称一下发现只有117g,请问厂家有没有欺骗行为?为什么? 你知道他们分别做了几个引体向上吗?

认识负数课件(篇11)

教学内容:

教材第3-4页的例3、例4,以及“试一试”、“练一练”,练习一第5-8题。

教学目标:

1.能在盈与亏、收与支、升与降、增与减及相反方向运动等现实的情境中准确地应用负数,进一步理解负数的意义。

2.通过用正数和负数表示一些具有相反意义的量,体会数学的应用价值。

教学重点:

在现实情境中应用负数,体验负数。

教学难点:

用正、负数表示相反方向的量,体验负数的意义。

教学过程:

一、自主准备

你知道生活中有哪些相反意义的量?试着举例用正数或负数来表示。

二、自主探究

1.阅读课本第3页的例3。从表中你能知道些什么?(大声地读一读,并说一说表中的数所表示的意义)

2.从例3的学习中,你知道( )和( )是一对具有相反意义的量,通常情况下,怎样用正数和负数来表示?

3.填写课本第3页的“试一试”。

4.阅读课本第3页的例4。思考:如何用图来表达学校、邮局、公园之间的相对位置?(在下面画一画)

5.如果把向东走2千米记作+2千米,那么向西走2千米可以记作什么?

6.在直线上用点表示邮局和公园的位置

看了上图,你有什么发现?

三、自主应用

1.电梯上升15米记作+15米,下降10米记作( )米,-20米表示电梯( )米。

2.公交车上的售票员将下车3人记作-3人,上车4人记作( )人,-5人表示( )人。

3.知识竞赛抢答的评分规定:答对一题得10分,记作+10分;答错一题扣10分,应记作( )分。王明答对12题,答错3题,他得了( )分。

四、自主质疑

你认为本节课应学会什么?你还有什么疑问?

认识负数课件(篇12)

《认识负数》是人教版小学数学六年级下册第一单元的第一课时的内容。它是在学生已经认识了自然数、并初步认识了分数和小数的基础上,结合熟悉的生活情景,来初步认识负数。学习这部分内容,可以拓展学生的数概念,培养数感,也有助于培养学生的应用意识,提高学生运用数学认识世界和解决实际问题的能力。

根据新课标的要求和教材特点,结合学生的认知能力,本节课我确定如下的教学目标:

1、知识与能力目标:让学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法,知道0既不是正数,也不是负数,负数都小于0;

2、过程与方法目标)借助熟悉的生活情境,在亲历与合作中,体会负数的'意义,学会用正、负数表示生活中相反意义的量。

3、(情感目标)感受正、负数与生活的密切联系;并结合史料进行爱国主义教育。

教学难点:体会负数的意义,学会用正、负数表示生活中相反意义的量。

(四)说教学理念:

现代教学论认为:学生只有在亲身经历或体验一种学习过程时,其聪明才智才能得以发挥出来。任何学习都是一种积极主动的建构过程。有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。因此,这节课我让学生自主探索,合作交流,来完成本节课的学习。

二、说教法学法:

为了突出重点,突破难点,在本课教学中,尽可能为学生创设生活情景,为他们提供各种机会,让学生展开观察、猜想、比较、交流、归纳等数学活动,采用了小组合作形式组织教学

向前走200米电梯上升15层我在银行存入了500元。

2、认识温度计,让学生读一读温度计上的数。

(1)根据例1的情况提问:零上16摄氏度用16摄氏度表示,那么零下16摄氏

度可以怎样表示呢?学生讨论交流并汇报。

(2)思考:16摄氏度和-16摄氏度的意义是否相同?16摄氏度是零上16摄氏度,从而使学生体会零上温度和零下温度是以0摄氏度为基准的,是一对相反意义的量。在此基础上让学生明确零上16摄氏度和零下16摄氏度的写法以及读法。

2、教学例2学生自学,理解存入和支出的含义及表示法。

3、初步归纳正数和负数。

首先要求把刚才所写下的数进行分类,通过学生间的交流使学生明白像+4、19、+8844这样的数都是正数,像-4、-11、-7、-155这样的数都是负数。

4、体会正数、负数与0的大小关系。

这是本节课的难点所在,因此我充分利用具体的温度计和海平面的示意图,使学生体会“温度计是以0摄氏度为分界点,以上的温度用正数表示,以下的温度用负数表示。同样,以海平面为基准,海平面以上的高度用正数表示,海平面以下的用负数表示。”

启发学生思考:0是正数吗?0是负数吗?正数、负数和0比一比,他们的大小关系怎样?

从而得到结论:0即不是正数,也不是负数。所有正数都大于0,所有负数都小于0。

(三)回归生活,拓展应用-—应用负数。既然负数是生活中发现的,那么我们就应该“取之于生活,用之于生活”。在练习环节,我为学生提供了大量的生活中的信息,运用数学知识解决生活中自己身边的问题,我设计了三种练习:

1、基础性练习。做一做1和2,区分正数、负数,并能正确表示正数负数。

2、综合练习,完成书后练习一4---6.,使学生进一步认识正数和负数和0之间的关系。并能区分它们之间的大小。

3、拓展性练习。完成练习一3、7题。让学生体会负数与生活的紧密联系,激发学习数学的兴趣。

负数课件优选


俗话说,做什么事都要有计划和准备。在幼儿教育工作中,我们都有会准备一写需要用到资料。资料是时代的记录,它是产生于人类实践活动。参考资料有助于我们的工作进一步发展。所以,你是否知晓幼师资料到底是怎样的形式呢?以下为小编为你收集整理的负数课件优选,希望你更多关注本网站更新。

负数课件 篇1

教学目标:

知识目标:在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

能力目标:会正确地读、写正、负数,知道0既不是正数,也不是负数。

情感目标:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

教学重点:数的意义和负数的读法与写法。

教学难点:理解负数的大小比较。

教学用具: 多媒体,温度计

教学方法:探究总结

课时:    第一课时。

教学过程

(一)游戏导入,揭示课题

游戏规则是:老师说一句话,你们要快速说出与它意思相反的话。比比看,谁反应最快。

向前走200米;电梯上升5层;我在银行存入1000元钱;零上10摄氏度;

引人谈话:在生活中,像这样表示意思相反的量还有很多,今天我们将研究如何用数学的方法表示这些意思相反的量。

板书课题:负数的初步认识

师:负数,就是用于表示相反意义的量,如果规定其中一个量为正,则另一个量为负。

(二)自学课本,自主探究

(出示课件)

师:天气预报中报道了各个城市的天气预报,你能得到什么信息?3℃

和-3℃表示的意思一样吗?

1.怎样用正、负数表示气温?举例说明。

2.观察温度计:测量温度的工具是什么?怎样读温度计上的温度?

师:0作为零上温度和零下温度的分界点,零上温度用正数表示,零下温度用负数表示。读一读温度计上的刻度所指的温度。在读温度计时,注意看红色液柱,它所在的刻度就是当时的温度。

3.观察存折上的数字:为什么数字前会有“+”和“-”?表示什么意思?

4.怎样用正、负数表示珠穆朗玛峰和吐鲁番盆地海拔高度?

(三)组内交流讨论问题:

(1)怎样表示两种相反意义的量?

师:通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?

学生交流、讨论。

指出:因为+8844.43米也可以写成8844.43米,所以有正号和没正号都可以归于一类。

(2)提出疑问:0到底归于哪一类?引导学生争论,各自发表意见。

小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。

我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数叫做负数;而0既不是正数,也不是负数。(板书)

(五)课堂检测

1.数字分类

2.月球上的白天和夜晚的温度各是多少摄氏度?相差多少摄氏度?

3.以北京时间为标准,表示其他地区的时间。

4. 某食品厂生产的120 g袋装方便面外包装印有“(120±5)g”的字样,什么意思?

5.电梯中的负数:王叔叔和李阿姨都从办公楼的地面一层乘电梯,王叔叔去5楼开会,李阿姨去地下二层取车,他们分别应该按电梯里的哪个键?

(六)联系生活,猜测物体温度。

水沸腾的温度(  );水结冰的温度(  )。

(七)小结

通过今天的学习你有什么收获?(学生说,教师适当启发)

二、板书:

负数的初步认识

正数:20、22、14、 +8844.43…

0:既不是正数也不是负数

负数:-2、-30、-10、-15、-155…

三、教学反思:

负数课件 篇2

导学内容:P5--7页例3、例4,完成做一做及练习一4、5、6、7题

导学目标:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

导学重点:体会数轴上正、负数的排列规律。

导学难点:会在数轴上比较正数、0和负数的大小。

预习学案

1、读数,指出哪些是正数,哪些是负数?

-6   2.9    +0.16    -45    +712    0  +305  -88

2、如果+25%表示增加25%,那么-10%表示          。

3、一天傍晚,大连的气温由上午的零上2摄氏度下降了8摄氏度,这天傍晚大连的气温是      摄氏度。

导学案

学习例3:

1、小组探究怎样在数轴上表示数?(1、2、3、4、5、6、7、8)

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上画好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

A、从0起往右依次是?从0起往左依次是?你发现什么规律?

B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?

(7)练习:做一做的第1、2题。

学习例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,

所以-8<-6”

5、再通过让另一学生比较“8>6,但是-8<-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,正数比0大,负数比正数小。

7、练习:做一做第3题。

巩固应用

1、练习一第4、5题。

2、练习一第6题。

3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。

课堂检测

一、动动脑,填一填。

1、零上35℃,用正数表示是(       )。

2、零下16℃,用负数表示是(       )。

3、0既不是(     )数,也不是(    )数。

4、如果自行车链条的长度比标准长度长2mm记作+2mm,那么比标准长度短3mm应记作(      )。

二、我来当裁判。

1、大于零的数是正数。(      )

2、0的意义就是表示没有。(     )

3、上升一定用正数表示,下降一定用负数表示。(      )

4、最小的负数是-1。(       )

三、将下列各组数按从小到大的顺序用“﹤”连接起来。

3,-5,-4        -9,16,-11     -12 ,0,-1     -1.6,1.6,-0.16

课后拓展

一只青蛙从一口枯井的底部向井口爬,它白天向上爬3米,夜里向下滑2米。已知井深17米,问这只青蛙需要几天爬到井口。

课堂小结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

板书设计新课标第一网

负数

在数轴上,从左到右的顺序就是数从小到大的顺序。

正数都大于0,负数都小于0,正数大于一切负数。

负数课件 篇3

张鸿森供稿

【教学内容】《义教课标实验教科书  数学》(人教版)六年级下册第5-9页例3、例4及“做一做”和练习一。

【教学目标】

1、进一步体会负数的意义。借助数轴初步学会比较正数、0和负数之间的大小。初步体会数轴上数的顺序,完成对数的结构的初步构建。

2、合理利用新旧知识的迁移,借助形(数轴)来理解数,经历从实际中抽出数学模型(数轴),从数形结合两个侧面理解问题。

3、体会数学知识与现实世界的联系,培养学生良好的数学兴趣,树立学习数学的自信心。

【教学重点】会用正数和负数表示日常生活中具有相反意义的量的实际问题。

【教学难点】负数与负数的比较。

【教学准备】多媒体课件

【自学内容】见预习作业

教学预设:

一、自学反馈

1、低于正常水位0.16米记为-0.16,高于正常水位0.02米记作(     )。

2、在直线上表示2,0,1.5, 。

3、-3和-5谁更大?你是怎么想的?

二、关键点拨

1、呈现例3

(1)学生观察情境图,叙述图意

(2)提问你能在一条直线上表示他们运动后的情况吗?

(3)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(4)教师在黑板上画好直线,在相应的点上用小图片代表大树和学生,再问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来)。

(5)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(6)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线叫数轴。

(7)引导学生观察:

A、从0起往右依次是?从0起往左依次是?你发现什么规律?

B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

2、呈现例4

(1)出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

(2)先让学生说说数轴上数的大小情况,0的左边是什么数,0的右边是什么数。组内交流比较的方法。

(3)通过小精灵的话,引出利用数轴比较数的大小规定:

在数轴上,从左到右的顺序就是数从小到大的顺序。

(4)再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈 -6”

(5)再通过让另一学生比较“8 〉6,但是-8〈 -6”,使学生初步体会两负数比较大小的不同。

(6)总结:负数比0小,正数比0大,负数比正数小。

三、巩固练习

1、海平面的海拔高度记作0m,海拔高度为+450米,表示(            ),海拔高度为-102米,表示(                      )。

2、在数轴上,从表示0的点出发,向右移动3个单位长度到A点,A点表示的数是(      );从表示0的点出发向左移动6个单位长度到B点,B点表示的数是(     )。

3、根据数轴上的点比较大小。

-7○ -5    1.5○52      0○-2.4    -3.1○3.1

四、反思提高

同学们,学到现在,这节课也将近尾声了,谈谈你今天有什么收获吧!

我的反思与体会

学生对数轴并不陌生,就是多了负数一方有的学生理解慢,觉得正数是从左向右排,负数是从右向左排的错觉,当知道负数的数值越大,负数越小的时候,好像明白了,但在练习的时候(比较大小)还是出现了错误。还得通过练习,来认识知识,强化知识,巩固知识。

《圆柱的认识》的教学设计

彭月秋供稿

【教学内容】《义教课标实验教科书  数学》(人教版)六年级下册教科书第10-12页圆柱的认识,练习二的第1-4题.

【教学目标】

1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

2、培养学生细致的观察能力和一定的空间想像能力。

3、激发学生学习的兴趣。

【教学重点】:认识圆柱的特征。

【教学难点】:看懂圆柱的平面图。

【教学准备】:多媒体课件

【自学内容】:

学习提示:

(1)你见过哪些圆柱形的物体?

(2)圆柱由哪几部分组成?

(3)圆柱的侧面展开后是什么形状?

尝试练习:

1、圆柱体的两个圆面叫做圆柱体的(     ),周围的面叫做(      ),两个底面之间的距离叫圆柱体的(     )。

2、长方形的长等于圆柱底面的(    ),长方形的宽等于圆柱的(    )。

3、下面图形中石圆柱的在括号里打“√”,并标出底面直径和高。

【教学预设】

一、自学反馈

1、已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)

2、求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)

(1)半径是1米(2)直径是3厘米

(3)半径是2分米 (4)直径是5分米

二、关键点拨

1、整体感知圆柱

(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……)

(2)找找圆柱,请同学找出生活中圆柱形的物体。

2、圆柱的表面

(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?

(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)

3、圆柱的高

(1)课件显示:一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有

(2)引导小结:水柱的高低和水柱的高有关.

(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)

(4)讨论交流:圆柱的高的特点。

①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?

②初步感知:面对圆柱的高,你想说些什么?

归纳小结并板书:圆柱的高有无数条,高的长度都相等。

③深化感知:面对这数不清的高,测量哪一条最为简便?

老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.

4、圆柱的侧面展开(例2)

(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.

反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?

┌长方形

板书:沿高剪┤斜着剪:平行四边形

└正方形

强调:我们先研究具有代表性的长方形与圆柱的关系.

(2)寻求发现.展开的长方形的长和宽与圆柱的关系.

①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)

③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

(3)延伸发现:展开的平行四边形的底和高及正方形的边长与圆柱的关系。

①讨论:平行四边形能否通过什么方法转化成长方形?

课件显示:平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。

②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?

③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.

三、巩固练习

1、做第11页“做一做”的第2题。

2、做第15页练习二的第3题。

教师行间巡视,对有困难的学生及时辅导。

3、做第15页练习二的第4题。

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

板书设计:

┌长方形

沿高剪┤斜着剪:平行四边形

└正方形

圆柱的底面周长 →  长方形的长

圆柱的高    →  长方形的宽

反思与体会:

负数课件 篇4

本节内容是有理数的一部分,是对小学所学数的范围的补充,特别是首次提出了负数分概念,是以后学习绝对值、数轴、相反数及有理数运算的基础。

初中数学教案说课稿(教学目标)

根据课程标准的要求,教材的结构与内容分析,学生现有的知识水平和心理结构特点,制定如下教学目标:

1、使学生了解负数是如何产生的,理解正负数及零的含义。

2、知道它们的表示方法,能正确对正负数做一些简单的应用,对生活中的一些正负数现象做一些了解。

3、通过本节的教学,培养学生的想象力,理论联系实践的能力,分析解决问题的能力。

4、对学生进行爱国主义教育,培养学生良好的学习习惯。

初中数学教案说课稿(教学重点、难点)

重点:正负数的含义 难点:负数和零的含义

为了讲清重点、难点,使学生能达到本节设定的教学目标,我在从教学方法上谈谈。

初中数学教案说课稿(教学方法)

鉴于初一学生的年龄特点,他们对概念的理解能力不强,而且精神不易长时间集中,但他们的思维活跃,我采用讲解法、讲练结合法,引导学生学生积极思考,调动他们学习的积极性。

初中数学教案说课稿(教学程序)

1、创设情境,初步感知

首先展示出两幅雪景画,问同学们:从这两幅画中感觉到了什么?估计一下现在的温度和画中的温度是多少?能否用我们所学过的数来表示?

人都是喜欢美丽的东西的,尤其是小孩,两幅美丽的雪景画能更好的激发学生的兴趣,给学生的学习提供丰富多彩的空间。

对画中的温度学生可能会给出一些答案如:零下10度等,这些事不正确的。 接着由我给出答案-10度。

对于未知的东西,学生总会有强烈的好奇心,想知道-10是什么。

我作出回答-10是一个负数。这样就引入了本节课所要学的主要内容——负数。

2、充分感知,引导构建

让学生说出一些生活中带负号的数,这样让学生联系生活实际,感受到我们的身边处处存在着数学。

给出一张山和盆地的海平面高低的数据表,让同学们说明一下表中一些数据的含义。

同学会给出各种不同的答案,有正确的也有错误的,之后由我来说明一下这些数据的正确含义。

接着再问:同学们,既然表中的那些数据有这样的含义,那么正、负数的含义是什么呢?

先由同学们发言,再有老师给出正确的含义。 正数:像3、2、0.8这样大于0的数叫做正数。 负数:像-3、-2、-0.8这样小于0的数叫做负数。

再问同学们:既然正负数的界线是0,那么0又有什么含义呢?

同样,先由同学们发言再由老师总结归纳:0既不是正数也不是负数。 这样有利于提高学生们的分析归纳能力。

3、结合实践,综合应用

给出一组正、负数及零在现实中的应用问题,按组抢答,每道题一个组一个机会,答对加一分,打错不扣分。

这样有利于提高学生的竞争意识,也能活跃课堂气氛,还能让他们对生活中负数的.应用有一些了解。

再针对本节的各个知识点提出一些相应的问题与学生共同探讨解答,巩固提高一下学生对知识点的理解。

在这些解答过程中一学生为主,老师为辅。老师只是在一旁稍作指点及作最后的讲解。这样有利于培养学生独立思考的意识。

4、回顾课堂,小结延伸

先由学生说一下这节课学到了什么,再由老师对本节课的学习做一下总结,结合板书重新整理一下知识点,这样能让学生的学习目的更加明确。

最后先由和学生探讨一下本节所学内容对我们的生活有什么帮助再由老师点明这节课所学知识在我们生活中的一些作用。

这样能让学生知道我们所学的知识在我们的生活中是有用的,能促使他们把所学的知识与我们的生活实际联系起来,有利于学生们的成长。

5、作业

我所布置得作业是2、4、7(选做)2和4是基础和综合应用,适合大部分的学生,而7是拓广探索,适合于成绩较好的同学,让他们更加的深入学习。

负数课件 篇5

教学内容

六年级(下册)第1~3页的例1、例2

教学目标

1、知识技能:了解正数与负数是实际生活需要的,会判断一个数是正数还是负数,会初步应用正负数来表示相反意义的量。

2、数学思考:通过正负数的教学,培养数感,渗透对立、统一的辩证思想。

3、问题解决:通过正数、负数的学习,培养学生应用数学知识解决实际问题的能力。

4、情感态度:从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活,应用于生活。提高学习数学的兴趣。

教学重难点

在现实情境中初步认识负数的意义;用正负数描述生活中的一些简单的具有相反意义的量。

教具准备

多媒体课件。

教学过程

一、自主创造,初知正负数

1.情景引入。

用最简捷的方式记录这些信息。(师叙述,生记录。)

①1路公共汽车在昆山宾馆站上来2位乘客,到亭林站下去2位乘客。

②本学期咱们五年级转来25名新同学,转走16名同学。

③小明妈妈投资股票,四月份赚了6000元,五月份亏了2000元

【设计意图:以现实生活素材为教学切入口,创设一种具体的生活情境展开教学,凸现数学知识源于生活的理念。同时,在记录数据的过程中,让学生因为需要而思考,因为思考而创造。】

2、揭示课题

+2、-2前面的+叫做正号、-叫做负号,正号和负号与以前学的加减号写法相同,但表示的意义却有所区别。今天我们就来学习用正数和负数表示意思相反的量。二、沟通联系,再识正负数

1.教学例1

(1)情景呈现。

师:五(2)班的孩子,刚在外面上完一节体育课,外面可真热呀!(课件出示32℃温度计),下课后他们喜滋滋地吃起了冷饮(出示0℃),这些冷饮是工人叔叔从冰库里搬出来的(出示温度-23℃)

【设计意图:利用信息技术资源丰富、时效性强的特点,改变教材中提供冬天气温的例题,使学生的学习内容更加丰富多彩】

(2)师:这三种温度各是多少?根据刚才的学习,可以怎样表示这些温度?

板书:0℃、+32℃、-23℃

哪种温度最高?

(3)师:在读出刚才三个温度时,要注意看清什么?

小结:要找准0℃,它正好是零上温度和零下温度的分界点。零上温度可以用正数表示,零下温度可用负数表示。

【设计意图:让学生先读数,再说说读数后的感受,培养了学生的数感。】

2.归纳正数、负数和0的关系。

师:瞧,黑板上有这么多正数、负数朋友了,谁来把他们分一分?

归纳:正数都大于0,负数都小于0.0既不是正数,也不是负数(完成板书:负数0正数)。

三、读读写写,掌握正负数

1.读两个海拔高度,请同学们互相读一读。

2.读温度,先自己读一读,你们会把这些温度从高排到低吗?

3.写几个正数和负数

【设计意图:充分挖掘习题功能,在展示学生个性化表达的同时,巧妙地运用信息化环境,引出正数和负数的对应关系,体会正数和负数时无限的】

四、链接生活,应用正负数

1.提问:在生活中你们遇到过用正负数表示的事情吗?

(1)存折(课件展示)

师:这里的-600是什么意思?

(2)刘翔在美国尤金精英赛中,110米栏的成绩是13.23秒,当时赛场风速为每秒-0.4米。

讨论:风速怎么会有负的?

如果风速是+0.4米,你认为比赛的成绩会怎样?

2.多媒体介绍负数的产生史。

【设计意图:把数学知识从课外移入课内,开阔了学生的视野,丰富了课余知识】

教材分析:负数是在学生已经认识了自然数、并初步认识了分数和小数的基础上,结合熟悉的生活情景,来初步认识负数。学习这部分内容,可以拓展学生的数概念,培养数感,也有助于培养学生的应用意识,提高学生运用数学认识世界和解决实际问题的能力。教材是根据学生已有的生活经验,选用气温和温度计这两个熟悉的情境,意在让学生感受负数与生活之间的联系,并没有复杂的概念与计算,知识层次比较浅。

负数课件 篇6

教学目标:

1、在具体情境中进一步体会负数的意义,认识负数的作用;

2、会用负数表示生活中的问题,知道正负数是可以抵消的;

3、通过学习,让学生感受到数学知识来源与生活,应用于生活,培养学生应用数学知识解决实际问题的能力。

教学重点:

1、正确理解正数和负数所表示的具体意义,理解正负抵消。

2、解决有关正数和负数的数学问题。

教学难点:

借助游戏、学生的生活经验及直观材料,理解正负数的求和。

教学过程:

一、复习旧知,导入新课

1、学生完成学案“温故互查”并二人小组交流。

2、揭示《正负数(一)》并板书课题

二、创设情境,提出问题:

1、玩剪刀、石头、布的游戏.

2、在表格中记录得分情况,然后根据得分情况独立完成学案“设问导读”第一小题,在小组内交流、讨论。

3、汇报交流结果。

三:运用新知,解决问题。

阅读课本第74页的“试一试”:

1、独立完成导学案“设问导读”的第二小题。

2、小组交流

3、展示汇报

四、巩固应用,内化提高

1、独立完成学案“自我检测”1题和2题,小组交流。

2、独立完成学案“巩固练习”,小组交流、汇报。

五、全课总结。

通过这节课的学习,你有什么收获?

负数课件 篇7

【教学目标】

知识技能:

1.了解正数和负数是怎样产生的;

2.知道什么是正数和负数;

3.理解数0表示的量的意义.

数学思考:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.

解决问题:会用正、负数表示具有相反意义的量.

情感态度:通过师生合作,联系实际,激发学生学好数学的热情.

【教学重难点】

1. 重点:知道什么是正数和负数,了解数0表示的量的意义.

2. 难点:具有相反意义的量的要素.

【课时安排】

一课时

【教学设计】

课前延伸

基础知识填空及答案

1.指出下面的数哪些是正数,哪些是负数?

-3,0,-0.45,+121,4,-67,π.

2.填空:

(1)如果自行车车条的长度比标准长度长2厘米,记作+2厘米,那么比标准长度短1.5厘米的应记作 .

(2)如果节约16吨水记作+16吨,那么浪费6吨水记作 .

(3)若向南走5000米记作-5000米,那么向北走8000米可记作 .

(4)如果收入15元记作+15元,那么支出20元记作 .

〖答案〗1.正数:+121,4,π ; 负数:-3,-0.45,-67.

2.(1)-1.5厘米.

(2)-6吨.

(3)+8000米.

(4)-20元.

课内探究

一、导入新课:

师:同学们,今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.59米,体重50.5千克,今年33岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%…

问题:老师刚才的介绍中出现了哪些数据?你能将这些数分类吗?

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

〖设计说明〗教学过程中创设的这一问题情境来源于生活实际,学生有深切的体会,能激发学生学习数学的兴趣,对提高学生的数学素养和数学意识也是十分有意义的.先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活**有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味.为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.

二、探索新知

1.问题:生活中,我们还会遇到下面的数.请同学们观察所展示的实物中用到的数,并思考讨论与以前学过的数据有什么异同,然后进行交流.(也可以出示气象预报中的气温图,地图中表示地 形高低地形图,工资卡中存取钱的.记录页面等).

学生交流后

教师归纳:在前面的学习过程中,我们发现以前学过的数已经不够用了,出现了一种前面带有“-”的新数.

2.揭示课题,整理概念,板书

负数课件 篇8

教学目标:

1、熟读课文,能用简洁的语言概括文章内容。

2、能体味文中的美词佳句,领会运用比喻、拟人等修辞手法的妙处。

教学重点:

1、培养学生阅读文章、概述内容的能力。

2、体会文艺性说明文的语言特色。

教学方法:

讨论法、探究法、练习法

教学课时:

一课时

教学过程:

课前预习

1、朗读课文,借助工具书弄清字词的读音及含义,解决课后的“读一读,写一写”。

2、捕捉第一印象,找出本文最吸引你的地方。

1、学生猜谜:(课件展示)谜一:“小小诸葛亮,稳坐中军帐;布下八卦阵,捉拿飞来将。”谜二:“耳朵像蒲扇,身子像小山,鼻子长又长,帮人把活干。”谜三:“头小颈长四脚短,硬壳壳里把身安,别看胆小又怕事,要论寿命大无边。”

大家说说,你是根据什么把谜底给猜出来的呢?

(引导得出结论:根据谜语中讲的特点以及自己平时的观察)

对,介绍事物,必须抓住事物特点进行说明。今天,我们来学习法国著名的昆虫学家法布尔的一篇科学观察随笔——《绿色蝈蝈》,看看他是如何发现蝈蝈特点的,他又是如何来介绍蝈蝈这些特点的。

2、板书课题:绿色蝈蝈(法)法布尔

3、提问:谁愿意把自己搜集到的关于作者法布尔的情况和大家进行交流?学生简介作者,教师补充。

亨利.法布尔(1823—1915)法国著名科学家,科普作家。法布尔是第一位在自然环境中研究昆虫的科学家,他穷毕生之力深入昆虫世界,在自然环境中对昆虫进行观察与实验,真实地记录下昆虫的本能与习性,著成了《昆虫记》这部昆虫学巨著。

《昆虫记》是法布尔以毕生的时间与精力,详细观察了昆虫的生活和为生活以及繁衍种族所进行的斗争,然后以其观察所得记入详细确切的笔记,最后编写成书。法布尔以生花妙笔写成《昆虫记》,誉满全球,这部巨著在法国自然科学史与文学史上都有它的地位,这部巨著所表述的是昆虫为生存而斗争所表现的妙不可言的、惊人的灵性。

《昆虫记》十大册,每册包含若干章,每章详细、深刻地描绘一种或几种昆虫的生活:蜘蛛、蜜蜂、螳螂、蝎子、蝉、甲虫、蟋蟀等等。法布尔以生花妙笔写成《昆虫记》,誉满全球,这部巨著在法国自然科学史与文学史上都有它的地位——《昆虫记》作者被当时法国与国际学术界誉为“动物心理学的创导人”。文学界尊称他为“昆虫世界的维吉尔”《昆虫记》被译成许多种文字出版。他被誉为“昆虫诗人”,我国也翻译出版了他的大量作品。

二、师生朗读全文。

三、整体感知。

问:哪位同学能说一说这篇文章告诉我们什么?

(学生自由发言。)

四、教学具体过程。

1、学生找出文章中最让自己感兴趣的地方。

师:同学们都读了课文,课前老师也让大家预习了文章,请同学们根据你们的最初印象,说说这篇文章最让你们感兴趣的地方是什么?

(学生自由发言。一般,大部分的学生都会选择第五自然段,认为蝈蝈捕蝉最有意思,最能吸引人。有一部分的学生会选择蝈蝈的食性,还有少部分的学生会选择蝈蝈的叫声。)

负数课件 篇9

一、素质教育目标

(一)知识教学点

1.了解:正数与负数是实际需要的.

2.掌握:会判断一个数是正数还是负数.

3.应用:会初步应用正负数表示温度、海拔高度等互为相反数意义的量.

(二)能力训练点

通过正数、负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力.

(三)德育渗透点

1.从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务.

2.通过正负数的学习,渗透对立、统一的辩证思想.

(四)美育渗透点

通过引人负数,学生会感觉得小学里学的数是“不全”的,从而通过本节课的教学,给学生以完整美的享受.

二、学法引导

1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识.

2.学生学法:研究实际问题→认识负数→负数在实际中的应用

三、重点、难点、疑点及解决办法

1.重点:会判断正数、负数,运用正负数表示具有相反意义的量.

2.难点:负数的引入.

3.疑点:负数概念的建立.

四、课时安排

2课时

五、教具学具准备

投影仪(电脑)、自制活动胶片、中国地图.

六、师生互动活动设计

教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈.

七、教学步骤

(一)创设情境,复习导入

师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?

学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……

师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示.

【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分.

提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?

学生活动:学生们思考,头脑中产生疑问.

【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求.

(二)探索新知,讲授新课

师:为了研究这个问题,我们看两个实例

(出示投影1)用复合胶片翻四次

在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)

学生活动:看图回答10℃,5℃,零下5℃,零下10℃.

[板书]

10 5 -5 -10

师:再看一个例子,中国地形图上,可以看到我国有一座世界最高峰―珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?

(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形).

学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-155米表示吐鲁番盆地比海平面低155米.

【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨论后得出答案,充分发挥了学生的主体地位.

教师针对学生回答的情况给与指正.

师:以上实例中出现了-5、-10、-155这样的数,一般地温度比0℃高5℃、10℃、1.6℃、℃记作+5、+10、+1.6、+,大于0的数为正数;当温度比0℃低于5℃、10℃、2.2℃记作-5、-10、-2.2,像这样在正数前面加“-”号叫负数;0既不是正数也不是负数.

师随着叙述给出板书

[板书]

负数课件 篇10

六年级下册数学负数知识点

1、负数的由来:

为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负

2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)

负数的写法:

数字前面加负号“-”号,不可以省略

例如:-2,-5.33,-45,-2/5

正数:

大于0的数叫正数(不包括0),数轴上0右边的数叫做正数

若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)

正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/5

4、0 既不是正数,也不是负数,它是正、负数的分界限

负数都小于0,正数都大于0,负数都比正数小,正数都比负数大

5、数轴:

6、比较两数的大小:

①利用数轴:

负数

②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大

1/3>1/6 -1/3

四年级数学知识点回顾复习

1. 10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。

相邻两个计数单位之间的进率是“十”,这种计数方法叫做十进制计数法。

特别注意:计数单位与数位的区别。

计数单位

数字表示

2、多位数的读法:

①、从高位数读起,一级一级往下读。

②、万级的数要按照个级的数的读法来读,再在后面加一个万字。

③、每级末尾不管有几个零都不读,其他数位有一个“零”或连续几个“零”,都只读一个“零”。

3、多位数的写法

小结:①、从高级写起,一级一级往下写。

②、当哪一位上一个计数单位也没有,就在哪一位上写0。

特别注意:多位数的读写都先划上分级线。

4、多位数的大小比较:

小结:①、位数多的时候,这个数就比较大。

②、当这两个数位数相同的时候,就从最高位开始比,哪个数位上的数大,这个数就大。

5、“万”“亿”作单位的数:

有时候,为了读写方便,我们把整万(亿)的数改写成有“万”(亿)做单位的数。

方法概括:分级、去0,写万(写亿)

6、求近似数:

这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数部分的最高位是小于5还是等于或大于5。

方法概括:分级、去尾、四舍五入约

近似数的取值范围:近似数+4999(最大)

近似数—5000(最小)

7、表示物体个数的数:0、1、2、3、4、5、6 …….叫自然数一个物体也没有:用0来表示。0也是自然数。最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

8、计算工具的认识:算盘,计算器

9、测量得到的数都是近似数,数出来的数都是准确数

小学数学必背单位间进率

1公里=1千米 1千米=1000 米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米 1亩=666.666平方米

1升=1立方分米=1000毫升 1毫升=1立方厘米

负数课件 篇11

教学内容:义教课标(苏教版)数学五年级(上册)第1—3页的例1、例2及“试一试”、“练一练”,完成练习一第1—6题。

[教学目标:

知识与技能:1、使学生在熟悉的生活情境中了解负数产生的背景,初步认识负数,掌握正数和负数的读写方法。知道0既不是正数,也不是负数,负数都小于0。

2、学生会用正、负数描述现实生活中的一些简单的具有相反方向的量。

3、让学生经历数学化的过程,享受创造性学习的乐趣。

过程与方法:使学生在大量的现实情境中,体会负数产生的必要性。

情感、态度和价值观:使学生初步体验数学与日常生活的密切联系,进一步激发学生学习数学的兴趣,同时结合史料对学生进行爱国主义思想教育。

重点难点]1、在现实情境中初步认识负数的意义及了解负数的产生与应用。

2、能用正、负数描述生活中的现象。

教学准备:多媒体课件。

教学过程]。

1.游戏引入。

师:剪子包袱锤玩过吗?那我们也来玩一玩,不过是有规则的。

课件出示:同桌的2个同学玩4次,把自己的输赢的结果记在心里。

生玩游戏,教师和其中一生一起玩。

师:请几个同学来说一说输赢情况。

生1:我赢3次,输1次。

生2:我赢4次。

生3:我赢1次,输3次。

生4:我赢2次,输2次。

[评析]本节课从“剪子包袱锤”的游戏入手,通过游戏让学生感受到相反的意思,为学好负数的意义做好铺垫。

师:如果赢2次记作2,那么输2次该怎么记呢?

生1:就在2前面写一个输。

生2:在2前面画一个“×”。

生3:在2前面画一个哭脸。

生4:在2前面加一个“—”。

……。

生:用“—”表示。

生1:收入和支出。

生2:转进和转走。

……。

师:现在咱们也来用这种方法,记录下面两句话,指名两个同学到黑板前来写。

课件出示:(1)爸爸这个月收入为1500元,可以记作1500,支出水电费200元,可以记作( )。(2)粮店运进大米60吨,记作60,运出12吨,记作( )。

生:2、1500、60这三个数是我们以前学过的数。

生:-2、-200、-12这三个数前面都有一个减号。

师:“-”在这里可不是减号了,叫负号,那我们把-2、-200、-12就叫做负数。这个-2就读作“负二”。

生读剩下的两个负数。

师:像2、1500、60就是正数,负数前面有一个“-”,那么正数前面也有个“+”,叫正号。人们为了简便,正数前面的“+”可以省略不写,这个+2就读作“正二”。

生读后面的两个正数。

师:正数前面的正号能省略,负数前面的负号也能省略吗?为什么?

生:不能省略负数前面的负号,负号去掉就没有办法与正数区分啦。

4.写负数。

师:我们已经认识了正、负数,并且会读正、负数了,那你们能写几个正、负数吗?

指名两生到黑板上各写5个正、负数,其他同学在本子上写。

师:请几个同学将自己写的正、负数读给大家听一下。

师:如果时间允许的话,你还能写多少个正、负数。

生:无数个。

师:那也就是说正数和负数都有无数个。(师在黑板上在写正、负数的后面加……并画上集合图)。

[评析]利用学生随意写的5个正数和5个负数,引导学生思考,如果有足够的时间让其继续写下去会怎么样?让学生感受到正数、负数都有无数个。

5.练习。

先读一读,再把这些数填入相应的圈内。

-5   +26   8   -40   -120   +103。

二、介绍负数的产生史(略)。

三、感知生活中的正数和负数。

1.学生列举生活中的负数。

师:生活中你在哪些地方见过负数?

生1:天气预报。

生2:妈妈的工资条上。

生3:我们的一日常规记录。

……。

2.出示天气预报图。

师:老师这儿带来了几个城市某一时刻的天气预报图。(课件一边出示天气预报图,边配音播报天气情况。)。

生:图中北京的最高气温是4℃,最低是-4℃。

介绍温度计。

生(齐答):左边。

师:现在温度计显示的是多少度呢?(课件分别出示10℃)。

生:10℃。

师:谁能来指一下-10℃在温度计的哪儿?

师:10℃和-10℃,两个温度哪个更冷一些?

生:-10℃冷。

师:用动作和表情把冷的感觉表示出来。

生做寒冷状,并念叨着好冷啊。

3.0与正数、负数的大小。

生:负数0正数。

[评析]当数学教学找到了与生活的连接点,把数学现象规律用生活实际问题的解决来表现时,数学知识的学习就变得“通俗易懂”了。在教学中从认识温度计,引导学生认识温度计上的0刻度,及0上和0下的温度。将原有的生活经验数学化,使学生进一步体验到正数与负数之间的区别与联系。

四、负数的应用。

师:看来大家学得都不错,那就让我们用所学的知识一起去解决生活中的问题。

1.填一填。

a.小华从0点向东行5米,表示为+5,那么从0点向西行3米,表示为( )米。

b.如果小华的位置是+4米说明他是向东行4米,那么小华的位置如果在-5米处,说明他是向( )行( )米。

2.出示电梯按钮,问上五楼和地下二楼应按哪两个键?

3.连一连(练习一第4题)。

4.看图写一写、再读一读。(练一练第2题)。

五、探究升华。

1.认识海拔高度的表示方法。

师:新疆吐鲁番盆地是我国海拔最低的地区,你知道它的海拔高度是多少?(出示海拔高度图)。

师:以海平面为标准,珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。

师:你能用今天学的知识表示这两个地方的海拔高度吗?

学生尝试表达。

小结:以海平面为基准,比海平面高8844米,可以记作:+8844米;比海平面低155米,可以记作:-155米。用正负数还可以区分海平面以上的高度和海平面以下的高度。

2.练一练。

(1)用正数或者负数表示下面各地的海拔高度。(出示海拔高度图)。

中国最大的咸水湖——青海湖的海拔高度高于海平面3193米。

世界最低最咸的湖——死海低于海平面400米。

世界海拔高度最低的国家——马尔代夫比海平面高1米。

(2)说说下面的海拔高度是高于海平面还是低于海平面?

里海是世界上最大的湖,水面的海拔高度是-28米。

太平洋的马里亚纳海沟是世界上最深的海沟,最深处海拔-11034米。

六、本课小结。

[设计理念]。

我是利用学生已有的知识经验来认识正数和负数,了解正数和负数的意义。我充分挖掘习题功能,在展示学生个性化表达的同时,丰富学生对负数的认识。进一步体验数学与日常生活的密切联系,激发学生学习数学的兴趣。

[设计思路]。

我首先进行课前游戏,通过生活中有许多相反的事例引出新数。其次教学时我将温度计、海拔高度图同时出示,让学生直观地感受零度刻度线、海平面是分界点。零度以上、海平面以上为正数,反之,则为负数。这对于学生更好地理解正数、负数与0三者间的关系很有益处。最后通过挖掘习题,在展示学生个性化表达的同时,丰富学生对负数的认识,体会正数和负数的意义,沟通新旧知识的内在联系。

心得体会:

通过这段时间来的培训,感觉自己还是受益很多,一堂课的设计,根据教师理念,知识面、教学经验的累积等因素的差异,情景的设置与教学过程也会大相径庭。以往我们设计的认识负数,完全利用教材做最原始的依据,这也是多数教师惯用的伎俩,但有些时候我们可以添设一些与学生较为密切的活动作为教学的出发点,把数学的知识运用其中,这样一来,学生的兴趣有了,更重要的是,他们更加容易接受。

我们研习了很多精彩的课例,专家们也作了精辟的论述,这是我们必然会遇见的情况,从另一侧面来说,专家们是在指导我们怎样去应对这些在教学过程中出现的问题,这一点真的大有学习参考的必要。我也从这些精选的课例分析中学到了很多的东西。但是距离真正掌握这种技能还相差很远,还需要在教学过程中区体会与琢磨。

然而,教学永远是一门遗憾的艺术,我们可以最到更好,应该是一直朝着更好的方向努力!

相关文章

最新文章

推荐访问