小学6年级数学教案第五单元(18篇)

小学6年级数学教案第五单元 2025-11-04

作为教师,编写教案是必需的,它有助于深入理解教材内容,并选择合适的教学方法。以下是为小学六年级数学第五单元准备的教案,希望能对大家有所帮助。

小学6年级数学教案第五单元

❈ 小学6年级数学教案第五单元 ❈

教学目标:

1.运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。

2.掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。

3.培养学生良好的逻辑思维能力,鼓励学生在合作交流中激发自主探究、创新的精神。

教学重点:

理解和差问题的解题思路,掌握和差问题的解题方法。

教学难点:

掌握画线段图分析问题的方法,培养学生运用线段图进行分析问题的意识。

课前准备:

课件

教 学 过 程

二次备课

一、谈话引入

1.课件出示:小明买3本故事书用了27元,小军买了5本同样的故事书需要多少元?

(1)将题目中的信息整理到下面的表格中。

小明 3本 27元

小军 5本 ?元

(2)分析表格中的信息,明确解题思路。

引导学生明确:可以先算出一本故事书多少元,再计算出5本故事书多少元。

(3)学生独立解答。

一本故事书:27÷3=9(元)

5本故事书:9x5=45(元)

2.谈话导入。

刚才我们采用了哪种解决问题的策略?(列表)

师:通过列表的策略来分析数量关系,可以让一些复杂的问题变得浅显。除了列表这种解决问题的策略外,还有许多其他的解决问题的策略,同学们想学吗?今天我们就一起来学习新的解决问题的策略。(板书课题)

二、交流共享

1.课件出示教材第48页例题1。

让学生读题,说说题目中的已知条件和所求的问题。

已知条件:小宁和小春共有72枚邮票;小春比小宁多12枚。

所求问题:两人各有邮票多少枚?

2.交流解题策略。

提问:想一想:这道题我们用列表的方法来分析,能找到解题思路吗?

学生交流得出:由于两人的邮票数量都是未知的,用列表的方法进行分析,不容易找到解题思路。

引导:接下来我们就来学习用画线段图的策略来分析这道题。

3.根据题意画线段图。

(1)提问:题目中有几个相关联的'量?应该用几条线段来表示呢?学生回答后课件出示:

小宁:

多( )枚 ( )枚

小春:

(2)追问:你能根据题意把线段图填写完整吗?

让学生在教材的线段图上填一填,完成后组织汇报交流。

小宁:

多(12)枚 (72)枚

小春:

4.看线段图,分析数量关系。

提问:观察线段图,想一想可以先算什么?

(1)学生独立观察思考后,小组交流讨论。

(2)全班交流解题思路。

汇报预测:

解题思路一:先算出小宁有多少枚邮票。两人邮票的总数减去12枚,等于小宁邮票枚数的2倍。

解题思路二:先算出小春有多少枚邮票。两人的总数加上12枚,等于小春邮票枚数的2倍。

5.学生独立解答。

引导学生选择一种自己喜欢的方法解答。

6.组织检验。

(1)提问:我们用什么方法进行检验?

(2)追问:检验要分几步进行?

(3)学生独立进行检验,并写出答案。

7.回顾反思。

引导:回顾解决问题的过程,你有什么体会?

先让学生在四人小组内说一说自己的体会,再组织全班交流。

8.交流讨论。

在之前的学习中,我们曾经运用画图的策略解决过哪些问题?

三、反馈完善

1.完成教材第49页“练一练”。

这道题和例题1相似,只不过要让学生自己从线段图中获取已知条件,通过这样的练习可以培养学生的读图能力。

2.完成教材第52页“练习八”第1题。

这道题也和例题1相似,但题目要求先把线段图补充完整,组织练习时要把重点放在线段图的画法上。

3.完成教材第52页“练习八”第3题。

这道题练习的重点应放在观察线段图、分析数量关系上,引导学生从线段图上看出下层图书的2倍就是60x2=120(本)

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

❈ 小学6年级数学教案第五单元 ❈

教学内容:

练习八第9-16题。

教学目标:

1.进一步巩固画图整理信息的方法,能借助所画的线段图和示意图分析数量关系,确定解决问题的思路。

2.进一步体会用画图的策略整理信息的价值,懂得画图整理信息是解决问题的一种常用策略,培养运用这一策略分析问题和解决问题的意识。

3.进一步积累解决问题的经验,强化解决问题的策略意识,获得解决问题的成功体验,增强学好数学的自信心。

教学重点:学会用画图解决问题的方法,形成解决问题的策略。

教学难点:让学生体会用画图的策略解决问题的价值,逐步形成解决问题的策略。

课前准备:课件

教 学 过 程

二次备课

一、知识再现

1.提出问题:

(1)同学们,上节课我们又掌握了一种解决问题的`策略,它是什么呢?

(2)我们通过画什么样的图来分析问题?

(3)运用画图的策略来解决问题有什么好处呢?

2.今天这节课,我们要一起完成一些练习,通过这些练习同学们将再次感受画图这一策略的价值。(板书课题)

二、基本练习

画线段图解决问题。

1.完成教材第52页“练习八”第4题。

让学生独立画出线段图。

观察线段图、分析解题思路,发现:2本笔记本的价钱刚好就是12元。

2.完成教材第53页“练习八”第10题。

让学生根据题目中的信息将教材上的线段图补充完整。

这里比较困难的是弄清楚线段图中,王晓星比张宁多出的那一段表示的是不是8张。

教师可以进行启发:如果多出的这一段是8张,那王晓星就要把这一段都给张宁;这一段都给张宁后,两条线段会一样长吗?

引导学生发现:只能把王晓星比张宁多出的那一段的一半给张宁,这样两条线段才会一样长。因此多出的那一段要平均分成两份,其中的一份才是8张。

让学生独立解答,组织汇报。

3.完成教材第54页“练习八”第11题。

组织练习时,先让学生独立思考,再交流补充线段图的方法,最后让学生独立解答。

三、综合练习

用画示意图的策略解决问题。

1.完成教材第53页“练习八”第8题。

然后组织学生进行观察,计算出每个方阵需要两种颜色的运动服各多少套,再算出一共要准备多少套。

2.完成教材第54页“练习八”第13题。

3.完成教材第52~54页“练习八”其余习题。

学生独立完成。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

❈ 小学6年级数学教案第五单元 ❈

教学内容:

本单元主要内容是让学生探索并掌握除数是两位数的除法的计算方法,能正确的进行计算,在具体的生活情景中,理解路程、时间与速度之间的关系,能够解决生活中简单的问题。通过学习,体会万、亿等大数的实际意义,经历探索的过程,发现商不变的规律,并能够灵活运用。在解决实际问题的过程中,认识中括号的必要性,能够进行简单的整数四则混合运算。

单元教学目标:

1、结合实际情景。探索并掌握除数是两位数的除法的计算方法,能正确的进行计算。

2、在具体的生活情景中,理解路程、时间与速度之间的关系,并能解决生活中简单的问题。

3、结合具体的生活情景,体会万、亿等大数的实际意义。

4、经理探索的过程,发现商不变的规律,并能够运用发现的规律进行简便计算。

5、在解决实际问题的过程中,认识引入中括号的必要性,并能够进行简单的整数四则混合运算。

课时安排:

内容 课时数

1、买文具 2课时

2、 路程、时间与速度 2课时

3、参观苗圃 1课时

4、秋游 1课时

5、国家体育场 1课时

6、探索与发现(四) 1课时

7、中括号 1课时

买文具

第一课时

教学目标:

1、结合生活实际情景,探索并掌握除数是整十数除法的算法。

2、能正确应用进行计算,并能解决生活中的实际问题。

3、在计算中增强学生用多种策略解决问题的意识,培养学生学生估算意识。

4、通过小组合作交流,培养学生的思维灵活性和语言表达能力;

教学重难点:

1、掌握除数是整十数除法的算理。

2、解决商的定位问题。

教学准备:

多媒体、练习本

教学过程:

一、创设情境,导入新课

1、口算:(借助视频)

40x2 = 50x5 = 90x3 = 20x7 =

30x3 = 70x4 = 80x6 = 9 x10=

30x6 = 40x3 = 60x2 = 2 x70=

( )x30=60 ( )x60=180 ( )x50=200

( )x40=80 ( )x40=40 ( )x20=180

90x( )=180 40x( )=120 70x( )=140

师: 全对的同学请举手,祝贺你们成为这节课的“口算之星”

(设计意图:为本节课学生准确试商奠定基础)

2、板演(除数是一位数除法的竖势计算方法)

68÷2 = 648÷8 = 567÷5 =

【设计意图】:结合这3道题总结除数是一位数除法的竖势计算方法,为本节课学生推理除数是两位数除法的'竖势计算方法做好准备。)

师:请同学们想一想,你在生活中做什么的时候用过除法呢?

生:我们在分东西、买东西的时候会用到除法。

师:你真是个细心的孩子。

二、探索商是一位数、除数是整十数的除法

1、创设情境,提出问题。

师:我们学校每学期开学初,校长都会拿出一部分钱资助那些品学兼优,家庭困难的同学,鼓励他们努力学习。这学期,校长把负责购买任务交给了老师,我准备到文具店为同学们购买文具,你们想和老师一同去吗?

(板书课题)

生:想。

师:(出事教学情境图。)谁来说一说,你在文具店里看到了哪些数学信息?

生:钢笔8元一支,

文具盒10元一个,

书包20元一个,

计算器30元一个。

师:同学们,我们到文具店干什么来了?

生:买文具。

师:怎么没有同学关心老师带了多少钱呢?

生:老师,您带了多少钱?

师:老师带了——一边说,一边拿出80元钱。(8张10元)为了公平老师打算用这80元钱都买一样的文具,请你们结合80元这一信息,提出只买一样文具的数学问题?

生:80元可以买多少支钢笔?

80元可以买多少个文具盒?

80元可以买多少个书包?

80元可以买多少个计算器?……

师:老师请同学们在小组内先研究80元可以买多少个书包?

(小组合作的要求)

先在小组内说出自己的想法,然后在本上写出你的计算方法。

(教师参与学生活动)

2、独立探索商是一位数、除数是整十数的除法

师:好,谁来说一说你是怎么想,怎么列式的?

(学生汇报自己的解答方法,并说出理由)

生:因为1个书包是20元,2个书包是40元,3个书包是60元,4个书包80元,所以80元可以买4个书包。

我列的算式是 20+20+20+20 = 80(板书学生算式)

生:我用的是20乘多少等于80的方法,因为20乘4等于80,所以80元可以买4个书包。

我列的算式是20x(4) = 80(板书学生算式)

生:我是用80连续减20的方法,即买1个剩 60元,买2个剩下40元,买3个剩下20元,买4个后就没有钱了。所以80元可以买4个书包。

我列的算式是80-20-20-20-20 = 0(板书学生算式)

生:我想80里面有几个20,有几个20就可以买多少个书包。80里面有4个20,因此80元可以买4个书包。

我列的算式是80÷20 = 4(板书学生算式)

生:……

3、探索竖式计算的方法。

师:你们的想法都不错,那你们会用竖式计算80÷20 = 多少吗?

(老师特别请刚才用列竖式的同学来板书,当小老师讲解,再请一个错误的同学板书。)

生1 4 生2 4

20 )8 0 20 )80

8 0 80

0 0

师:谁有什么疑问,请提出来?

❈ 小学6年级数学教案第五单元 ❈

教材分析

除数是两位数的除法,是在学生学习了多位数乘一位数、除数是一位数的除法的基础上进行教学的。学生在前面学习除数是一位数的笔算除法时,已经掌握了笔算除法的基本方法。除数是两位数除法的计算原理与除数是一位数的除法相同,只是试商的难度加大。在用一位数除时,利用乘法口诀就可以求出一位恰当的商。而在用两位数除的过程中,要确定一位商是几,不仅和除法十位上的数有关,而且还和除数个位上的数有关,计算过程比较复杂有时需要试两三次才能求出一位恰当的商。因此,学习除数是两位数除法的关键是引导学生掌握试商方法,这也是本单元教学的难点。

学情分析

学生在前面学习除数是一位数的笔算除法时,已经掌握了笔算除法的基本方法,如除的过程中要看被除数的前一位或前两位,商的书写位置、余数必须比除数小等。除数是两位数除法的计算原理与除数是一位数的.除法相同,只是试商的难度加大。在用一位数除时,利用乘法口诀就可以求出一位恰当的商。而在用两位数除的过程中,要确定一位商是几,不仅和除法十位上的数有关,而且还和除数个位上的数有关,计算过程比较复杂有时需要试两三次才能求出一位恰当的商。因此,学习除数是两位数除法的关键是

教学目标

知识与技能:

1、使学生学会“四舍”的试商方法,正确的计算除数是两位数的除法,知道在什么情况下需要调商,初步掌握调商的方法。

2、培养学生的迁移能力和抽象概括能力。

过程与方法:使学生经历笔算除法试商的全过程,掌握试商的方法。

情感、态度和价值观:培养学生养成认真计算的良好学习习惯。

重点

使学生学会用“四舍” 的试商方法,正确计算除数是两位数的除法

难点

掌握试商的方法。

教具

图片

教学过程:

一、复习:

1、( )里最大能填几?

30x( )<75 40x( )<180

2、在○里填上>或<

35x4 ○ 138 42x5 ○ 230

3、下面各题应该商几?

91÷20 84÷40

198÷20 215÷30

二、探究新知

出示例3

一个笔袋21元,84元可以买几个?

提问:你能计算出84÷21等于多少吗?是怎样想的?学生讨论

教师归纳:

如果把除数看作和它接近的整十数来试商,就比较方便了。

21最接近20,把21看作20来试商,

这样把84÷21转化成84÷20,应该商几?商写在哪一位上?试商4。因为除数21,不是20,因此,商是否合适,还要看商与除数相乘的情况,可以在商的个位上先轻轻地写上“4”然后把4与21相乘,看结果是否等于或小于84。因为21x4正好等于84,说明商4合适,这时将4写清楚。

反馈练习 64÷21 68÷34 92÷23

引导学生观察三道题的除数的个位数。

提问:这三道题的除数的个位数分别是几?你把它们看做多少来试商?你是怎样计算的?

归纳小结:当除数的个位是1、2、3、4时,把除数的个位数舍去,看作整十数来试商,试得的商和除数相乘,如果余数比除数小,说明试得的商是合适的。

(2)一个台灯62元,430元可以买几个?还剩多少元?怎样列式?怎样想的?

430÷62=

7

62) 430

434

商大了,改商6.

6

62) 430

372

58

归纳:如果把除数看作和它接近的整十数来试商,就比较方便了。

62最接近60,把62看作60来试商,这样把430÷62转化成430÷60,应该商几?商写在哪一位上?试商7。因为除数62,不是60,因此,商是否合适,还要看商与除数相乘的情况,可以在商的个位上先轻轻地写上“7”,不行再调商为6。

学生试做:

练习:

198÷23 215÷34 552÷63

提问:你把各题的除数看作多少来试商?你怎么计算的?这三道题的调商过程有什么共同点?

小结:用“四舍”的方法,把除数看作整十数来试商,初商容易大,大了要调小。

三、巩固练习:

1、板演

46÷23 153÷51 300÷74

293÷31 294÷42 200÷63

2、练习 P76“做一做”

四、总结

1、这节课你学习了什么新知识?

2、当除数的个数是1、2、3、4时怎样试商?

五、作业:练习十四第3题

❈ 小学6年级数学教案第五单元 ❈

父爱是什么?我们都说母爱如水、父爱如山,但我觉得相较于无处不在的母爱,父爱是更加伟大、更加深沉的。

我记得自己小时候生病了,可是您还在外地出差,当您知道了我的病情,急忙从外地赶回来。那天晚上,您几乎一夜未眠。哪怕我咳嗽一声,您就连忙起来看我怎么样了,用手摸我的头,生怕我又发起烧来。

还有就是,我一直在挑食。不吃蔬菜,反而只爱吃肉。您为了把我这个坏毛病改过来,一次做饭炒菜的时候,您只炒了蔬菜,连一小块肉都没有给我放。而我那个时候一点也不理解您的做法,反而和您大吼大叫,因为我觉得吃那么多蔬菜有什么用啊?还不如吃肉香哪!而您只是默默的看着我,轻声的讲着吃蔬菜的好处……

我每次考完试发下试卷来,考的如果不太好您也不会严厉批评我,一句“只要我努力,今后一定会考好的。”让我心里暖暖的。如果考的.好了您也不会大声夸奖只是说“不要骄傲,以后还要再接再厉!”这句话使我明白“谦虚使人进步,骄傲使人落后”的道理。

父爱是伟大的,父爱是深沉的,父爱是无私的,父爱是值得敬佩的。

❈ 小学6年级数学教案第五单元 ❈

“夏天,犹如一个太阳,将炎热的阳光洒在大地上;夏天,犹如一包包肥料,把满树的花儿叫醒过来;夏天,犹如一个个舒适的家,把所有的'动物都引进来……

在这五月里,春妹妹走了,夏姐姐悄悄得迈着轻轻的脚步来到大地上,她的脚印布满在了大地上。带着我们的欢声笑语在大地里回荡。虽然,大家喜欢一年里的四个季节,但是,夏天带给小朋友们是别样的开心、愉快。我们能在大树下乘凉、可以吃到透心凉的冰棍、可以在河里抓鱼摸虾,还可以在芬芳扑鼻的草地上摘花扑蝶,流着汗水在瓜果飘香的田野里和风筝一起飞翔。

在夏天里,太阳火辣辣的,鸡耷拉着翅膀,狗热得直吐舌头,知了不知道如何是好,在树上直叫唤:知了…知了…。真是热极啦,人们躲藏在树下乘凉和玩耍,还有的人干脆钻进水里游泳。只有热情洋溢的夏姐姐在不知疲倦地忙活着,她在为果树的头上戴上花果做的“头饰”,她把大地装份成充满绿色生机连绵海洋,她带领动物昆虫在这海洋里游玩……,在夏天里,夏姐姐忙碌极了。

夏天来了,在夏天里,人们的生活一下子改变了。

❈ 小学6年级数学教案第五单元 ❈

我独自一人走在街上,看到草丛里面有一只箱子,走近一看,原来箱子里装者一群小猫,我看小猫太可怜了,就不假思索地捧着箱子回家了。

我回到家,把箱子放在一边,不顾它们的安危去看电视了。过了一会儿,妈妈回来了,看到一个箱子,走近一看,箱子里装着一群小猫,妈妈把我叫过来,对我说:“快把这群小猫扔了,不然,我红烧吃了它们。”我不得不听妈妈的命令,但我又不忍心将他们扔了,于是我偷偷把它们放在我家大门的后面,那是个非常不显眼的地方,我每天给小猫们送吃的,小猫们也就被我养得胖胖的.。不料在一个晚上,一条可恶的恶狗把许多小猫咬死了,仅剩下两只小猫,我心里暗暗地说:“我一定要保护这两只可怜的小猫,不会再让它们受伤害。”一天,我趁爸妈不在,就在家里玩猫,不小心把一只猫弄到一个洞里,小猫进去的时候痛苦地呐喊着,我很想把小猫救出来,可再怎么做,也是无济于事啊!过了几天,还有一只小猫死得更惨,被我不小心踢进了河里,这个河很深,我也想了很多办法救小猫,可小猫还是被活活淹死了。

我很后悔,早知道就不把小猫们拿来,这么多小猫在我手中全死了,小猫的遭遇可真惨!

❈ 小学6年级数学教案第五单元 ❈

(一)、实践操作

1、组织谈话

师:上节课我们已经认识了平行四边形,同学们都学了哪些知识,谁还记得。

生:两组对边分别平行的四边形叫平行四边形。

生:认识了平行四边形的高。

2、媒体演示

(出示课件:小山羊的困惑。配音:一只莽撞的小山羊把一个长方形撞倒了,变成了一个平行四边形,于是小山羊就发现了一个问题,是什么问题呢?)

师:现在你能发现什么问题呢?

生:为什么会变成平行四边形呢?面积是否变了呢?

师:小山羊到底发现了什么问题?你们想不想知道呢?

(出示问题:现在的平行四边形和以前的长方形谁的面积大呢?)

生:一样大。

生:我认为长方形面积大,平行四边形面积小。

师:现在有两种意见,大部分同学认为面积一样大,个别同学认为长方形面积大。到底谁说得对呢?你们能不能想个办法比出这两个图形面积的大小?

师:有什么方法验证一下它们的面积是否一样大呢?

生:可以算一算它们的面积的大小。

师:怎样算呢?

生: 长方形的面积 =长×宽(板书)

平行四边形的面积 =底×高

师:你是怎样知道的?

生:我是看书知道的。

生:我是家长告诉的。

师:那么,为什么平行四边形的面积=底×高,公式是怎么来的呢?这节课,我们就重点来研究平行四边形面积公式的推导过程?

师:下面就用你自己手中的学具,试着把平行四边形转化成我们已经学过的图形。

(小组合作,4人一组,然后在全班汇报)

(二)交流汇报

师:你转化后的图形是什么?你是怎么转化的呢?谁能大胆的上来说一说。

生:是长方形,我是沿着高剪的。

师:你为什么这样剪,不沿着高剪开行不行?

生:长方形的四个角都是直角,所以只有沿着高剪开才能转化成长方形。

师:这个长方形和原来的平形四边形个部分之间有什么关系呢?同学们仔细观察(媒体演示转化的过程:找出底,画高,剪开,平移,拼补,转化成了长方形)。

师::长方形和原来的平行四边形有什么关系?

生:转化后的图形是长方形,我发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积是底乘高。

师:谁再来完整的说一遍。

师:我们通过转化推导出来的面积计算公式和书本上的一样。同学们真是了不起,会自己发现数学知识了。

师:平行四边形的面积计算公式还可以用字母表示呢?你知道怎样表示吗?(学生说,教师板书)

生:公式是s=ah

师:通过刚才的.学生,我们知道了平行四边形面积计算的公式,下面一起来解决一些具体的实际问题。

(三)巩固发展

1.口算下列各题。

生:第一个平行四边形的面积是12平方厘米。

生:第二个平行四边形的面积是20平方分米。

生:第三个平行四边形的面积是8平方米。

2.辨析性练习:

师:你能根据图中给出的数据求平行四边形的面积吗?(课件出示下图,单位:厘米)

生:是54平方厘米。

生:我不同意,因为……

师:为什么说面积不是54平方厘米?

生:我也认为不是9×6=54(平方厘米),因为6厘米这条高不是9厘米这条底上。如果沿6厘米这条高剪开拼成长方形,长方形的长就是6厘米这条高,长方形的宽却不是9厘米这条底。所以不能用9×6=54。

师:谁再来说说。

师:让我们来看看。下面你能计算了吗?(课件出示)

生:2×9=18;3×6=18

❈ 小学6年级数学教案第五单元 ❈

教学目标

1.结合具体情境,在操作活动中,探索并理解分数乘整数的意义。

2.探索并掌握分数乘整数的计算方法,能正确计算。

3.能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

教学重点

会用分数乘整数的计算法则真确进行计算。

教学难点

分析和解决分数乘整数的实际问题。

教师指导与教学过程

学生学习活动过程

设计意图

一,复习整数乘法的`意义

1.什么叫整数乘法?就是求几个相同加数的和的简便运算。

2.出示题目,学生进行计算

(1)6+6+6=6×3

二、新授:

1、出示题卡

1个图案占一张彩纸的1/5,3个图案占这张彩纸的几分之几?

2、引导学生用涂一涂加法计算,乘法计算三种分式来解决问题。

学生回忆整数乘法,并回答什么叫整数乘法。

1、学生仔细阅读题卡,理解题意否,列式计算。

2、学生交流各自计算的方法。

3、全班进行交流。

++==

3×=++==

通过复习整数乘法的意义,过渡到分数乘法的意义,学习易于理解。

在交流各自的语言地理学的过程中,让学生体会分数乘整数的意义与整数乘法的意义是相同的,即求几个相同加数的和的简便运算。

教师指导与教学过程

学生学习活动过程

设计意图

三、涂一涂,算一算

(1)2个3/7的和是多少?

(2)3个5/16的和是多少?

四、练习巩固

1、5个3/8是多少?

2、4个2/17是多少?

3、6个3/25是多少?

学生打开教科书,选涂一涂,再列式计算。

学生审题后,涂一涂,再列式计算。

×2=

全班交流

5/16×3=5×3/16

=15/16

学生独立完成在作业本上

帮助学生进一步体会分数乘整数的定义,同时还可以帮助学生寸步体会“分数乘整数,分子和整数相乘,分母不变”的道理。

❈ 小学6年级数学教案第五单元 ❈

教学内容:北师大版数学五年级上册第一单元第10~11页《找因数》 学情分析:

在四年级的学习中,学生已经接触了解一些因数和积的概念。学习本单元的前三个课时后,学生已基本建立因数、倍数、奇数和偶数的概念。这些为学生能顺利学习和掌握本课时的学习内容作好前期准备。

教材分析:

“用小正方形拼长方形”对于学生来说,并不陌生。本课教材设计以“用小正方形拼长方形”做为学生学习活动的开始,让学生在理解“用12个小正方形拼成一个长方形,有哪几种拼法?”的前提下开始学习活动,是基于学生已有的知识经验展开的。在此基础上,引导并指导学生小组活动,让学生在小组中把自己的操作过程和思考的过程表达清楚。学生在思考“有几种拼法”时,一般会用乘法进行思考:几乘几等于12,然后再一对一对地找出1与12、2与6、3与4等12的因数。这一安排是借助“拼小正方形”的活动,让学生通过形象的排列特点,理解抽象地找因数的方法。在学生操作的基础上再组织学生交流,交流的重点是学生思考的过程,体会用“想乘法算式”找一个数的因数的方法。在学生交流的过程中,引导学生关注“有序思考”的方法,并逐步体会一个数的因数个数是有限的。最后,在设计找因数的练习题时,可以让学生独立尝试,反馈时注意学生能否有序思考。

教学目标

1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考问题的能力。

2、在1—100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。

3、经历探索找一个数的因数的活动过程,培养有条理思考的习惯和能力,发展初步的推理能力。

教学重点:在用小正方形拼长方形的活动中体会找一个数的因数的'方法。 教学难点:提高学生有序思考的能力。

教具:投影、课件

学具:12个1平方厘米的小正方形。

教学过程:

一、创设情境,激情导入

师:同学们喜欢做拼图游戏吗?

用你们课前准备好的的12个小正方形拼成一个长方形,比一比,谁的拼法多?边摆边做好记录。

二、合作交流,探索新知

1、学生:用12个小正方形自由拼(画)长方形

(教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)

师:刚才老师在观察同学们操作时,都有自己的拼法,下面把我们的学习成果交流一下,看看其他同学的成果,总结一下能拼出几种长方形?

2、引导学生合作交流中总结出找一个数的因数的基本方法。

指名学生汇报拼法,学生一边汇报,一边将所拼的图在黑板上进行演示。) 师:你能把这些摆法用算式写出来吗?

(学生独立写出算式并汇报)

依学生汇报板书:1×12=12 2×6=12 12×1=12 6×2=12 3×4=12 4×3=12

学生观察算式,找出因数一样的算式。引导学生说出能用3种方法表示,这三种方法是:1×12=12 2×6=12 3×4=12,并指明算式一样时选择其中一种说出来。

板书:12=1×12=2×6= 3×4

师:同学们观察一下,12的因数有哪几个?

(学生说出12的因数有:1、12 、2、6、3、4。)

师:拼长方形与找因数有什么关系呢?

(指名学生说一说)

师:根据刚才的操作交流,请同学们说一说怎样找一个数的因数呢? (学生思考片刻后汇报,可以组内交流。)

引导学生说出:用乘法思路想,看哪两个数相乘得12,然后一对一对找出来。

3、引导得出“有序思考”的方法。

师:通过拼长方形的方法,我们知道了寻找因数的方法。那么找一个数的因数怎样做到既不重复也不遗漏呢?

(学生独立思考后小组讨论,得出结论,再自由发言。)

根据学生发言小结:

找一个数的因数,要用“有序思考”的方法,即用乘法依次一对一对地找,这样有顺序的给一个数找因数,好处就是不重复也不遗漏。

师:请同学们按顺序说出12的因数。(学生汇报)

板书:12的所有因数有:1、2、3、4、、6、12。

三、应用实践

基础练习

1、课本第9页试一试:分别找出9和15的全部因数。

学生独立思考分别找出9和15的因数;教师巡视指导,关注学生是否注意“有序思考”。

组织学生交流汇报,指明按从小到大,一个一个有序地说,以免遗漏。

2、 学生独立在书中完成第9页的练一练的第1、2、3题。

(投影展示1、2、3题,让学生说一说,集体评价。)

变式练习

1、16的因数有:( )

36的因数有:( )

一个数的最最小的因数是( ),最大的因数是( ),一个数的因数的个数是( )。

2、一个数的最大因数是17,这个数是( ),它的最小的因数是( ),17的因数是( ),一共有( )个。

一个数的最小倍数是17,这个数是( ),它( )最大的倍数,17的倍数的个数是( )。

拓展提高练习

把48个球装在盒子里,每个盒子装得同样多,有几种装法?每种装法各需要几个盒子?如果有37个球呢?

师:同学们能不能利用找因数的方法来解决装球问题呢?请同学们先独立思考,然后小组内交流一下。

汇报:一共有几种装法呢?

思考:这种装球法与找因数有什么关系呢?

四、总结与评价

这节课你学会了什么呢?

学生汇报后师总结:同学们说得很好,这节课我们学会了找因数的方法,并能利用找因数的方法解决很多实际问题:在我们的生活中存在着很多数学奥秘,就看我们能不能发现,并应用所学知识去解决。

❈ 小学6年级数学教案第五单元 ❈

教学内容:

苏教国标版五年级下册103-105页及练一练和练习十九1-3题。

教材分析:

本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。

教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。

学情分析:

1、学生已有知识基础

在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

2、对后继学习的作用

圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。

教学目标:

1、知识与技能:

(1)理解圆的面积的含义。

(2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。

(3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。

2、过程与方法:

经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。

3、情感与态度:

感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。

教学重点:正确掌握圆面积的计算公式。

教学难点:圆面积计算公式的推导过程。

教学准备:

1.CAI课件;

2.把圆16等分、32等分和64等分的硬纸板若干个;

教学设计:

一、创设情境,提出问题。

投影出示草坪喷水插图

师:请大家观察这幅插图,说说从图中你能发现数学知识吗?

学生观察、讨论并交流:

生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;

生3:这个圆形的中心就是喷头所在的地方。

师:请大家说说这个圆形的面积指的是哪部分呢?

生4:被喷到水的草坪大小就是这个圆形的面积。

师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

二、自主探究,合作交流:

1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?

板书:正方形的边长=圆的半径r

正方形的面积=r2

2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?

3、教学例7

⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。

⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。

⑶小组汇报(实物投影展示学生填写的表格)

⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。

⑸小组汇报交流

⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?

板书:S=r2×3倍多

[设计意图]

让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的`公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。

三、动手操作,探索新知

1.回忆平行四边形、三角形、梯形面积计算公式推导过程。

(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?

(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?

(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

2.推导圆面积的计算公式。

(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

(2)学生小组讨论。

看拼成的长方形与圆有什么联系?

学生汇报讨论结果。

(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?

生边答师边演示课件。

生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径

S=πr×r

S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

(5)读公式并理解记忆。

(6)要求圆的面积必须知道什么?(半径)

四、联系实际,解决问题:

1教学例9

(1)课件出示例9;

(2)说出已知条件和问题;

(3)学生自己试做;

(4)讲评,注意公式、单位使用是否正确。

2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。

五、全课总结,课后延伸:

1、今天这节课你学到了什么?

2、圆面积的计算方法,我们是怎样探索出来的?

3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。

六、布置作业

1.第107页的第1-3题。

2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物直径(厘米)半径(厘米)面积(平方厘米)

七、板书设计:

圆的面积

S=r2×3倍多

长方形的面积=长×宽

圆的面积=周长的一半×半径

S=πr×r

S=πr2

教学反思

本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。

❈ 小学6年级数学教案第五单元 ❈

教学内容:小数的意义、小数的性质、比较小数的大小、把非整万(亿)的大数改写成以万(亿)为单位的小数。

教学目标:

1、使学生理解小数的意义,认识小数的记数单位,能正确读写小数。

2、使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。能够比较小数的大小。

3、使学生能够利用小数将一个较大的数改写成以万或以亿作单位的数。

4、使学生掌握用四舍五入法求小数的近似数的方法。能按要求正确地求出小数的近似数。

教学重点:

1、理解小数的意义。

2、掌握小数的性质和小数点位置移动引起小数大小变化的规律。

教学难点:

理解小数的意义、掌握小数的性质。

课时安排:8课时

(1)小数的意义和读写方法

教学内容:p.28~30的例1、例2及相应的“试一试”“练一练”,练习五第1~5题

教学目标:

1、使学生在现实的情境中,初步理解小数的意义,学会读、写小数,体会小数与分数的联系。

2、使学生在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的信心。

教学重点:理解小数的意义。

教学准备:米尺

教学过程:

一、谈话导入:

这节课开始我们要学习新的单元“认识小数”。说说你可以在哪些地方看见小数。

二、学习以“元”为单位的小数:

1、学生说,老师板书。(学生在说的时候一开始可能会说超过1元的小数,引导他们说几个表示不满1元的小数。分两列板书。)

看板书交流:(1)不满1元的小数。如0.1元,就是1角,它是1元的十分之一;0.2元,是2角,它是1元的十分之二……

明确:几角就是1元的十分之几,可以用一位小数来表示。

(2)超过1元的小数。分别看板书让学生说说它表示几元几角。重点明确:整数部分的数表示几元;一位小数,表示几角。

2、我们现在买东西的商品价钱最小单位通常是“角”,老师小时候很多东西的都是用分来作单位的。

比如:一支棒冰的单价是4分。你能用小数来表示吗?说说是怎么想的?

引导学生发现:1分是1元的百分之一。就是0.01元。4分是1元的百分之四,是0.04元。

继续提问:一支雪糕8分钱,怎么用小数表示?……

说说你的发现:几分就是1元的百分之几,可以用两位小数来表示。

3、提高练习:

分别说出几类情况,让学生用小数表示:

(1)几分的;(2)几角的;(3)几角几分的;(4)几元几角的;(5)几元几角几分的……

遇到有困难的再说说思考的方法。

4、读数对比:45.45元

这个数怎么读?为什么要这样读?(突出整数部分和小数部分不同的读法)

三、学习以“米”为单位的小数:

1、举米尺,板书:1米

比“米”小的'长度单位是“分米”,1米等于10分米;比分米更小的长度单位是厘米,1米等于100厘米;比厘米更小的长度单位是毫米,1米等于1000毫米

板书成:1米=10分米=100厘米=1000毫米

读一读,记一记。

2、练习:1分米=( )米,你能用分数表示吗?你能用小数表示吗?

2分米?3分米?……

一句话:几分米就是零点几米

1厘米=( )米,你能用分数表示吗?你能用小数表示吗?

2厘米?3厘米?……

一句话:厘米可以用两位小数来表示。

说一说:4厘米、9分米……写成分数和小数各是多少?

3、1毫米呢?你是怎么想的?

指出:1毫米是1米的千分之一,用三位小数“0.001米”表示

7毫米呢?15毫米呢?……

重点解释“15毫米”:用三位小数,不够的位数用“0”补,补在前面。举例:如果补在后面,那就变成了“0.150”米,它表示多少?一样么?

四、巩固练习:

1、下面每个图形都表示整数“1”,把图中涂色的部分分别用分数和小数表示出来。

学生独立完成后交流:每个图形是把整数“1”平均分成了多少份?涂色部分是这样的几份?写出的小数和分数有什么关系?

可能有的学生不熟悉这样的“整数1”,强化认识:直条的是平均分成10份,格子的是平均分成100份,立体的是平均分成1000份。立体图在看的时候,只要数正面的。

2、练一练:(题略)

(1)学生独立完成再交流。“6角5分”要先想成“65分”。说说每个小数的含义。

(2)继续完成第2题。指名读一读。

3、完成练习五第1~5题

(1)下面每个图形都表示整数“1”,涂色表示它下面的分数,并在括号里写出小数。

学生完成后,再指名联系图中的涂色部分说说每个小数的具体含义。

(2)读出下面各数,并把它表示的几分之几写在边上。

(3)写出下面各数,并说说各是几位小数

(4)在括号里填上合适的小数。(可选择第2、3个重点交流。突出一个“补0”问题。)

(5)把下面各数改写成用“元”(“米”)作单位的小数

指名说一说。有困难的再给予指导。

五、全课总结:

这节课我们认识了小数,你懂得了哪些知识?

❈ 小学6年级数学教案第五单元 ❈

教材分析

本单元百分数的教学包括折扣、成数、税率、利率等相关知识,要求懂得百分数在实际生活中的应用。在理解分数、小数的意义和性质及应用的基础上,结合实际掌握百分数的实际应用。百分数作为一种特殊的分数,在实际生活中的具体应用是非常广泛的。理解折扣、成数、税率、利率是百分数在现实生活中的实际应用,同时理解这些实际应用的具体意义。这一单元的教学充分反映了数学与实际生活的紧密联系,体会在生活中怎样利用数学知识解决实际问题,锻炼学生社会实践能力,初步形成在实践中学习数学、应用数学的思想观念。培养学生社会参与意识,建立小主人翁意识,形成学习我自主,实践我自主,能力我自主的学习态度。

理解和掌握折扣、成数、税率、利率在现实生活中的应用是本单元的教学重难点。如何引导学生结合生活实际,在实践中去探究对知识的理解和掌握尤为重要,需要在教学中设计多种现实生活的实践活动情境(如商场购物、农业收成、银行存储等),通过设置社会实践活动去帮助学生在情境活动中理解和掌握折扣、成数、税率、利率各自的意义,灵活地运用到实践中解决实际问题。例如了解折扣、成数的意义,会解答折扣相关的问题,理解税率和利率的相关概念(应纳税额、税率、本金、利息、利率等)及相关公式(增值税=营业额中应纳税的部分×税率,利息=本金×利率×存期),通过多种形式的社会实践活动,使学生进一步了解百分数在实际生活中的应用。通过本单元的学习,学生利用迁移、比较、推理的方法,进一步巩固涉及百分数的相关数量关系。

教材的设计在于引导学生主体在实践活动中自主参与,实践操作,借助各种形式的社会实践活动,在实践中帮助学生懂得百分数在生活中的应用,获得相关知识的解答,引导学生在实践活动中主动获得学习数学的能力,树立知识源于实践,实践获得真知的观念。

教学目标

1、在社会实践中,进一步了解百分数的意义,理解折扣、成数、税率、利率的意义,运用正确的方法解答折扣、成数、税率、利率的相关问题。在理解的基础上牢记公式:增值税=营业额中应纳税的部分×税率,利息=本金×利率×存期,并且能够灵活运用公式求得相关数据。

2、在理解折扣、成数、税率、利率意义的基础上,能够利用相关知识解决一些实际生活中的问题,从中体会实践中获取知识的快乐。

3学生在学习本单元之前已经对百分数有了初步的认识,知道百分数是特殊的分数,它是在学习分数、小数的基础上开始学习的。本单元是对百分数的进一步学习,向学生渗透百分数在实际生活中的具体运用,使知识在社会实践中进一步延伸。在社会实践活动中寻求解决问题的方法,并进一步理解和掌握这些方法,体会在实践中运用数学思想获得解决问题的方式方法,培养学生的实践交流能力、合作探究能力、综合运用数学的能力。

4、在社会实践活动中渗透对知识的理解和掌握,分析在实践中得到新知的方法,感受实践中灵活运用、操作、分析、交流获得知识的数学体验,树立自主合作探究的学习思想。

5、在初步了解折扣、成数、税率、利率的过程中,引导学生在社会实践中增强数学学习的兴趣和信心。

6、通过公式的有效变通,树立学生学习中灵活运用,用变化的眼光看待问题的理念。

7、学习中培养学生良好的学习品质,进一步提高学生的探究能力、合作能力和实际过程中的运用能力。

教学重点

【重点】

理解折扣、成数、税率、利率的意义。

【难点】

运用公式解决实际生活中的问题。

教学过程

1、利用教材中设置的多种社会实践活动,引导学生在实践中学会发现数学知识及运用转移的思维方式来进一步了解百分数在实践生活中的具体运用。

百分数的应用是在理解百分数的意义的基础上展开教学的,在教学中运用商店买卖的折扣、农业收成的成数、纳税的.税率、银行存储的利息等实践活动,引导学生在实践中掌握相关知识。因此在教学过程中,教师利用教材中多种实践活动,引导学生多种感官参与教学,放手把课堂交给学生,使抽象的知识在实践活动中得到具体的转化,从中进一步理解百分数在实践中的拓展延伸。

2、利用典型的实践活动,置身情境,灵活运用公式解决实际生活中的常见问题。

在学生原有对百分数认识、意义掌握的基础上,理解百分数在实践中的具体应用,进一步灵活运用公式:增值税=营业额中应纳税的部分×税率,利息=本金×利率×存期。注意引导学生运用公式解决实际生活中要求得到的数据,体会合作探究对理解数学、发现身边数学的作用。

3、培养学生综合应用数学的能力。

充分发挥学生的学习主动性,课前布置给学生相关的调查任务,进行折扣、成数、税率和利率知识的调查。在教学过程中,让学生充分交流汇报调查结果,这样既可以培养学生搜集信息的意识、动手的能力,又可以培养学生的合作精神。课后,还可以让学生去亲自实践,体验储蓄的过程,培养学生良好的生活习惯和利用数学知识解决问题的能力。

❈ 小学6年级数学教案第五单元 ❈

教学内容:义务教育课程标准实验教科书二年级下册第20页辨认方向。

教学目标:

1.知识目标:结合具体的情境给定一个方向,能辨认其余的七个方向,名能用这些词语描述物体所在的位置。

2.技能目标:借助辨认方向,进一步发展空间观念。

3.情感目标:在具体的情境中体验数学与生活的密切联系。

教学重点、难点:

1.重点:结合给定的一个方向辨认其余三个方向。

2.难点:用所学的方向词描绘物体所在的位置。

教学方法:提问法、讨论法、练习法

教具准备:课件、小卡片。

教学过程:

一、复习

说一说,我们上学期学过哪些方向?再说一说位于自己东、南、西、北四个方向的同学分别是谁?

二、新授

1、引入。

师:在生活中,除了听说过东、南、西、北这四个方向之外,还听说过哪些方向词?(板书:东南、东北、西南、西北。)现在我们就来认识这些方向。

2、认识东南、东北、西南、西北四个方向

课件出示主题图让学生观察:你看到什么,并说出它们的方向。

让学生将自己置身于学校这个位置,用已经学过的方向知识,说一说体育馆、商店、医院、邮局分别在学校的什么方向。教师先让学生4人一组说一说,再由教师指名让学生自己说一说。

教师让学生观察剩下的4个建筑物所在的方向与以前所认识的方向有什么特别之处。

发现剩下的4个方向分别在学校的斜方向的.位置上。也就是在两个方向的中间。如:图书馆在北面和西面的中间。

说一说:少年宫、电影院、动物园所在的方向。

师:这样描述方向真是太麻烦了,请大家分别给这4个方向取名字

问:你们是如何得出这些名称的?

教师让学生多说一说这4个建筑物分别在学校的什么方向,最后教师总结。

师生共同制作方向板,教师在黑板上板书指导,先将8个方向的点找出,并将北的方向给出,再让学生自己写出剩下的7个方向,

3.试一试

(1)利用方向板说一说教室里8个方向分别有什么?

(2)让学生坐在自己的座位上,教师给出班级面朝的方向,小组内说一说自己的东南、东北、西南、西北分别是哪位同学。

(3)使用方向板时,教师应让学生注意方向板中的方向应与现实中面朝的方向相符。

三.练一练

教师出示地图,问:这是哪个国家的地图,地图的形状像什么?在地图上看到了什么?(教师可适时对学生进行爱国主义教育。学生在观察地图时,教师让学生注意面朝北的方向标。)

教师说出一个方向,让学生在图中将其指出。

问:你还可以提出哪些数学问题?

四.实践活动

到操场上看一看,说说校园内各个方向分别有些什么?

观察后,到班级交流观察的结果。

五.你知道吗?

读书中的一段话后,说一说自己对指南针的了解,再让学生回家去找资料,查找有关指南针的知识,增强学生收集信息的能力。

六.小结

这节课,同学们都学习了哪些数学知识呢?

❈ 小学6年级数学教案第五单元 ❈

课题说明:

本单元的基础是学生初步了解乘法的意义,已经学会用25的乘法口诀口算表内乘法,然后进行教学。本单元的标题为分一分与除法,体现了动手操作与概念思考对于除法意义的重要性。开展分一分活动,可以让学生由浅入深体会除法意义。因此,在教学分桃子这节课时,我准备充分利用教科书所提供的情境,开展教学活动。通过设计具体的`教学情境,让学生产生学习的兴趣,从而激发他们的学习欲望。让学生动手操作(如:分一分、摆一摆、填一填、圈一圈、画一画等),逐步体会什么是同样多、一样多、平均分。结合学生的生活实际进行练习,体验平均分与日常生活的密切联系,运用所学的知识,去解决生活当中实际性的问题,从而加深印象。

课时说明:1课时

  学生情况分析:

本案例适合于二年级学生,由于二年级学生以形象思维能力为主,好动、注意力易分散,注意力持续时间较短。因此,教师应充分调动学生学习的积极性,让学生多种感官参与教学活动(如:动手、动口、动脑),这样更易于学生对知识的理解与掌握。但是,二年级学生在动手操作时,目的性不够明确,易兴奋,这就需要教师作出正确的引导与评价。

教学案例:

1、 在具体的情景中,让学生初步体验平均分的过程,体会平均分的含义。

2、理解平均分的方法。

3、通过分一分的活动,培养学生动手操作的能力。

❈ 小学6年级数学教案第五单元 ❈

教学目标:

1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。

2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。

3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。

教学重点:

经历“鸽巢原理”的探究过程,理解鸽巢原理。

教学难点:

理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

教学准备:

多媒体课件、铅笔、纸杯、合作探究作业纸。

教学过程:

一、 唤起与生成

1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。

2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!

3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张,一句话概括就是至少2张)。

确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。

4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!

二、探究与解决

(一)、小组探究:4放3的简单鸽巢问题

1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

2、审 题:

①读题。

②从题目上你知道了什么?证明什么?

(我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)

③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?

“不管怎么放”:就是随便放、任意放。

“总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。

“至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

3、探 究:

①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?

②活 动:小组活动,四人小组。

听要求!

活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。

听明白了吗?开始!

3、反 馈:汇报结果

同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?

可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)

追 问:谁还有疑问或补充?

预设:说一说你比他多了哪一种放法?

(2,1,1)和(1,1,2)是一种方法吗?为什么?)

只是位置不同,方法相同

5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?

(1)逐一验证:

第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?

符合总有一个笔筒里至少有2支铅笔。

第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。

第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

符合条件的那个笔筒在三个笔筒中都是最多的。

(2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?

(3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。

所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

(二)自主探究:5放4的简单鸽巢原理

1、过 渡:依此推想下去

2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。

3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)

4、验 证:你们的猜测对吗?让我们来验证一下。

活动要求:

(1)思考有几种摆法?记录下来。

(2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。

好,开始。(教师参与其中)。

5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法

分别是:5000 、4100、 3200、 3110 、2200、2111

(课件同步播放)

预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。

6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。

7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:

①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。

②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。

不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。

(三)、探究鸽巢原理算式

1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?

还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?

(好麻烦,是啊, 想想都觉得麻烦!)

2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?

其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?

3、平均分:为什么这样分呢?

生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)

师:你为什么要先在每个笔筒中放1支呢?

生:因为总共只有4支,平均分,每个笔筒只能分到1支。

师:为什么一开始就要去平均分呢?

生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。

师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?

生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

师:看来,平均分是保证“至少”数的.关键。

4、列式:

①你能用算式表示吗?

4÷3=1……1 1+1=2

②讲讲算式含义。

a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。

b、真棒!讲给你的同桌听。

5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔 请用算式表示出来。

5÷4=1……1 1+1=2

说说算式的意思。

a、同桌齐说。

b、谁来说一说?

师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。

(四)探究稍复杂的鸽巢问题

1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?

2、题组(开火车,口答结果并口述算式)

(1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

(2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

7÷5=1…… 2 1+2=3?

7÷5=1…… 2 1+1=2

出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)

你认为哪种结果正确?为什么?

质 疑:为什么第二次还要平均分?(保证“至少”)

把铅笔平均分才是解决问题的关键啊。

(3)把笔的数量进一步增加:

8支铅笔放5个笔筒里,至少数是多少?

8÷5=1……3 1+1=2

(4)9支铅笔放5个笔筒里,至少数是多少?

9÷5=1……4 1+1=2

(5)好,再增加一支铅笔?至少数是多少?

还用加吗?为什么 10÷5=2 正好分完, 至少数是商

(6)好再增加一支铅笔,你来说

11÷5=2……1 2+1=3 3个

①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3)

②那同学们再想想,铅笔的支数到多少支时,至少数还是3?

③铅笔的支数到多少支的时候,至少数就变成了4了呢?

(7)把28支铅笔放进5个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。28÷5=5……3 5+1=6

(8)算的这么快,你一定有什么窍门?(比比至少数和商)

(9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)

3、观察算式,同桌讨论,发现规律。

铅笔数÷笔筒数=商……余数” “至少数=商+1”

你和他们的发现相同吗?出示:商+1

4、质疑:和余数有没有关系?

(明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)

(五)归纳概括鸽巢原理

1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?

100÷30=3…… 10 3+1=4 至少数是4个

(因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)

2、推广:

刚才我们研究了铅笔放入笔筒的问题,其他还有很多问题和它有相同之处。请看:

(1)书本放进抽屉

把8本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?

8÷3=2……2? 2+1=3

(因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)

(2)鸽子飞进鸽巢

11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?

11÷4=2……3? 2+1=3

答:至少有 3只鸽子飞进同一只鸽笼。

(3)车辆过高速路收费口(图)

(4)抢凳子

书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。

3、建立模型:鸽巢原理:

同学们发现的这个原理和一位数学家发现的一模一样,让我们追溯到150多年以前:

知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。

5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?

有信心用我们发现的原理继续接受挑战吗?

3、巩固与应用

那我们回头看看课前小魔术,你明白它的秘密了吗?

1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。

答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。

正确应用鸽巢原理是表演成功的秘密武器!

2、飞镖运动

同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。

课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于多少环。

在练习本上算一算,讲给你的同桌听听。

谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。)

41÷5=8……1? 8+1=9

在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。

3、我们六年级共有367名学生,其中六(2班)有49名学生。

(1)六年级里至少有两人的生日是同一天。

(2)六(2)班中至少有5人的生日是在同一个月。

他们说的对吗?为什么?

同桌讨论一下。

谁来说说你们的想法?

1、367人相当于鸽子,365、或366天相当于鸽巢。

2、49人相当于鸽子,12个月相当于鸽巢。

真理是越辩越明!

3、星座测试命运

说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?

你用星座测试过命运吗?你相信星座测试的命运吗?

我们用鸽巢原理来说说你的想法。

全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。

4、柯南破案:

“鸽巢问题”的原理不仅在数学中有用,在现实生活中也随处可见,看,谁来了?

(课件)有一次,小柯南走在大街上,无意间听到了一位老大爷和一个年轻人的对话:

年轻人:大爷,我最近急用钱,想把我的一个手机号卖掉,价格500元,请问您要吗?

大爷:是什么手机号呢?这么贵?

年轻人:我的手机号很特别,它所有的数字中没有一个数字重复,所以才这么贵的!

老大爷:哦!

听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。

聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?

(手机号11位数字相当于鸽子。0—9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)

4、 回顾与整理。

这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!

❈ 小学6年级数学教案第五单元 ❈

教学内容:

人教版教材小学数学六年级第十二册“数学广角”例1及相关内容。

教学目标:

(1)经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

(2)通过操作发展学生的类推能力,形成比较抽象的数学思维。

(3)通过“鸽巢问题”的灵活应用感受数学的魅力。

教学重点:

经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

教学难点:

理解“鸽巢问题”里的先“平均分”,再得出至少数的过程。并对一些简单实际问题加以“模型化”。

教具、学具准备:

若干个纸杯(每小组3个)、笔(每小组4根)、扑克牌1副

教学过程:

一、扑克魔术导入。

请同学们看我表演一个“魔术”。拿出一副扑克牌(去掉大小王)52张中有四种花色,请一个同学帮我从中随意抽5张牌,无论怎么抽,总有一种花色至少有2张牌是同花色的你相信吗?

你能说明其中的道理吗?老师不用看就知道“一定有2张牌是同花色的对不对?假如请这位同学再抽取,不管怎么抽,总有2张牌是同花色的,同意么?

其实这里蕴含了一个有趣的数学原理,这节课我们一起探究这个数学原理?(板书课题:鸽巢问题)

二、学习例1,列举探究

1、用枚举法深入研究4支笔放进3个纸杯里。

(1)要把4支笔放进3个纸杯里(纸杯代替),有几种放法?请同学们想一想,小组摆一摆,记一记;再把你的想法在小组内交流。(提醒学生左3右1与左1右3是同一种方法——不管杯子的顺序)

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)

(3)观察这四种放法,同学们有什么发现呢?(不管怎么放,总有一个纸杯里至少放有2枝铅笔)让孩子们充分地说。

板书:枚举法

(4)“总有”什么意思?(一定有)

(5)“至少”有2本是什么意思?(最少是2本,2本或者2本以上)。

2、假设法

①还可以这样想:先放3支,在每个笔筒中平均放1支,剩下的1支再放进其中的一个笔筒。所以至少有一个笔筒中有2支铅笔

②思考:为什么要先在每个笔筒里平均放一支呢?

③继续思考:

6只铅笔放进5个笔筒,总有一个笔筒至少放进()支铅笔。

10只铅笔放进9个笔筒,总有一个笔筒至少放进()支铅笔。

100只铅笔放进99个笔筒,总有一个笔筒至少放进()支铅笔。

④通过刚才的.分析,你有什么发现?谁能试着说一说?

只要铅笔数比笔筒多1,总有一个笔筒里至少放进2支铅笔。

3、介绍鸽巢问题的由来。

(1)抽屉原理是组合数学中的一个重要原理,它最早由德国数学家狄利克雷(Dirichlet)提出并运用于解决数论中的问题,所以该原理又称“狄利克雷原理”。

(2)总结:把m个物体任意放进n个抽屉中,(m>n,m和n是非0自然数),若m÷ n= 1……a,那么一定有一个抽屉中至少放进了2个物体。

三、巩固练习:

1、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

2、随意找13位老师,他们中至少有2个人的属相相同。为什么?

四、总结全课:这节课你有哪些收获呢?

(上面点学生说一说,不全的老师补充)

五、设疑留悬念。

如果是把7本书放进3个抽屉里,那么总有一个抽屉至少放进()本书。

如果有8本书呢?

六、作业布置

1、完成教材课后习题p71第5、6题;

2、完成练习册本课时的习题。

❈ 小学6年级数学教案第五单元 ❈

教学目标:

1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

2. 通过操作发展学生的推理能力,形成比较抽象的数学思维。

教学重点:

经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

教学难点:

运用 “鸽巢问题”,解决一些简单的`实际问题。

教具准备:

每组都有相应数量的杯子、小球、扑克牌、多媒体课件。

教学过程:

一、游戏引入:

师:我们今天来做个游戏,游戏要求,把全班分成若干小组,每小组的组长手中有3个小球和2个杯子,要求把所有小球全都放进杯子里。同学们看看老师猜的对不对。

请三位小组长上台来猜另外三小组同学小球是怎么放的。生讲师板书。

师小结:一定有一个杯子里至少有两个小球。

同学们你们想不想知道为什么老师会知道呢?板书课题:鸽巢问题

二、探究原理:

1、动手摆一摆,感受原理。

(1)探究物体个数比抽屉多1的情况。

例1、现在要把4支铅笔放进3个文具盒里,会有几种不同的放法?请大家摆一摆,边摆边记录。

全班分小组摆一摆。

各组长边摆边记录。教师板书,全班同学报数,一起记录。

联系小球放进杯子的游戏,引导学生讲出:不管怎么放,总有一个杯子至少放有2根小棒。

师:总有一个杯子至少有……

师:A、总有是什么意思?

师:B、“至少”又是什么意思? “至少’的意思是2根或2根以上。

师:如此往下想,7根小棒放在6个杯子里,

10根木棒放进9个杯子里

100根木棒放进99个杯子里会有怎么样的结论?

要证明这个结论能想出一种简便的方法来吗?大家讨论讨论。

学生讨论。

师:想出什么办法?谁来说说。

刚才这样分是怎样分?为什么要用平均分,才能证明这个结论?

(边摆边说。如果用算式怎样表示?板书(4÷3=1……1)

学生得出:只要小棒数量比杯子数量多1都有这样的结论。

2、探究商不是1的情况。

讨论7本书放进3个抽屉里,想知道结论吗?还要摆吗?

那8本书进3个抽屉里。

10本书放进3个抽屉里又是怎样?你发现了什么?

我发现 7÷3=2……1

8÷3=2……2

10÷3=3……1

板书:至少数=商+1。

小结:我们今天探究的原理就是数学中有名的鸽巢原理。

三、本课总结:

鸽子÷鸽巢 = 商…… 余数

至少数 = 商+1

四、用今天知识来解决生活中的一些实际问题。

1、做一做

2、玩扑克的游戏。

五、板书:略

相关文章

最新文章

推荐访问

Copyright©2001-2025 幼儿教师教育网 yjs21.com 湘ICP备2022004057号-6

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。