北师大六年级下册二单元正比例和反比例教学反思

03-05

优秀的人总是会提前做好准备,作为幼儿园老师的我们的课堂上能更好的发挥教学效果,大部分的教案都是为了让学生的学习效率得到提升,教案可以让上课自己轻松的同时,学生也更好的消化课堂内容。您知道幼儿园教案应该要怎么下笔吗?小编经过搜集和处理,为您提供北师大六年级下册二单元正比例和反比例教学反思,欢迎阅读,希望您能阅读并收藏。

现在向您介绍幼儿园教案《北师大六年级下册二单元正比例和反比例教学反思》

《北师大六年级下册二单元正比例和反比例教学反思》这是一篇六年级下册数学教案,数学来源于生活,又服务于生活,联系生活实际创设问题情境,是新课标精神的体现。

我们发现教材把比的认识放到了六年级的上学期,学完了百分数之后就认识了比,而删除了比例的意义和性质、解比例以及应用正反比应用题。而只研究正反比例(图片),加入了变化的量(图片),、画一画(图片)、探究与发现(图片),等内容。

为什么加变化的量、画一画、探究与发现等内容?

由困惑引发了我们的思考。通过学习和实践我们有了下面的答案。

其一在《课标》中,更强调了通过绘图、估计值、找实例交流等不同于以往的教学活动,帮助学生体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,为以后念打下基础。学生绘图的过程可以说是他亲身体验的过程,是他“经历运用数学符号和图形描述现实世界的过程”,只有亲身的经历和体验,才能给学生留下深刻的印象,真正体会、理解两个变量之间相互依存的关系,丰富了关于变量的经历,加深了对函数的认识。多种研究也表明,为了有助于学生对函数思想的理解,应使他们对函数的多种表示———数值表示(表格)、图像表示、解析表示(关系式),有丰富的经历。在正比例、反比例的学习中,应十分重视三种方式的结合。函数图像更有利于学生直观的理解变量的变化关系,并且利用规律解决问题,更好的进行函数思想的渗透。这一点可以从课堂和课后的作业中找到答案。

其二为今后对函数进一步的学习做准备我们再来看一看函数课程的发展链。

小学:数的认识,图形数量找规律,数的计算,图形周长和面积,字母表示数—变量,统计—变量,商不变的性质—常函数,正反比例—函数。

初中:一次函数,二次函数,正反比例函数,函数概念的初步认识。

高中:函数概念的映射定义。一些具体函数模型—简单幂函数及其拓展,实际函数的模型——分段函数,指数函数,对数函数,三角函数,数列,函数思想的广泛应用。

到了大学还在继续着对函数的学习,可以看出小学阶段的只是对函数的最初级的最浅显的认识,但却影响着孩子今后对函数的学习。从多方面理解变化的量,打破了思维的局限,利于今后函数概念正确的建立。

这节课我谈谈个人的观点:

本单元是在学生已学习了比和比例的知识以及积累了一些常用数量关系基础上进行教学的,正反比例这个知识对于学生来说是一个全新的知识,也正好是规律探究的知识,因此高老师尝试用整体进入的方式来进行教学。主要让学生结合实际情境认识成正比例和反比例的量。通过学习这部分知识,使学生从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。教材的安排是用例1、例2教学正比例的意义和正比例的图像,例3教学反比例的意义,而高老师第一课时并没有进行图像教学。而是对教材大胆地进行重组,第一课时进行正、反比例意义的教学,第二课时进行正反比例图像的教学。从意义和图像两方面进行对比,用结构的方式,加深学生对正反比例意义的理解。这节课高老师主要引导学生通过观察分类、自主探索、合作交流,呈现出学生“分类方法”的多样化,在两次“分类”中不断激发学生探究两种相关联量变化规律。学生学的比较愉快。

探讨的地方有:

1.在出现表格的时候最好加上一个不是相关联的量的表格让学生进行分类。如人的身高与体重等。这样对比更明显,让学生知道不相关联的两个量要归类在不能成比例一类,

2.可以让学生把一组组对应的数据写出来进行对比,教师也可以板书这样学生更能直观的发现他们的比值一样的.或乘积是一样的,以便发现规律.

3.重心下移的力度不够,规律可以让多个学生尝试归纳,然后教师可以指导学生看书得出规范性的数学语言.

4.教学中增加对比练习

5.增加拓展练习,抽象实际事例中的数量变化规律,加深正比例的概念的理解。

【反思】

数学来源于生活,又服务于生活,联系生活实际创设问题情境,是新课标精神的体现。教学中,我从创设生活数学问题入手,进入新课学习,在学生掌握新知的基础上,又回到问题情境的他讪,同时还提供一个理具有综合性、开放性的题目:“你能举出一个正比例或反比例的例子吗?为什么?”在学生能准确由AXB=C表示三量之间的比例关系后,我又设计了这样一个环节:请同学自己举一些生活中较熟悉的三量关系,说说它们之间存怎样的关系,再次回归生活,让学生体验教学的价值,这也是新课程教学理念――人人学有价值的数学。

教学中,我尊重学生的的个性差异,尊重学生的学习成果。如:在学生知道了正、反比例的意义、关系式后,我提出:“用你喜欢的方式喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透,又尊重了学生的个性发展和学习成果。

练习与提高部分,我打破了老师出示题目――自己完成――集体订正的模式,而是通过练习型课件,让学生自己判断正确性,既充分挖掘各省市毕业会考试题这一课题资源,又通过“你真棒”、“你太聪明了”、“有点马虎哟”、“要加把劲呀”、“要仔细呀”等鼓励性的“语言”,更大限度的激发学生的参与热情,让不同的学生有不同层次的收获与提高。

YJS21.cOm更多幼儿园教案小编推荐

六年级下册《正比例和反比例》公开课教案教学分析反思


现在向您介绍幼儿园教案《六年级下册《正比例和反比例》公开课教案教学分析反思》

《六年级下册《正比例和反比例》公开课教案教学分析反思》这是一篇六年级下册数学教案,正反比例关系是比较重要的一种数量间的关系。

撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套六年级下册《正比例和反比例的比较》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的年龄特征,与素质教育的要求相吻合,具有科学性、实用性等优点。

单元教学内容:

变化的量正比例画一画反比例观察与探究图形的缩放比例尺

单元教学目标:

1、结合具体情境,体会生活中存在着大量互相依赖的变量;在具体情境中,尝试用自身的语言描述两个变量之间的关系。

2、结合丰富的实例,认识正比例或者反比例;能根据正比例和反比例的意义,判断两个相关联的量是不是成正比例或反比例

3、能找出生活中成正比例和反比例的实例,会利用正、反比例的有关指示解决一些简单的生活问题。

4、通过观察、操作与交流,体会比例持发生的必要性和实际意义,了解比例尺的含义。

5、运用比例尺的有关知识,通过丈量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

单元教材分析:

单元教材分析这局部内容是在同学已经学过比的意义、比的化简与比的应用的基础上学习的。本单元教材编写力图体现以下主要特点。:

1.提供具体情境,使同学体会生活中存在大量互相依赖的量我们生活在一个变化的世界中,从数学的角度研究变量和变量之间的关系,将有助于人们更好地认识实际世界、预测未来。同时,研究实际世界中的变化规律,也使同学从常量的世界进入了变量的世界,开始接触一种新的思维方式。我们知道,函数(函数可以直观地理解为:在一个变化过程中有两个变量x,y,对于x的每一个变化的值,y都有唯一确定的值与之对应,y就叫做x的函数)是研究实际世界变量之间关系的一个重要模型,对它的学习一直是中学阶段数学学习的一个重要内容。而国际数学课程发展的趋势标明,对变量之间关系的探索、描述应从小学阶段非正式地开始,早期对函数的丰富经历是十分重要的。其实,以前学习的探索数、形的变化规律,字母表示数等,已经为同学积累了研究变量之间关系的经验,而本章的正比例、反比例自身就是两个重要的函数。函数是刻画变量之间相互关系的重要模型,体会函数思想需要丰富的情境,同学将在这些情境中,感受到生活中存在着大量变量,有的变量之间是存在一定关系的,一个变量随另一个变量的变化而变化。因此,在正式学习正比例、反比例之前,教材设计了三个具体情境,通过同学感兴趣的日常生活中的问题,使他们体会变量和变量之间相互依赖的关系,并尝试对这些关系进行大致地描述。多种研究标明,为了有助于同学对函数思想的理解,应使他们对函数的多种表示———数值表示(表格)、图像表示、解析表示(关系式),有丰富的经历。因此,教材在出现具体情境中变量之间的关系时,分别运用了表格表示、图像表示、关系式表示的方法。在后面正比例、反比例的学习中,也十分重视三种方式的结合。

2.提供丰富情境,引导同学经历从具体情境中笼统出正、反比例的过程正比例关系、反比例关系是数学中比较重要的数量关系,同时,同学理解正比例、反比例的意义往往比较困难。为此,教材密切联系同学已有的生活经验和学习经验,设计了系列情境,让同学体会生活中存在大量相关联的量,它们之间的关系有着一起之处,从而引发同学的讨论和考虑,并通过对具体问题的讨论,使同学认识成正比例的量、成反比例的量以和正比例、反比例在生活中的广泛存在。这些系列情境也为同学理解“正比例”“反比例”的意义提供了丰富的直观背景和具体案例,例如教材从不同的角度(实际生活、图形)提供了有利于同学探索并理解正比例意义的情境,这些情境中既包括“时间与路程”“购买苹果应付的钱数与质量”等生活情境,也包括正方形周长与边长、面积与边长等数学情境,情境中有正例也有反例,以引导同学经历从具体情境中笼统概括出正比例的过程。

3.注重引导同学利用“正、反比例”的意义解决实际问题,关注知识之间的联系正、反比例在生活中有着广泛的应用,教材不只仅是在引入时为同学提供了丰富的实际情境,还鼓励同学寻找生活情境中成“正、反比例”的量。如,设计“找一找生活中成正、反比例的例子,并与同伴交流”的题目,使同学认识到正、反比例的知识与日常生活的密切联系。同时,教材还特别注重知识之间的联系,出现了大量同学以前学过的量与量之间的关系,鼓励同学判断它们之间的关系。如,底一定时,平行四边形的面积与高;圆的周长与直径。

4.在画图或解决实际问题等的活动中,体验比例尺的应用对于比例尺的知识,同学并不陌生,生活经验比较丰富,如地图上的比例尺等。尽管如此,比例尺的应用对于同学来说还是比较笼统的,教材结合具体的活动和实例,贴近同学的生活经验,让同学感受到比例尺的广泛应用。如,在探究活动中,通过在方格纸上画小猫图,讨论哪只小猫长得更像乐乐,让同学初步体会比例尺的应用。再如,在实践活动中,通过画自身卧室的平面图,设计巨人的教室,进一步体会比例尺在生活中的应用。同时,通过“你知道吗”栏目中的知识,了解比例尺的另一种形式,拓宽同学的视野。

课时布置:

15课时

教学目标:

1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

3.结合丰富的事例,认识正比例。

教学重点:

1、结合丰富的事例,认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学用具:

课件

教学过程:

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后考虑:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

说说你发现的规律。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么一起的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

5、正比例关系:

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6、观察考虑成正比例的量有什么特征?

一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

(四)想一想:

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自身的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁

6

7

8

9

10

11

爸爸的年龄/岁

32

33

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报

在老师的小结中感受并总结正比例关系的特征

活动二:练一练。

1、判断下面各题中的两个量,是否成正比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长与长。

2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)

3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

应付的钱数随购买的枚数的变化而变化,而且比值不便。所以应付的钱数与买邮票的枚数成正比例。

4、找一找生活中成正比例的例子。

5、先自身独立完成,然后集体订正,说理由。

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学难点:

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程:

一、复习

1、什么是正比例的量?

2、判断下面各题中的两种量是否成正比例?为什么?

(1)工作效率一定,工作时间和工作总量。

(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

(3)正方形的边长和它的面积。

二、导入新课

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

三、进行新课

情境(一)

认识加法表中和是12的直线和乘法表中积是12的曲线。

引导同学发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)

让同学把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

两个相对应的数的乘积各是多少?你有什么发现?独立观察,考虑

同桌交流,用自身的语言表达

写出关系式:速度×时间=路程(一定)

观察考虑并用自身的语言描述变化关系乘积(路程)一定

情境(三)

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自身的语言描述变化关系

写出关系式:每杯果汁量×杯数=果汗总量(一定)

5、以上两个情境中有什么一起点?

反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

活动四:想一想

P26页第1、2、3题

关系式:X×Y=K(一定)

教学目标:

1、结合具体情境,认识比例尺,能根据图上距离,实际距离,比例尺中的两个量求第三个量。

2、运用比例尺的有关知识,通过丈量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。

教学重点:认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知识解决实际问题的能力。

教学难点:认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知识解决实际问题的能力。

教学过程:

一、出现情境图

思考、讨论

我家的房屋平面图

1、比例尺1:100是什么意思?

图上距离

2、比例尺=--------------

实际距离

3、独立完成P30页第2、3题。

4、P30页第4题,怎样求窗户的图上距离?注意比成相成的单位后再计算。

5、指导完成P30页第5题。

注意求比例尺时,图上距离与实际距离的单位要统一。

P31页第1题,说明清楚两地距离一般假设是直线距离,计算时,注意单位换算。

P31页第2题,自身尝试独立完成。

放手让同学自身研究。

教师对困难的同学加以指导

试一试

练一练

教学内容:变化的量

教学目标:

1.结合具体目标,体会生活中存在着大量互相依存的变量。

2.在具体情境中,尝试用自身的语言描述两个变量之间的关系。

教学重点:

结合具体目标,体会生活中存在着大量互相依存的变量。

教学难点:

在具体情境中,尝试用自身的语言描述两个变量之间的关系。

教学用具:

课件

教学过程:

活动一:观察并回答。

1、下表是小明的体重变化情况。

观察表中所反映的内容,搞清楚表中所涉和的量是哪两个量?观察后请回答。

2、上表中哪些量在发生变化?

3、说一说小明10周岁前的体重是如何随年龄增加而变化的?

小结:小明的体重随年龄的增加而变化。2—6岁和6---10岁是体重的增加高峰。说明这两个阶段是小朋友生长的重要阶段。

4、体重一直会随年龄的增加而变化吗?这说明了什么?

说明:体重和年龄是一组相关联的量。但体重的增加是随着人的生长规律而确定的。

1、教育同学要合理饮食,适当控制自身的体重。

活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

观察书上统计图:

1、图中所反映的两个变化的量是哪两个?

2、横轴表示什么?纵轴表示什么?

同桌两人观察并考虑,得出结论后,记录在书上,然后再在全班汇报说明。

3、一天中,骆驼的体温最高是多少?最低是多少?

4、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

5、第二天8时骆驼的体温与前一天8时的体温有什么关系?

6、骆驼的体温有什么变化变化的规律吗?

活动三:某地的一位同学发现蟋蟀叫的次数与气温之间有如下的近似关系。

1、蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。

2、假如用t表示蟋蟀每分叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。

3、你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?四人小组交流你收集到的信息,选派代表请举例说明

4、你还发现我们学过的数学知识中有哪些量之间具有变化的关系?

全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。

教学目标:

1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。

2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

3、利用正比例关系,解决生活中的一些简单问题。

教学重点:

1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。

2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

教学难点:

1、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

2、利用正比例关系,解决生活中的一些简单问题。

教学过程:

一、复习

活动一;判断下面的量是否成正比例关系?

1、每行人数一定,总人数和行数。

2、长方形的长一定,宽和面积。

3、长方体的底面积一定,体积和高。

4、分子一定,分母和分数值。

5、长方形的周长一定,长和宽。

6、一个自然数和它的倒数。

7、正方形的边长与周长。

8、正方形的边长与面积。

9、圆的半径与周长。

10、圆的面积与半径。

11、什么样的两个量叫做成正比例的量?

二、新授

活动二:探索一个数与它的5倍之间的关系。

1、求出一个数的5倍,填写书上表格。自身独立完成。

2、判断一个数的5倍和这个数有怎样的关系?说说你判断的理由

小结:一个数和它的5倍之间具有正比例关系。

3、根据上表,说出下图中各点的含义。(图见书上)。请观察横轴表示什么?纵轴表示什么?然后说说各点表示的含义。

4、连接各点,你发现了什么?

注:所描的点都在同一条直线上。

5、利用书上的图,把下表填完整。

6、估计并找一找这组数据在统计图上的位置。

自身独立完成。

在统计图上估计一下,看看自身估计地是否准确

三、练习

活动三:试一试。

1、在下图中描点,表示第20页两个表格中的数量关系。

2、考虑;连接各点,你发现了什么?

活动四:练一练。

1、圆的半径和面积成正比例关系吗?为什么?

教师讲解:因为圆的面积和半径的比值不是一个常数。

2、乘船的人数与所付船费为:(数据见书上)

(1)将书上的图补充完整。

(2)说说哪个量没有变?

(3)乘船人数与船费有什么关系?

(4)连接各点,你发现了什么?

每人所需的乘船费用没有变化。

乘船费用与人数成正比例。

所有的点都在一条直线上。

3、回答下列问题:

(1)圆的周长与直径成正比例吗?为什么?

圆的周长与直径成正比例关系。

(2)根据右图,先估计圆的周长,再实际计算。

(3)直径为5厘米的圆的周长估计值为(),实际计算值为()。

(4)直径为15厘米的圆的周长估计值为(),实际计算值为()。

4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上)所有的点都在同一条直线上。

四、教学反思:

教学目标:

1、让同学尝试用图表示成反比例的量之间的关系,利用图进一步认识反比例。2、渗透事物之间都是相互联系和发展变化的观点,初步渗透函数思想。

教学重难点:

动手操作,用图表示成反比例的量之间的关系,利用图进一步认识反比例。

教学过程:

一、复习

长方形面积一定,长与宽成反比例吗?为什么?

二、新课

出现情境

这节课我们用图表表示成反比例的量之间的关系。

用x、y表示面积为24cm2的长方形相邻的两条边长,它们的变化关系如下表。略

1、观察表格,根据数据在方格纸上画出这8个长方形。

2、把图中的点用平滑的曲线依次连起来。

3、长和宽是怎样变化的?有什么规律?—长扩大,宽缩小,相对应的长和宽的乘积是24。

关系式:长×宽=长方形面积(一定)

4、图上的点A、B、C、D……在一条直线上吗

三、小结:

四、教学反思:

正反比例关系是比较重要的一种数量间的关系。在教学中我积极利用了学生的自我观察,给于了学生一些较为形象具体的表格形式进行对比、分析。从而让学生能轻易地发现两个数量间的变化关系。在观察和对比了以后再进行意义的概括。由浅到深逐步慢慢转化为对文字的叙述的判断。但是对正比例意义的理解还将涉及到学生对一些数量关系的掌握情况。但是我并没有急于地让学生背数量关系。而是把对意义的理解作为重点,通过几个具体的表格的强化加深学生对意义的理解。这也是新教材与老教材的区别。教材淡化了学生对数量关系的理解,而是让学生能够在具体的情境的中慢慢体会。正反比例的教学并不仅仅停留在数量关系上,只是让学生能够根据数量关系作一些简单的判断。学生其实只是停留在机械的模仿和识记上。我们要从一个新的数学角度来加以研究,用一种新的数学思想来加以理解,用一种新的数学语言来加以定义。因此在复习题中我让学生大量的复习了常见的数量关系,并且联系教材复习了教材及练习中涉及到的一些数量关系,渗透了难点。对于一些学生较容易出现错误的题目进行重点的讲解。像圆柱的底面积一定,体积与高成什么比例;圆柱的高一定,体积与底面半径成什么比例,圆的周长一定,直径和圆周率等等这些题目能够帮助学生真正理解正反比例的意义。

下面以图上距离、实际距离、比例尺为例,谈谈如何联系具体的问题情境理解三者之间的关系。当比例尺一定时,图上距离和实际距离成正比例;可以结合图上距离和实际距离变化方向相同,那么在同一幅地图上,图上距离越长,表示的实际距离也就越大。当图上距离一定时,实际距离和比例尺成反比例,那么实际距离和比例尺的变化规律正好相反,可以出这样一道题帮助理解,图上距离3厘米在下面哪一幅地图上表示的实际距离最大①1:400②1:600000③1:600000因为实际距离和比例尺成反比例,它们的变化方向相反,要使实际距离大,那么比例尺就要小,所以选第三个。当实际距离一定时,图上距离和比例尺成正比例,可以出这样一道题帮助理解,一个半径100米的花坛,画在下面哪一幅地图上,图上距离最大①1:40000②1:60000③1:100000因为图上距离和比例尺成正比例,它们的变化规律一致,比例尺越大,图上距离就越大,所以应该选第一个比例尺。通过这样的练习能够更好地帮助学生理解图上距离、实际距离、比例尺三者之间的关系。起到很好的教学效果。

六年级下册《正比例和反比例》第1课时公开课教案反思


现在向您介绍幼儿园教案《六年级下册《正比例和反比例》第1课时公开课教案反思》

《六年级下册《正比例和反比例》第1课时公开课教案反思》这是一篇六年级下册数学教案,正比例和反比例是在同学学习了比和比例的基础上进行教学的,主要让同学结合实际情境认识成正比例和反比例的量。

一、教学目标分析

正比例和反比例是在同学学习了比和比例的基础上进行教学的,主要让同学结合实际情境认识成正比例和反比例的量。知识与技能方面的教学目标是:经历从具体实例中认识成正比例和反比例的量的过程,理解正比例、反比例的意义,学会判断两种相关联的量是否成正比例或反比例。正比例、反比例都是表示两个相关联的变量之间关系的一种数学模型,都是在一定的条件下,一种量随着另一种量的变化而变化。本单元的教材分“成正比例的量”和“咸反比例的量”两个局部,先教学正比例的认识,再教学反比例的认识。在同一节课里引导同学探索两种量在变化过程中存在的规律,并用关系式表示出规律,有助于同学掌握正比例、反比例概念的实质,因此我们抓住知识的内联与实质规律,重组正比例、反比例教学:把认识成正比例的量和认识成反比例的量的两个例题整合起来,布置在一节课里进行教学,让同学在同一实例的情境中,感悟、体会并理解正比例、反比例的意义。

重组教材,创编文本。将教材中的例1(结合生活中的实例认识成正比例的量)和例3(结合生活中的实例认识成反比例的量)整合成同一问题情境下有前后联系的两道例题:保存原教材中的例1,引导同学认识成正比例的量;根据例1的情境,创编新的例2,替代原教材中的例3,引导同学认识成反比例的量。将教材中的例2(认识正比例图像)放到认识正比例、反比例之后进行教学。

抓住实质,内联教学。成正比例的量的实质规律是“比值一定”,成反比例的量的实质规律是“积一定”,引导同学探究发现这两种实质规律是教学的主要任务,教学时应掌握好这一点。本设计将例1和例2整合到同一情境下,从同学熟悉的时间、速度和路程这三个量之间的关系动身,引导同学对比研究,在观察、讨论交流中发现:①例1和例2中的两种量都是相关联的量,都是在一定的条件下,一种量随着另一种量的变化而变化。②例1中两种相关联的量的变化方向是相同的,一种量扩大(或缩小),另一种量也随着扩大(或缩小);例2中两种相关联的量的变化方向是相反的,一种量扩大,另一种量反而缩小。③例1中扩大、缩小的规律是“比值一定”,例2扩大、缩小的规律是“积一定”。这样抓住正比例、反比例的实质和联系进行教学,有助于同学加深对正比例、反比例意义的理解,从整体上掌握各种量之间的比例关系。

对比练习,沟通联系。同学对成正比例的量和成反比例的量有了一定的认识后,还需要一定的练习。为了协助同学逐步提高判断成正比例、反比例的量的能力,本设计中的练习分三个层次:一是判断咸正比例的量的练习;二是判断成反比例的量的练习;三是正比例、反比例对比练习,成比例的量与不成比例的量的对比练习。比较和辨析,有助于同学更好地掌握正比例、反比例概念的实质

二、教学过程设计

(一)导引探究,由表和里

教学例1,认识成正比例的量。

1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。

时间(时)

1

2

3

4

5

6

……

路程(千米)

80

160

240

320

400

480

……

在让同学说一说表中列出了哪两种量之后,教师引导同学逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(同学探究第3个问题时,教师可进行适当的引导,如引导同学写出几组路程和时间对应的比,并要求同学求出比值。)

2.引导同学交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。

3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。

4.让同学根据板书完整地说一说表中路程和时间成什么关系。

[数学概念是客观实际中数量关系和空间形式的实质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充沛利用表格,让同学通过对表中数据的观察和分析,由浅入深,由表和里,逐步认识成正比例的量的特点。本环节先让同学观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导同学在探究学习活动中发现路程与时间之间的关系和变化趋势;最后,聚焦、明晰这两种量之间的关系,让同学初步认识正比例的特点。这样的教学有利于同学经历正比例概念的形成过程。]

(二)自主棵究,尝试归纳

出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?

速度(千米/时)

40

60

80

100

120

……

时间(时)

30

20

15

12

10

……

1.出示供同学自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?

2.引导同学在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。

3.在发现变化规律的基础上,让同学仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。

[从生活原型中逐步笼统,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现同学的学习自主性。本环节除了让同学发现成反比例的量之间的关系,还让同学仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥同学的学习主动性,让同学在自主探究过程中经历反比例概念的形成过程。]

(三)对比棵究,掌握实质规律

1.将各例1、例2教学时探究发现的内容用多媒体出现出来,揭示正比例、反比例的内涵实质。

多媒体出现:

例1路程/时间=速度(一定)

路程和时间成正比例

例2速度×时间;路程(一定)

速度和时间成反比例

2.探究活动。

(1)让同学仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。

(2)引导同学将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。

[例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于同学从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于同学从不变中看到变。变与不变关键要抓住实质——“比值一定”还是“积一定”。对比探究活动旨在让同学掌握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]

(3)引导同学尝试用字母表达式对正比例的意义和反比例的意义进行笼统概括。

启发同学考虑:①假如用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②假如用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?

根据同学的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。

[概念符号化在概念教学中很重要。《数学课程规范》明确指出,符号感主要表示之一是能从具体情境中笼统出数量关系和变化规律,并用符号来表示。同学概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、笼统实质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,同学尝试用语言或符号对同类对象的实质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,同学对正比例、反比例的实质属性和特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的笼统表达,是揭示正比例、反比例数量关系和其变化规律的数学模型。]

3.组织对比性练习。

(1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:

表1

数量/本

20

30

40

50

60

……

总价/元

30

45

60

75

90

……

表2

单价/元

1.5

2

4

5

6

……

数量/本

40

30

15

12

10

……

在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!

在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。

[将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于同学进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的掌握。]

(2)成比例与不成比例的对比练习。

下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?

①圆的直径和周长。②小麦每公顷产量一定,小麦的公顷数和总产量。③书的总页数一定,已经看的页数和未看的页数。

[这一类型题比较笼统,同学只有对正比例、反比例的意义有了较深刻的理解,才干正确地作出判断。这样的练习有助于同学从整体上掌握各种量之间的关系,有助于进一步提高同学判断成正比例、反比例的量的能力。此题型在新授课上还只是让同学初步接触,重点训练还要放在练习课。]

(3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。

[举例练习是概念巩固阶段的重要组成局部。假如让同学独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让同学感受到数学与生活的联系。

【反思】

我执教的《正比例反比例》是北师大版六年级下册P63的内容,课前给学生下发“学案”让学生在充放预习的基础上以学案为载体,归纳、回顾和整理所学的知识,课堂以合作交流、展示为重点,本节复习课,目的是通过整理复习,使学生对正比例和反比例的知识有一个全面的认识,使所学知识结构化,系统化。由于学生已是高年级,应该能够自主对知识进行整理,形成系统,因此在整理与回顾时我尽量放手,给学生充足的时间,让学生将本单元所学内容进行回顾整理,再深入各学习小组巡回指导,适当进行点拨。在这个过程中,我为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。

在学生对正比例和反比例的知识进行整理后,在小组内展开合作学习,让学生以小组为单位进行交流。小组长要做好组织协调工作,在小组交流的过程中,哪个同学有什么疑问可以提出来,自己小组的同学进行解答。如果解决不了,就将疑问记录下来,等全班交流时,再进行提问,在这个过程中,每个同学将自己整理的内容进行添加、补充、完善,小组整理的知识达成共识。经过这个过程,复习的重要知识基本上就形成了。

在小组活动时,教师及时走下讲台巡视,参与到解决问题有困难的小组中去,积极地看,认真地听,及时了解信息,以便在全班展示时及时抓重点、难点给予点拨、引导。

在小组交流的基础上,小组代表进行发言。其他同学认真倾听,在汇报的基础上再进行补充。在学生汇报交流中,学生及时补充正、反比例的相同与不同。老师根据学生交流的情况,点拨判断正、反比例量的判断方法。

为了全面了解学生知识的掌握情况,在课堂结束阶段,设计适当的检测性练习题让学生独立练习,及时反馈矫正,引导学生自觉参与课堂评价,进而对本节课的表现、练习情况等进行自我总结与反思,体验快乐与成功,增强学生学习数学的信心,培养良好的反思习惯。

在教学中也存在着以下几个问题:

1、时间安排不够合理。在“合作交流”部分的小组交流中时间留的较多,再加上学生在预展部分板书较慢,学生的板演技能还不是很高,以致课堂预设流程没有能够进行完。

2、学生的课堂语言有重复打结的现象,在学生的展示、补充、点评环节都有存在。对学生课堂发言、倾听习惯培养不到位,对学生课堂语言要进一步的引导养成良好的倾听习惯,以适应课改的需要。

六年级下册《正比例和反比例》公开课教案教材简析反思


现在向您介绍幼儿园教案《六年级下册《正比例和反比例》公开课教案教材简析反思》

《六年级下册《正比例和反比例》公开课教案教材简析反思》这是一篇六年级下册数学教案,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。

撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套新课标六年级下册《正比例和反比例》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的年龄特征,与素质教育的要求相吻合,具有科学性、实用性等优点。

本单元在同学具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量坚持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像和简单应用,重视正、反比例与实际生活的联系,淡化脱离实际背景判断比例关系,不布置应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。

1.笼统实际事例中的数量变化规律,形成正比例的概念。

例1让同学初步感知“两种相关联的量”以和“成正比例的量”的含义。列表出现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度“一定”是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用“时间变化,路程也随着变化”具体解释两种量的“相关联”。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,同学在这里首次感知了正比例关系。

“试一试”在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让同学体会铅笔的单价每枝0.3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出“铅笔总价和数量成正比例”的结论,并用式子总价/数量=单价(一定)作出解释。“试一试”的认知线索与例1相似,留给同学自主活动的空间比例1大,使同学对正比例关系的体验更深刻。

同学在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。笼统概括正比例的意义是概念形成的重要环节,也是发展数学考虑的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用笼统的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导同学经历“字母表示具体的数量?字母式子表示常见数量关系?字母式子表示正比例关系”的过程,加强对式子y/x=k(一定)的理解。

“练一练”判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终坚持一定,假如具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。同学在第62页“试一试”里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从“边长×4=周长”可以得到周长与边长的比的比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从“边长×边长=面积”可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种考虑对问题进行具体的分析,适宜大多数同学的实际水平,也符合《规范》的要求。后一种考虑没有利用数据信息,推理的难度较大,不必对同学提出这样的要求。教材设计这道题的意图是进一步使同学理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值坚持一定。

2.用图像直观表达正比例关系。

例2是依照《规范》的要求“根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值”编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,依照“A点表示1小时行80千米”“B点表示5小时行400千米”说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页“练一练”),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是假如按正比例关系画出的点不在同一条直线上,标明画点出现了错误,应和时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导同学利用画垂线或画平行线的技能,尽量使得数准确些。如估计2.5小时行驶的千米数,要在横轴上找到表示2.5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。

练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,假如图像是一条直线,那么两种量成正比例;假如图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导同学应用后一种思路,在判断活动中加强对概念的理解。

3.调动同学的积极性与数学活动经验,教学成反比例的量。

例3教学反比例的意义,布置的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不只是算得的,还和题目里的“用60元买笔记本”相一致,因此用数量关系式“单价×数量=总价(一定)”表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。“试一试”先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后考虑三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以和问题情境的数量关系式,从每天运的吨数×天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,同学初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成x×y=k(一定),形成反比例的概念。

同学认识正比例意义时的数学活动经验可以迁移到反比例意义的学习中来,教学时要给同学多提供一些独立考虑和合作交流的机会。如让同学观察例3的表格、填写“试一试”的表格,发现表格里的变量,解释两个变量的“相关联”;让同学联系已有的数量关系,研究总价与数量、每天运的吨数与需要的天数的变化,通过计算发现总价总是60元,一共运水泥的吨数总是72;让同学写出单价、数量和总价,每天运的吨数、需要的天数和运水泥总数的数量关系式,说说总价一定、运水泥的总吨数一定的理由;让同学阅读教材第65页关于单价和数量成反比例的那段话,交流自身的理解和体会;让同学试着用字母x、y、k表示反比例关系……

练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别出现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是12×1=12、6×2=12、4×3=12,即长×宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是6×1=6、5×2=10、4×3=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让同学经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使同学清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。

教学内容:苏教版第十二册P51

教学目标:1、使同学能正确判断应用题中涉和的量成什么比例关系。

2、使同学运用正、反比例的意义正确解答应用题。

3、渗透函数的初步思想,建立事物是相互联系的这一辨

证观点,培养同学的判断推理能力和分析能力。

教学重点:让同学能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。

教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路

教学准备:课件

教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,

揭示意义;巩固练习,考考自身;分层练习,深化新知)

一、铺垫孕伏,建立表象

1、判断下面每题中的两种量成什么比例关系?

○1速度一定,路程和时间()○2路程一定,速度和时间()

○3单价一定,总价和数量()○4每小时耕地公顷数一定,耕地的总公顷数和时间

○5全校同学做操,每行站的人数和站的行数

2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。

指名同学口答,老师板书。

二、创设情境,探究新知

从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)

1、教学例1

(1)出示例1(课件演示)让同学读题

一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

师:你用什么方法解答,给大家介绍一下如何?(自由回答)

(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)

同学解答如下几种:

解法一:140÷2×5=70×5=350千米

解法二:140×(5÷2)=140×2.5=350千米

假如有同学用比例方法解,老师和时给以肯定,假如没有,老师给以引导性的问题:

A题中涉和哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?

B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)

C它们有什么关系?(行驶的路程和时间成正比例关系)

D题中“照这样的速度”就是说一定,那么和成比例关系?因此和的是相等的。

教师板书:速度一定,路程和时间成正比例。

师追问:两次行驶的路程和时间的什么相等(比值相等)

解法三:(用比例方法,怎样列式)

解:设甲乙两地间的总路长X千米

140X或140:2=X:5

252X=140×5

X=350

答:甲乙两地之间公路长350千米。

小结:这一类型题,我们不只可用过去的归一法、倍比法来解,还可用比例方法来解。

2、怎样检验这道题做得是否正确呢?

3、变式练习改编题

出示改编的问题,让同学说一说题意,请同学们依照例1的方法自身在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?

4、教学例2(课件演示)

(1)出示例2,同学读题

例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,假如4小时到达,每小时要行多少千米?

提问:(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余同学做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

同学利用以前的方法解答。

70×5÷4=350÷4=87.5(千米)

(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)

这道题里的路程是一定的,和成比例,所以两次行驶的和的是相等的。

指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。

(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程

4X=70×5X=70×5/4X=87.5

答:每小时行驶87.5千米。

师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?B)题中哪一种是固定不变的?从哪里看出来?C)它们有什么关系?D)这道题的一定,和成比例关系,所以两次行驶的

和的是相等的。

(5)变式练习(改编题)

出示改变的条件和问题,让同学说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,假如每小时行87.5千米,需要几小时到达?

解:设需要x小时到达

87.5x=70×5x=4

答:需要4小时到达。

三、归纳总结,揭示意义

想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。

指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)

四、巩固练习,考考自身(课件演示)

请你们依照刚才学习例题的方法去分析,只要列出式子就行。

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

2、同学们做广播操,每行站20人,正好站18行,假如每行站24人,可以站多少行?

以上1、2两题,同学做完将鼠标移到“看看做对了没有”进行自我判断。

3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,?

(2)王师傅4小时生产了200个零件,照这样计算?

4、四选一,每题只能选一次

(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)

a.150×30=1200xb.30:150=1200:x

c.150x=30×1200d.150:30=1200:x

(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)

a.60×8=3xb.60:8=3:x

c.60×8=(8-3)xd.3:x=8:60

(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)

a.5×40=480xb.5:40=x:480

c.40x=5×480d.40:5=x:480

(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)

a.24×5=6xb.24:5=6:x

c.(24+6)x=24×5d.(24+6):x=24:5

(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)

a.3×75%=2xb.75%:3=2:x

c.75%x=2×3d.3:75%=2:x

五、分层练习,深化新知

○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x

○2工人装一批电杆,每天装12根,30天可以完成,假如每天多装6根,几天能够完成?

12×30=(12+6)×X

○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?

120×28=(120+20)×X

六、全课总结,温故知新

解比例应用题的一般步骤是什么?(同学自身用语言叙述)

一般方法和步骤:

1、判断题目中两种相关联的量是成正比例还是反比例;

2、设未知量为x,注意写明计量单位;

3、列出比例式,并解比例式;

4、检查后写出答案;

5、特别注意所得答案是否符合实际。

七、课后反馈,挑战难题

小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:

“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”

小明需要你的协助,你会怎样编题?

教学内容苏教版九义小数教科书第十二册正、反比例的意义

设计理念[大胆重组教材,落实新课标的三维的目标]同学的数学学习活动应当是一个生动活泼、主动的和富有个性的过程。改变教与学的方式,创设“实际的、有意义的、同学感兴趣的数学问题情境”,引导同学观察分类、自主探索、合作交流,出现同学“分类方法”的多样化,在两次“分类”中不时激发同学探究两种相关联量变化规律的热情,在不时探究两种相关联量变化规律的活动中体验探索胜利的乐趣,树立学好数学的信心。

教学目标1、使同学理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例。2、通过观察、比较、归纳,提高同学综合概括推理的能力。3、渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育。4、在同学独立考虑的基础上加强交流,体验与同伴合作的快乐,培养合作交流的意识,提高学习的信心。

教学过程一、创设情境,导入新课1、为更好地服务于同学们,学校食堂新学期推出了一项优惠奖励措施,同学们,你们知道是什么措施吗?生:一次性交清本学期伙食费的同学可免费享受15次早餐、每月两次水果。师:对,请我们班免费享受15次早餐的同学举手!**,你已吃掉了几次?根据他已吃掉的次数,大家能想到什么?生:还剩多少次?师:你为什么马上能想到还剩的次数呢?(生:有关系呗!…………)2、[出示表格(1)]表(1)15次免费早餐,已吃的次数和还剩的次数如下表:已吃的免费早餐(次数)12345……

还剩的免费早餐(次数)……

假如吃掉()次,还剩()次……;观察表格,你们发现了什么?(吃得次数多,剩余的次数就少)师小结:像这样[出示板书:“一种量变化,另一种量也随着变化”],我们就把这两种量叫做相关联的量[板书:两种相关联的量]这里“已吃的免费早餐(次数)”和“还剩的免费早餐(次数)”是两种相关联的量。在实际生活中两种相关联的量是很多的,你还能举出一些例子吗?3、出示另外四张表格。要求:看懂表格(哪两种相关联的量?为什么?)表(2)一列火车行驶的时间和所行的路程如下表:时间(时)1234567……

路程(千米)90270450630……

表(3)加工一批机器零件,每小时加工的数量和所需的加工时间如下表:工效(个)1020304050……

时间(时)603012……

表(4)运一批货物,每天运的吨数和需要的天数如下表:每天运的吨数300150100756050……

需要的天数1234……

表(5)长征造纸厂的生产情况如下表:时间(天)1234567……

生产量(吨)70140210490……

二、分类比较,讲授新课(一)请同学们根据五张表格的变化规律,分类。考虑:为什么这样分?1、先个体,再同桌,同桌统一最合理的分法。2、集体交流。大局部认可的意见:两类[第一类:(2)(5)第二类(1)(3)(4)](二)观察第一类,教学正比例的意义。师生一起交流:“为什么把表2和表5分为一类”?根据同学回答,老师整理:1、都有两种相关联的量。(如何相关联的?)2、都是一种量变化,另一种量也随着变化。(举例说明变化的规律。)师根据同学发言,相机写出路程和时间的比,并计算比值.(1)=90(2)=902表示什么?180呢?比值呢?(3)=90这个比值表示什么意义?(4)=90360比5可以吗?为什么?*、考虑:180千米对应的时间是多少?4小时对应的路程又是多少?在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?(板书:时间、路程、速度)速度是怎样得到的?(板书:)速度也就是路程和时间的比值,比值相当于除法中的什么?3、小结:有什么规律?(板书:[比值][也就是商]不变)(师说明:“不变“也就是“一定”)(三)观察第二类,教学反比例的意义。1、师生一起交流:“为什么把(1)(3)(4)分为一类”?2、提问:(1)这一组题中涉和了几种量?谁与谁是相关联的量?(2)举例说明谁与谁是相对应的两个数?(3)举例说明在这一组题中两种相关联的量是如何变化的?(4)有什么规律?[在讨论变化规律中,发现(3)(4)和(1)也不同]3、通过表(3)和表(4)揭示:“积不变”;“反比例的意义”(四)针对表(1)质疑,加深比例表象:表(1)中“已吃的免费早餐(次数)”和“还剩的免费早餐(次数)”这两种相关联的量,成比例关系吗?为什么?说明:表(1)表中相关联的两种量,虽“一种量变化,另一种量也随着变化”,但它们是和不变,不是积不变,也不是商不变,所以它们不存在比例关系。三、再次分类,突出新知。1、通过刚才的学习,现在,假如再请大家给这五张表格分类,你们准备怎么分?为什么?2、四人小组讨论。3、集体交流并说理。第一种:(2、5)、(3、4)和(1)三类第二种:(2、5、3、4)和(1)两类4、褒扬并小结:完善正、反比例的意义5、强化:(1)两种量成正比例必需具备什么条件?(2)两种量成反比例必需具备什么条件?6、字母关系式。四、巩固练习,拓展新知。1、集体判断下面各题中的两种量是否成比例?成什么比例?为什么?一种圆珠笔:总价(元)1.22.43.64.867.2

支数123456

单价(元)124510

支数10050252010

2、四人小组合作判断下面各题是否成比例?成什么比例?练习三1和4(一人选一道)3、你能举出一个正比例或反比例的例子吗?为什么?生1:一幅地图上的比例尺是1:60000,图上距离和实际距离成正比例关系。生2:圆的直径和它的周长成正比例关系。生3:乘积是1的两个数成反比例关系四、课堂总结,提炼实质。今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的量的变化规律,这是实质。

教后反思1、同学学习热情高涨。激发同学的参与热情是引导同学主动学习的前提,这里我联系在校就餐生活,通过学校新学期的“热门就餐优惠话题”,激起同学探新知的强烈愿望。2、学习方式自主灵活。特别是“分类比较,讲授新课”的教学,经历了“明确探究目标”----“个体独立考虑”----“小组合作探究”----“班内汇报交流”----“表1设疑点睛”等几个重要环节,注重了科学的学习方法的渗透与培养,尊重同学的学习效果,在尊重的基础上,揭示“正反比例的意义”。

3、数学源于生活,又用于生活。联系生活创设问题情境是新课标精神的体现。教学中,我能从创设生活数学问题入手,进入新课学习,在同学掌握新知的基础上,又回到问题情境的创设上,同时还提供一个更具有综合性、开放性的题目:“你能举出一个正比例或反比例的例子吗?为什么?”4、重组教材,使思维更具灵性。教材中是把正反比例分块教学,虽有便于教学的优势,同学也易于接受,但我觉得,会使同学的思维过于模式化,缺乏灵性。为此,我大胆重组教材中的正反比例例子,把正反比例的意义通过五张表格分类探究进行教学,从而水到渠成地落实了三维目标。

一、公开课教案说明:

这局部内容是在教学过比和比例的知识的基础上进行教学的,着重使同学理解正比例的意义。这节课的教学目标是:

1、使同学感受正比例在实际生活中的存在,经历概括两种量成正比例关系的过程。

2、理解正比例的意义,并能根据正比例的意义正确判断两种量是否成正比例关系。

3、培养同学的笼统概括能力和分析判断能力。

4、培养同学初步的函数意识。

教学重点:同学理解正比例的意义。

教学难点:引导同学通过观察、考虑发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。

本节课,教师对在引导同学复习了“路程、时间、速度”、“总价、数量、单价”、“工作量、工作时间、工作效率”等基本的数量关系后,从同学熟悉的汽车行路的事例入手,让同学在观察、分析中,在正反两方面事例的对比中笼统、概括出正比例的意义。在这里,我灵活改编了教材中的例题。教材中是从两个正比例事例引入正比例概念的,而我在这里是运用了汽车行路中有的汽车所行路程和时间成正比例和有的汽车所行路程和时间不成正比例这两个不同的方面对比着进行教学。同时,充沛运用导学题组的导向功能,让同学考虑:表格中的两种量是不是相关联的量?哪个表中的两种量的变化更有规律?有什么规律?让同学在寻找规律的同时感受正比例在实际生活中的存在。在对比表1、表2的相同点、不同点时,经历概括两种量成正比例关系的过程,并形成正比例的概念。然后通过尝试练习和深化练习达到进一步巩固正比例意义的目的。

二、公开课教案:

(一)复习准备:

(二)导学:

1、出示以下两个表格:

表1:甲车行驶的时间和所行的路程如下表:时间(时)

1

2

3

4

路程(千米)

50

100

150

200

表2:乙车行驶的时间和所行的路程如下表:

时间(时)

1

2

3

4

路程(千米)

50

88

120

204

2、分组讨论:

(1)表1、表2中有哪两种量?它们相关联吗?

(2)哪个表中的两种量的变化更有规律?有什么规律?

3、同学汇报讨论结果。汇报时教师引导同学比较上面两种情况的相同点和不同点。同时教师根据同学的回答板书:

相同点:一种量变化,另一种量也随着变化

不同点:表1中甲车的路程和时间这两种量中相对应的两个数的比值一定;表2中乙车的路程和时间这两种量中相对应的两个数的比值不一定。

4、教师说明:两种相关联的量,一种量变化,另一种量也随着变化,假如这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

这节课,我们就来学习和研究“成正比例的量”。板书课题:成正比例的量

5、教师质疑:根据正比例的意义想一想:上面例子中甲车的路程和时间是不是成正比例的量?为什么?乙车的路程和时间是不是成正比例的量?为什么?构成正比例关系的两种量必需具备哪些条件?

6、尝试:判断下面的每张表格中的两种量是不是成正比例的量?

(1)在一间布店的柜台上,有一张写着某种花布的米数和总价的表:

数量(米)

1

2

3

4

总价(元)

8.2

16.4

24.6

32.8

(2)正方形的边长和周长如下表。

正方形的边长(厘米)

1

2

3

4

正方形的周长(厘米)

4

8

12

16

(3)正方形的边长和面积如下表。

正方形的边长(厘米)

1

2

3

4

正方形的面积(平方厘米)

1

4

9

16

7、字母关系式

教师提问:假如字母y和x表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?

同学回答后,教师板书:y/x=k(一定)

8、教学例3

例3.每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

(1)根据正比例的意义,由同学讨论解答.

(2)汇报判断结果,并说明判断的根据.

(三)尝试练习:

判断下面每题中的两种量是不是成正比例,并说明理由。

①每小时织布米数一定,织布总米数和时间。

②每人树植棵数一定,参与植树人数和植树总棵数。

③订阅《中国少年报》的份数和钱数。

④小新跳高的高度和他的身高。

⑤长方形的宽一定,它的面积和长。

(四)深化练习

1、a和b相关联的两种量,下面哪个式子表示a和b成正比例?

①a+b=12②a/b=5③ab=3/4④a-b=3.8⑤b=7a

2、x、y、z是三种相关联的量,已知x×y=z。

当()一定时,()和()成正比例。

(五)课堂小结

通过这节课的学习和研究,你们都知道了什么?怎样判断两种量是否成正比例?

三、课后反思:

正、反比例知识,内容笼统,同学难以接受。学好正比例知识是学习反比例知识的基础。因此,使同学正确的理解正比例的意义是本节课的重点。在实际教学中,我注意了以下几点:

1、联系生活,从生活中引入。

数学来源于生活,又服务于生活。新的《数学课程规范》明确要求“使同学感受数学与生活的密切联系,从同学已有的生活经验动身,让同学亲历数学的过程”。关注同学已有的生活经验和兴趣,通过实际生活中的素材引入新课,使笼统的数学知识具有丰富的实际背景,为同学的数学学习提供了生动活泼、主动的资料与环境。

课始,我设计了同学熟悉的生活问题,让同学一起参入:有甲乙两辆车,它们所行路程和时间如下表。

表1:甲车行驶的时间和所行的路程如下表:

时间(时)

1

2

3

4

路程(千米)

50

100

150

200

表2:乙车行驶的时间和所行的路程如下表:

时间(时)

1

2

3

4

路程(千米)

50

88

120

204

表格中的事例符合实际生活情景,让同学感受到汽车所行的路程和所用时间有时是成正比例的,有时是不成正比例的,只有当速度一定时,汽车所行的路程和所用时间才是成正比例的。

这样,由于事例为同学所熟悉,贴近了同学的生活,故很快将同学带入轻松愉快的学习环境,创设了良好的教学情境,同学和时进入状态,手脑并用,课堂气氛十分活跃。后面的各层次练习如:花布的的米数和总价、面粉的总重量和袋数、参与植树人数和植树总棵数、订阅《中国少年报》的份数和钱数、小新跳高的高度和他的身高等都密切联系生活,让同学从生活中学习数学,让同学感觉到数学就在我们身边,从而对数学发生亲切感。

2、在观察中考虑。

小同学学习数学是一个考虑的过程,“考虑”是同学学习数学认知过程的实质特点,是数学的实质特征,可以说,没有考虑就没有真正的数学学习。本课教学中,我注意把考虑贯穿教学的全过程。例如:在教学例题时,出示了甲乙两辆汽车所行路程和时间的表格后,先观察这两个表格,然后考虑下面的问题:

(1)表1、表2中有哪两种量?它们相关联吗?

(2)哪个表中的两种量的变化更有规律?有什么规律?

上面考虑题中“更有”两个字对同学的思维有一定定向作用,让同学着重去寻找表1中的规律。在同学深入观察、独立考虑、合作交流后,必会发现表1中的两个量变化的规律。另外,由于事例熟悉,且数据计算起来很简单,便于同学口算,同学学习时能将更多的时间和精力用于考虑这两种量的变化规律上,进而便于提示正比例的意义。

再如:在揭示了课题后,教师提出了以下问题让同学考虑:“根据正比例的意义想一想:上面例子中甲车的路程和时间是不是成正比例的量?为什么?乙车的路程和时间是不是成正比例的量?为什么?构成正比例关系的两种量必需具备哪些条件?”这样教学,让全体同学在观察中考虑、在考虑中探索、在探索中获得新知,大大地提高了同学学习的效率。

3、在合作中感悟

新的数学课程规范提倡:引导同学以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以同学为主体”的思想,在教学我改编后的例题(即甲乙两辆车所行路程和时间的关系)以和例3时,我都敢于放手让同学先独立考虑,后采取小组合作的方式学习,让同学在小组里进行合作探究,最后小组汇报学习结果。这样,就做到了:同学自身能学的自身学,自身能做的自身做,培养合作互动的精神,从而归纳出正比例的意义,并学会运用正比例的意义正确判断两种量是否成正比例关系。

4、在知识的系统中学习。知识与知识之间是相互联系的,相互联系的知识就形成知识系统。假如同学能在知识的系统中学习,在知识的对比中学习,在学习中体会知识的联系和区别,那么同学就会对所学知识有更深刻的认识,更利于同学建立、完善科学的认知结构。本节课中,我将甲乙两辆车所行路程和时间的关系对比着出示,让同学在观察、考虑中认识到汽车所行路程和时间是相关联的两种量,一种量随着另一种量的变化而变化,但所行路程和时间不一定是成正比例的量,只有当速度一定时,汽车所行路程和时间才是成正比例的量。再如,教材中设计的练习中有判断正方形的面积与边长是不是正比例关系的问题。我在教学中就添加了判断正方形的周长与边长是不是正比例关系的问题,并与判断正方形的面积与边长是不是正比例关系的问题一同出示,让同学在对比中学习,学习的思维就会更为深刻,知识的系统性就会更强。

5、在练习中巩固提升

为了和时巩固新知识,完成了尝试练习后,又设计了两道深化练习题,让同学巩固本节课知识。这两题是:

1、a和b相关联的两种量,下面哪个式子表示a和b成正比例?

①a+b=12②a/b=5③ab=3/4④a-b=3.8⑤b=7a

2、x、y、z是三种相关联的量,已知x×y=z。

当()一定时,()和()成正比例。

这里的第1题,将两种量的和、差、积、商分别一定的情况都展现出来了,让同学明确只有当两种相关联的量的比值(也就是商)一定时,这两种量才是成正比例的量。第2题是一道有一定思维难度的开放题。通过练习,要求逐步提高,同学的思维也得到了提高。

【反思】

这几天学习了正比例反比例,从学生掌握情况来看,对于“正比例和反比例的意义”这部分内容学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。

生活是数学知识的源泉,正反比例是来源于生活的,我认为教学中既要重视这一点,又要注重知识体系的'形成中逻辑性,严密性与连贯性的统一。因此,在处理教材时,没用教材的例子,而是举的学生熟悉的生活例子找规律,再由规律回归生活。这样一节课的40分钟质量很高。教学中,我从创设生活数学问题入手,进入新课学习,在学生掌握新知的基础上,提供一个具有综合性、开放性的题目:“你能举出一个正比例或反比例的例子吗?为什么?”在学生能准确由

AXB=C(一定)表示三量之间的比例关系后,我又设计了这样一个环节:请同学自己举一些生活中较熟悉的三量关系,说说它们之间存怎样的关系,再次回归生活,让学生体验教学的价值,这也是新课程教学理念――人人学有价值的数学。

教学中,我尊重学生的的个性差异,尊重学生的学习成果。如:在学生知道了正、反比例的意义、关系式后,我提出:“用你喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透,又尊重了学生的个性发展和学习成果。

在教学了正比例了知识后,大部分学生都明白了如何判断两个量是不是正比例,在做相关的题目时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这在某种意义上来说是由于学生对于“正”和“反”的理解不够到位。

所谓的“正”,我们可以理解为:一个量变大,另一个量也随着变大;一个量变小,另一个量也随着变小。总而言之,两个量发生了相同的变化。那么反比例的“反”怎么理解呢?有的同学已经可以自己概括了:两个量发生了不同的变化,即一个变大另一个就随着变小;一个变小另一个就随着变大。这样的讲解可以使学生掌握可靠的、初步判断两个量可能成什么比例的方法,有助于有序思维的展开!

另外我们还可以结合图像,我们也可以很清楚的将两者区分开来!正比例的图像是一条直线(直线过原点,并且方向向上),反比例的图像则是一条弯弯的曲线(在教师的辅助下,学生用描点的方法画出图像)。

课上学生基本能够正确判断,说理也较清楚。但是在课后作业中,发现了不少问题,对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?学生在判断时较为困难,说理也不是很清楚。可能这是学生先前概念理解不够深的缘故吧!以后在教学这些概念时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后在进行相关形式的练习,我想对学生的后继学习必然有所帮助。

教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的,我以后会大胆尝试,努力创造民主和谐、轻松愉悦、积极上进,共同发展的新课堂吧!

新苏教版六年级数学下册《7.4正比例和反比例》教学反思体会


现在向您介绍幼儿园教案《新苏教版六年级数学下册《7.4正比例和反比例》教学反思体会》

《新苏教版六年级数学下册《7.4正比例和反比例》教学反思体会》这是一篇六年级下册数学教案,《正比例和反比例》是数学教科书当中的一课,学习的目的是使学生进一步理解正、反比例的意义,能够正确判断成正、反比例的量。

7.4正比例和反比例

比和比例的概念性知识点有很多,而且这些知识点之间有联系。因此,在教学设计上,采取用联想方法,从一个知识点出发,引导学生联想,把有关知识点串联成线。由此,引出比的概念和比同除法、分数的关系;引出比例概念,再引出正比例、反比例。在教师指导下,学生进行有序联想,沟通知识间内在联系,形成知识网络。

【反思】

《正比例和反比例》是数学教科书当中的一课,学习的目的是使学生进一步理解正、反比例的意义,能够正确判断成正、反比例的量。为此小编精心准备了有关《正比例和反比例》的教学反思,希望对你有帮助!

数学来源于生活,又服务于生活,联系生活实际创设问题情境,是新课标精神的体现。教学中,我从创设生活数学问题入手,进入新课学习,在学生掌握新知的基础上,又回到问题情境的他讪,同时还提供一个理具有综合性、开放性的题目:“你能举出一个正比例或反比例的例子吗?为什么?”在学生能准确由axb=c表示三量之间的比例关系后,我又设计了这样一个环节:请同学自己举一些生活中较熟悉的三量关系,说说它们之间存怎样的关系,再次回归生活,让学生体验教学的价值,这也是新课程教学理念??人人学有价值的数学。

教学中,我尊重学生的的个性差异,尊重学生的学习成果。如:在学生知道了正、反比例的意义、关系式后,我提出:“用你喜欢的方式喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透,又尊重了学生的个性发展和学习成果。

练习与提高部分,我打破了老师出示题目??自己完成??集体订正的模式,而是通过练习型课件,让学生自己判断正确性,既充分挖掘各省市毕业会考试题这一课题资源,又通过“你真棒”、“你太聪明了”、“有点马虎哟”、“要加把劲呀”、“要仔细呀”等鼓励性的“语言”,更大限度的激发学生的参与热情,让不同的学生有不同层次的收获与提高。

这几天学习了正比例反比例,从学生掌握情况来看,对于“正比例和反比例的意义”这部分内容学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。

生活是数学知识的源泉,正反比例是来源于生活的,我认为教学中既要重视这一点,又要注重知识体系的形成中逻辑性,严密性与连贯性的统一。因此,在处理教材时,没用教材的例子,而是举的学生熟悉的生活例子找规律,再由规律回归生活。这样一节课的40分钟质量很高。教学中,我从创设生活数学问题入手,进入新课学习,在学生掌握新知的基础上,提供一个具有综合性、开放性的题目:“你能举出一个正比例或反比例的例子吗?为什么?”在学生能准确由

axb=c(一定)表示三量之间的比例关系后,我又设计了这样一个环节:请同学自己举一些生活中较熟悉的三量关系,说说它们之间存怎样的关系,再次回归生活,让学生体验教学的价值,这也是新课程教学理念??人人学有价值的数学。

教学中,我尊重学生的的个性差异,尊重学生的学习成果。如:在学生知道了正、反比例的意义、关系式后,我提出:“用你喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透,又尊重了学生的个性发展和学习成果。

在教学了正比例了知识后,大部分学生都明白了如何判断两个量是不是正比例,在做相关的题目时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这在某种意义上来说是由于学生对于“正”和“反”的理解不够到位。

所谓的“正”,我们可以理解为:一个量变大,另一个量也随着变大;一个量变小,另一个量也随着变小。总而言之,两个量发生了相同的变化。那么反比例的“反”怎么理解呢?有的同学已经可以自己概括了:两个量发生了不同的变化,即一个变大另一个就随着变小;一个变小另一个就随着变大。这样的讲解可以使学生掌握可靠的、初步判断两个量可能成什么比例的方法,有助于有序思维的展开!

另外我们还可以结合图像,我们也可以很清楚的将两者区分开来!正比例的图像是一条直线(直线过原点,并且方向向上),反比例的图像则是一条弯弯的曲线(在教师的辅助下,学生用描点的方法画出图像)。

课上学生基本能够正确判断,说理也较清楚。但是在课后作业中,发现了不少问题,对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?学生在判断时较为困难,说理也不是很清楚。可能这是学生先前概念理解不够深的缘故吧!以后在教学这些概念时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后在进行相关形式的练习,我想对学生的后继学习必然有所帮助。

教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的,我以后会大胆尝试,努力创造**、轻松愉悦、积极上进,共同发展的新课堂吧!

幼儿教师教育网的幼儿园教案频道为您编辑的《北师大六年级下册二单元正比例和反比例教学反思》内容,希望能帮到您!同时我们的北师大版小学六年级上册第二单元数学教案专题还有需要您想要的内容,欢迎您访问!

相关文章

最新文章