关于数学家的故事12篇

12-23

涉及文档,大多数人或许知道如何撰写了,我们常常会需要参考范文,不是,你可以在网上找相关范文。那么我们可以注意范文的哪些细节呢?小编经过搜集和处理,为你提供关于数学家的故事,强烈建议你能收藏本页以方便阅读!

关于数学家的故事【篇1】

法国数学家帕斯卡和这榜单的其他很多数学家一样,在数学的很多领域都有贡献。帕斯卡三角形(中国叫做杨辉三角)提供了一套计算二项式系数的漂亮方法,而二项式系数在代数和其他分支非常重要。他还发明了世界上第一台机械计算器,是现代计算机的早期原始版本。

帕斯卡同样还是概率论的创立者之一,他在分析游戏的取胜机会时候开创了这个理论。帕斯卡关于基本概率的工作,让我们开始有能力用数学方法理解机会与风险。yjS21.coM

帕斯卡把他的概率理论用于神学研究,他提出“帕斯卡赌局”的理论,用于说明为什么我们应该相信神的存在。

关于数学家的故事【篇2】

数学家高斯的小故事之高斯简介

约翰·卡尔·弗里德里希·高斯(JohannCarlFriedrichGauss,1777年4月30日-1855年2月23日)德国著名数学家、物理学家、天文学家、大地测量学家。是近代数学奠基者之一,高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

数学家高斯的小故事

关于高斯的故事,最广为流传的是“5050”。老师本来想用一道难题,让全班的同学安静一节课的时间,却没有想到小高斯只用了一两分钟就说出了答案。他把1、2、3……分别和100、99、98结对子相加,就得到50个101,最后轻易就算出从1加到100的和是5050。

小高斯在三岁时,就已经学会计算了。有一天他观看父亲在计算帮工们的工钱,当他父亲念叨了半天总算报出总数时,身边传来微小的声音,“爸爸!算错了,应该是这样……”父亲惊异地再算一次,果然是算错了。虽然没有人教过他,但小高斯靠平日的观察,自己学会了计算。

小高斯家里很穷,冬天,爸爸总是要他早早地上床睡觉,好节省燃油。可是高斯很喜欢看书,每次都带着一棵芜菁(像萝卜的一种植物)。他把中心挖空,塞进棉布卷当灯芯,淋上油脂点火看书,一直到累了才钻入被窝睡觉。

高斯的进步很快,不久之后,老师就没什么东西可以教他了。后来,高斯进了高一级学校,可数学老师看了他的作业后,告诉他以后不必上数学课了。

值得一提的是,高斯不光数学好,语文也非常棒,当他18岁时,为自己将来到底是继续研究古典文学还是数学而苦恼,正在这时,他解决了一个困扰数学家两千多年之久的问题“尺规作正十七边形”,于是,他决定继续读数学系。

有一个比喻说得非常好。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

人们一直把高斯的成功归功于他的“天才”,他自己却说:“假如别人和我一样深刻和持续地思考数学真理,他们会作出同样的发现。”

3

数学家高斯的小故事点评

小朋友们,当我们在学习和生活中被难题所困扰时,不妨学学高斯,换一种方法去思考,或许你就会发现爱你不一样的天地,从而让你变得更加优秀,将问题快速的解决。

关于数学家的故事【篇3】

数学家苏步青:名人爱国故事

著名数学家苏步青早年留学日本,1931年获得博士学位。日本不少名牌大学以高薪聘请他,但他想到出国留学是为了祖国掌握科学,就一一辞谢,毅然回国。回国后,他在浙江大学执教,竟一连四个月领不到工资,穷得连饭都难吃饱,而当时日本的帝国大学还答应他保留半年的工资。贫贱难移爱国心,苏步青毫无再去日本之意。抗日战争爆发后,日本帝国大学又打电报,请他前去任教。出于民族大义,他一口回绝道:“我要留在自己的祖国。祖国再穷,我也要为她奋斗,为她服务!

关于数学家的故事【篇4】

刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。

《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3。14的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。

《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。

刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。

刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

关于数学家的故事【篇5】

诺伊曼(1903-1957),美籍匈牙利数学家,美国科学院院士。

诺伊曼出生在一个犹太银行家的家庭,是位罕见的神童。他8岁掌握微积分,12岁读懂《函数论》。

在他成长的道路上,曾有这样一段有趣的故事:19xx夏天,银行家马克斯先生登出一则启示,愿以10倍于一般教师的聘金,为11岁的长子诺伊曼聘请一位家庭教师。尽管这诱人的启示,曾使许多人怦然心动,但终没有人敢去教导这样倾城皆知的神童……

他在21岁获得物理-数学博士之后,开始了多学科的研究,先是数学、力学、物理学,又转到经济学、气象学,而后转向原子弹工程,最后,又致力于电子计算机的研究。这一切,使他成为不折不扣的科学全才。

他的主要成就是数学研究。他在高等数学的许多分支中都作出了重要贡献,其最卓越的工作是开辟了数学的一个新分支---对策论。

1944年出版了他的杰出着作《对策论与经济行为》。第二次世界大战期间,为第一颗原子弹的研制作出重要贡献。战后,运用他的数学才能指导制造大型电子计算机,被人们誉为电子计算机之父。

关于数学家的故事【篇6】

陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。

关于数学家的故事【篇7】

伽利略17岁那年,考进了比萨大学医科专业。

有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。”

比罗教授的`话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?”

“我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。

伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。

后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。

关于数学家的故事【篇8】

数学家的故事

高斯念小学的时候,老师出了一道题:1+2+3+4.......+99+100老师以为同学们要算好一阵子,刚走出教室,就被高斯一把抓住,说已经算出来了,得1050,同学们问他是怎么算的,先把1~100与100~1写成两行:

1+2+3+4+5+6+7..........+96+97+98+99+100

100+99+97+96..................+7+6+5+4+3+2+1

之后,把他们竖着相加,就得出了100个101,就是1010,因为是两个算式,所以用10102=5005。

读完了这个故事后,数学并不是枯燥的,很多时候,非常费时间,很复杂的数学题,其实是可以用便捷的方式来解决的,就像上面那道题,高斯用一种巧妙的方法,避开了繁琐复杂的计算过程,得出了答案,所以,我们要学习高斯,善于发现算题的捷径,同时,在生活中,也要知道,通往成功的路不止一条。

关于数学家的故事【篇9】

寒假里,我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。比如毕达哥拉斯、阿基米德、高斯其中,我最感兴趣的是关于祖冲之的故事。

祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过很长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。但是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,祖冲之寸步不让,和他唇枪舌剑的辩论。最终,《大明历》没有通过,后来在祖冲之去世后10年,《大明历》才颁布实行。

读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。正因为他有这样的精神,才能持之以恒地坚持。是啊,任何事情要取得成功,都离不开坚持两个字。不由地,我想到了许多人,有文化名人、爱国将士,他们何尝没有这样的精神呢!

读《数学家的故事》让我更加喜欢数学,更让我懂得了许多道理。其实,学习数学并不难,数学王子高斯曾有三大秘诀:1.善于观察2.善于动手3.善于思考。其实,只要我们喜爱数学,就一定能学好数学!如果我们像数学先辈们那样努力,数学一定又能有新的突破!

关于数学家的故事【篇10】

瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。

有一次,俄国女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。

第二天,在宫廷上,欧拉朝狄德罗走去,用一种非常肯定的声调一本正经地说:“先生,,因此上帝存在。请回答!”对狄德罗来说,这听起来好像有点道理,他困惑得不知说什么好。周围的人报以纵声大笑,使这个可怜的人觉得受了羞辱。他请求女皇答应他立即返回法国,女皇神态自若地答应了。

就这样,一个伟大的数学家用欺骗的手段“战胜”了一个伟大的哲学家。

拉普拉斯和拉格朗日是19世纪初法国的两位数学家。拉普拉斯在数学上十分伟大,在政治上却是一个十足的小人,每次政权更迭,他都能够见风使舵,毫无政治操守可言。拉普拉斯曾把他的巨著《天体力学》献给拿破仑。拿破仑想惹恼拉普拉斯,责备他犯了一个明显的疏忽:“你写了一本关于世界体系的书,却一次也没有提到宇宙的创造者——上帝。”

拉普拉斯反驳说:“陛下,我不需要这样一个假设。”

当拿破仑向拉格朗日复述这句话时,拉格朗日说:“啊,但那是一个很好的假设,它说明了许多问题。”

两个神童19世纪初,在大西洋两岸出现了两个神童:一个是英国少年哈密顿,另一个是美国孩子科尔伯恩哈密顿的天才表现在语言学上,他8岁时就已经掌握了英文、拉丁文、希腊文和希伯莱文;12岁时已熟练地掌握了波斯语、阿拉伯语、马来语和孟加拉语,只是由于没有教科书,他才没有学习汉语。科尔伯恩则在数学上表现出神奇的天才,小时候,有人问他4294967297是否是素数时,他立刻回答不是,因为它有641作为除数。类似的例子多得不胜枚举,但他不能解释他得出正确结论的过程。

人们把两个神童带到一起,这次会面是奇妙的,现在已经无法确知他们交谈了什么,但结果却是完全出人意料的:科尔伯恩的数学天赋完全“移植”给了哈密顿;哈密顿放弃了语言学,投身数学,成为爱尔兰历史上最伟大的数学家。

至于科尔伯恩,他的天才渐渐消失了。

数学家之死挪威数学家阿贝尔22岁的时候就对数学的发展做出了重大的贡献,但并不为当时的数学界所接受。他过着穷困潦倒的生活,这严重地影响了他的健康,他得了肺结核,这在当时是绝症。在最后的几个星期,他一直在考虑他的未婚姐的未来。他写信给他最好的朋友基尔豪:“她并不美丽,有着一头红发和雀斑,但她是一个可爱的女子。”虽然基尔豪和肯普从未见过面,但阿贝尔希望他们两个能够结婚。

肯普小姐照料阿贝尔度过了生命的最后时刻。在葬礼上,她与专程赶来的基尔豪相遇了。基尔豪帮助她克服了悲伤,他们相爱并结了婚。正如阿贝尔所希望的那样,基尔豪和肯普婚后十分幸福,他们经常到阿贝尔墓前去怀念他。随着岁月的流逝,他们发现越来越多的人从各地赶来,为阿贝尔在数学上的贡献向他表达他们迟到的敬意,而他们只是这一朝圣队伍中的一对普通的朝圣者。

1832年5月29日,法国年轻气盛的伽罗瓦为了所谓的“爱情与荣誉”打算和另外一个人决斗。他知道对手的枪法很好,自己获胜的希望很小,很可能会死去。他问自己,如何度过这最后的夜晚?在这之前,他曾写过两篇数学论文,但都被权威轻蔑地拒绝了:一次是被伟大的数学家柯西;另一次是被神圣的法兰西科学院他头脑中的东西是有价值的。整个晚上,他把飞逝的时间用来焦躁地一气写出他在科学上的遗言。在死亡之前尽快地写,把他丰富的思想中那些伟大的东西尽量写出来。他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。

他在天亮之前那最后几个小时写出的东西,一劳永逸地为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一个极为重要的分支——群论。

第二天上午,在决斗场上,他被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去。”他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。

数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。

费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。19xx年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。

在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过。

关于数学家的故事【篇11】

欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。

古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学着作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨着。

《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,16xx我国又重新翻译了前六卷,1857年又翻译了后九卷。

欧几里德是位温良敦厚的教育家,也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。

那时候,人们建造了高大的金字塔,可是谁也不知道金字塔究竟有多高。有人这么说:“要想测量金字塔有多高,比登天还难!”

这话传到欧几里德的耳朵里。他笑着告诉别人:“这有什么难的呢?当你的影子跟你的身体一样长的时候,你去量一下金字塔的影子多长,那长度便等于金字塔的高度!”

欧几里德的名声越来越大,以致连亚历山大国王也想赶时髦,学点几何学。于是,国王便把欧几里德请进王宫,讲授几何学。谁知刚学了一点,国王就显得很不耐烦,觉得太吃力了。国王问欧几里德:“学习几何学,有没有便当一点的途径。一学就会?”

欧几里德笑道:“陛下,很抱歉,在学习科学的时候,国王与普通百姓是一样的。科学上没有专供国王行走的捷径。学习几何,人人都要独立思考。就像种庄稼一样,不耕耘,就不会有收获。

关于数学家的故事【篇12】

有趣的数学家

一次饭局上,为了让大家气氛热闹起来,请客的人出了一个问题:“如果你住进一家酒店后,你的屋子不小心着火了,你如何利用你的专业技能来应付?”

口才极佳的文学家首先发话,说:“面对火灾,我首先要拍几张照片,为将来写报告用,然后我应该像构思一个英雄的画面去扑灭火。”

物理学家紧接着说:“火,应该是跟能量学的热学有关的,我认为我有必要好好测量一番,并以最快的速度计算出它即将带来的毁坏。”

化学家不紧不慢地说:“这其实关系到燃点,氧气充足、并达到了着火点,屋子自然要起火的。那么我会首先想办法稀释氧气,或者降低燃一烧需要的热量。我可以考虑去实验室制造一些二氧化碳。”

在旁边插不上嘴的数学家,打断化学家的发言,说出了自己认为最合理最简单的解决办法,这个办法令所有在场的人都目瞪口呆。

聪明的小读者,你们站在数学家的角度,猜一猜数学家会如何解决这个难题呢?

数学家擅长的就是设问、论证、求解,对于“着火”

这个假设,数学家直截了当地说:“解总是存在的,该干嘛还干嘛。”

在场的人哈哈大笑起来。

喜欢《关于数学家的故事12篇》一文吗?“幼儿教师教育网”希望带您更加了解幼儿故事,同时,yjs21.com编辑还为您精选准备了数学家故事专题,希望您能喜欢!

相关文章

最新文章