小数的性质教案收藏

01-10

与“小数的性质教案”相关的讨论是这篇文章的重点,让我们一起享受阅读的魅力,感受文字的灵魂。为了帮助学生掌握课堂上的知识点,老师需要提前准备教案。在编写教案和课件时,老师还需要花心思。设计出优秀的课件可以提高教学效率和教学成果。

小数的性质教案【篇1】

教学目的

1.引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

2.培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力.

3.培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点.

教学重点

让学生理解并掌握小数的性质.

教学难点

能应用小数的性质解决实际问题.

教学步骤

一、设疑激趣.

1.演示课件“小数的性质”.

聪明的小朋友,你们看哪一个价钱贵呢?

2.出示:5,50,500,比较这三个数的大小,你发现了什么?

(在整数的末尾添上一个0,原来的数就扩大10倍;添上两个0,原来的数就扩大100倍……)(在整数的末尾去掉一个0,原来的数就缩小10倍;去掉两个0,原来的数就缩小100倍……)(整数的位数越多,数越大)……

3.你还能再举出一些这样的例子吗?

4.请你猜一猜:小数的大小与它末尾的0会有什么关系呢?

二、探究新知.

1.导入:我们已经理解了小数的意义,当你们在商场中看到每件商品的标签这样写,你知道这是多少钱吗?为什么可以这样写呢?

为了弄清这个问题,今天我们继续研究小数的性质(板书课题:小数的性质)

2.理解小数的性质.

教学例1:比较0.1米、0.10米和0.100米的大小.

(1)教师提问:我们还没有学习小数大小的比较,你能想个办法比较出这几个小数的大小吗?说说你是怎样比的?

(2)根据学生的的回答,继续演示课件“小数的性质”,出现直尺,体会:

0.1米=1分米;0.10米=10厘米;0.100米=100毫米.

(3)引导学生观察比较:1分米、10厘米、100毫米它们的长度怎样?你能得出什么结论?

(4)学生汇报:0.1米=1分米

0.10米=10厘米

0.100米=100毫米

(5)教师提问:从结论中你们发现了什么?

(6)教师补充说明:因为1分米=10厘米=100毫米

所以:0.1米=0.10米=0.100米

(7)教师小结:这三个数量虽然各不相同,但表示大小相等.

3.教学例2.

出示例2:比较0.30和0.3的大小.

(1)出示两张大小相等的正方形纸片.【继续演示课件“小数的性质”】

思考:怎样表示0.30和0.3?分组讨论并动手涂色,完成比较.

(2)学生汇报:0.30表示30个也是3个;0.3表示3个.所以0.30=0.3.

(3)演示讨论结果:将两张纸分别平均分成10份和100份,表示出0.30和0.3,将两张纸片重合,发现阴影部分也重合.

(4)教师提问:你发现了什么?

(5)分组讨论:为什么这两个数相等?

引导学生口述:10个是1个,30个是3个,所以这两个数相等.

即:0.30=0.3

(6)引导学生观察:这个等式,从左往右看,小数末尾有什么变化?小数大小有什么变化?你能得出什么结论?

启发学生归纳出:在小数的末尾去掉“0”,小数的大小不变.

4.归纳小数的性质.

教师提问:通过例1、例2的研究,你能把上面的两个结论归纳成为一句话吗?

教师概括:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质.【继续演示课件“小数的性质”】

教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.小数中间的0不能去掉.

引导学生比较:在整数的末尾添上或去掉“0”,整数的大小会有什么变化?在小数的末尾添上“0”或者去掉“0”,小数的大小又会有什么变化?

5.应用.【继续演示课件“小数的性质”】

(1)教学例3:把0.70和105.0900化简.

思考:哪些“0”可以去掉,哪些“0”不能去掉?

小数的性质教案【篇2】

一、教学内容:

人民教育出版社出版的原通用教材六年制小学课本《数学》第八册第73页例1~例4。

二、教学目的:

使学生掌握小数的性质,能运用小数的性质化简小数,能根据实际需要不改变原数的大小,写成指定位数的小数。

三、学具准备:

同桌的两名学生准备用硬纸条做的米尺一把;长短不一的纸条(长度要大于5分米);剪刀一把。

四、教学过程:

师:[板书:0.6元0.60元]0.6元、0.60元各表示多少钱?说明了什么?

生:0.6元表示6角钱,0.60元也表示6角钱。说明了0.6元等于0.60元。

师:很好,[板书:0.6元=0.60元]

师:[板书:5、50、500]“5、50、500”是三个大小不同的数,谁能添上不同的单位名称使它们所表示的量相等?

生:5元、50角、500分。

生:5分米、50厘米、500毫米。

生:5米、50分米、500厘米。

师:同学们都发表了自己的意见,现在我们选其中的一组来研究。

[板书:5分米50厘米500毫米]

这三个数量相等吗?请同学们拿出准备好的长纸条,再拿出自己用硬纸条做的米尺,第一大组的同学在长纸条上量出5分米的.长度,剪下来,第二大组的同学在长纸条上量出50厘米的长度,剪下来,第三大组的同学量出500毫米的长度,剪下来。

[学生操作、教师巡视]

师:同学们量得很好,请每个大组交上来一张剪好的纸条。[教师依次把5分米、50厘米、500毫米长的纸条对齐贴在黑板上]你看出了什么?

生:我看出了三张纸条一样长。

师:对,这说明了5分米=50厘米=500毫米。

[教师在黑板上的5分米、50厘米、500毫米中间添上等号]

师:谁能把5分米、50厘米、500毫米改写成用米作单位的小数?

生:5分米是0.5米,50厘米是0.50米,500毫米是0.500米。

师:[板书:对齐上面板书的5分米、50厘米、500毫米,分别在它们的下面写上0.5米、0.50米、0.500米]0.5米、0.50米、0.500米相等吗?为什么?

生:相等。因为5分米=50厘米=500毫米。

师:[板书:0.5米=0.50米=0.500米]

师:我们再来比较0.3和0.30的大小(见图30)。

请同学们拿出印好的两个正方形,用阴影分别表示出0.3和0.30。

[同时请一名学生在幻灯片上的正方形中分别画上阴影,表示出0.3和0.30]

师:[教师巡视]很好,同学们都画完了,请看幻灯演示[用抽拉片将两个正方形中的阴影部分重合]同学们看出了什么?

生:0.3等于0.30

师:[板书:0.3=0.30]请同学们观察0.3和0.30有什么相同的地方?

生:0.3和0.30都是小数。

生:它们的整数部分都是0,十分位上都是3。

生:它们的大小都不够1。

生:它们的大小相等。

师:再看看它们有什么不同的地方?

生:0.3是一位小数,0.30是两位小数。

生:0.3的百分位上没有0,0.30的百分位上有0。

师:同学们说得都对,它们最主要的相同点是大小相等,最主要的不同点是0.30的百分位上有个“0”,现在看看这个“0”在小数的什么地方?

生:这个“0”在小数的最后面。

生:这个“0”在小数的末尾。

师:对,这个“0”在小数的末尾。今天我们专门来研究小数末尾的“0”。

[教师指着板书的等式0.3=0.30]从左往右看有什么变化?

生:小数的末尾添了个“0”。

师:从右往左看有什么变化?

生:小数的末尾去掉了“0”。

师:它们的大小变了吗?

生:它们的大小没变。

师:请同学们再看前面板演的等式。

0.5米=0.50米=0.500米

从左往右看小数的末尾怎样?

生:小数的末尾添上了“0”。

师:从右往左看小数的末尾怎样?

生:小数的末尾去掉了“0”。

师:它们的大小变了吗?

生:它们的大小没有变。

师:[再指着第一次板演的等式0.6元=0.60元]请同学们从左往右看,再从右往左看,你发现了什么规律?它们的大小怎样?

生:从左往右看小数的末尾添上了“0”,从右往左看小数的末尾去掉了“0”,它们的大小没有变。

师:同学们观察得很好,这就是今天我们要学的“小数的性质”。

[板书课题]

请同学们打开书第74页看第二段,谁来读?

生:[读]小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。

师:[在黑板上出示小数的性质]小数的性质分几部分内容?请你讲一讲。

生:分两部分内容,一是小数的末尾添上“0”,小数的大小不变,二是小数的末尾去掉“0”,小数的大小不变。

师:很好!学习小数的性质有什么用途呢?请同学们看第74页第三段。[看完后请学生回答]

生:根据小数的性质可以把小数化简。

师:对,怎样化简小数呢?

[出示例3]把0.70和105.0900化简。

生:把0.70末尾的零去掉。

师:[板书:0.70=0.7]105.0900这个小数化简时只能去掉哪里的“0”?谁上来指一指?

生:只能去掉小数末尾的“0”。

师:[板书:105.0900=105.09]

下面我们进行巩固练习(做练习十九第2、3两题)。

1.下面的数,哪些“0”可以去掉,哪些“0”不能去掉?

3.90 0.300 1.8000 500

5.780 0.0040 102.020 60.06

2.化简下面的小数。

0.40 1.850 2.900 0.50600

0.090 10.830 12.0000 0.0750

[学生做练习,教师巡视、辅导,然后集体订正,及时反馈矫正]

师:学习小数的性质还有什么用途呢?请看课本第74页第四段,看完后回答。

生:根据需要可以在小数的末尾添上“0”。

生:可以把整数改写成小数的形式。

师:对,[出示例4]

例4 不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。

生:0.2=0.200

生:4.08=4.080

师:很好,根据什么可以这样改写?

生:根据小数的性质:小数的末尾添上“0”,小数的大小不变。

师:怎样把“3”改写成小数部分是三位的小数呢?

生:在“3”的右下角点上小数点,再添上3个“0”,3=3.000。

师:很好,在整数的个位右下角点上小数点,再添上“0”,就能把整数改写成小数的形式。下面我们进行练习(做练习十九第4、5两题)。

1.用“元”作单位,把下面的钱数改写成小数部分是两位的小数。

3元2角 18元 6角 1元零3分

2.不改变数的大小,把下面的数改写成小数部分是三位的小数。

5.4 30.04 7 8.01

13 4.87 0.9 185.34

[学生做练习,教师巡视辅导,集体订正]

师:[挂出小黑板]我们再进行下一项练习。

3.把左右两边相等的数用直线连接起来。

0.300 2.08

0.003 2.80

2.080 0.030

2.800 20

20.00 0.3

[请一名同学在小黑板上连线]

师:为什么0.003不和0.030连接起来呢?

生:因为0.003和0.030不相等。

师:对。请同学们再看下一道判断题。

4.判断(对就打“√”,错就打“×”)。

小数点末尾添上“0”或者去掉“0”,小数的大小不变,这叫做小数的性质。( )

[请一名同学在小黑板上判断]

师:这位同学打的是“×”,错在哪里?

生:应该是:小数的末尾添上“0”或者去掉“0”,小数的大小不变。而不是“小数点

(2)小数性质的应用(六年制第八册第四单元)。

2.教材所处地位:本节是系统学习小数的开始,为后面学习小数四则计算做了必要的准备,起铺垫作用。

3.教材的重点和难点:对小数的性质这一概念的理解是本节的难点,小数性质的应用是本节的重点。

4.教学目标:

(1)识记理解小数的性质;

(2)根据需要把小数化简或是把整数改写成指定数位的小数。

二、教法

1.通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。

2.采用快乐教学法,激发学生的学习兴趣,鼓励学生积极发言和敢于质疑,引导学生自己动脑、动手、动口、动眼以及采用对口令抢答等多种形式的巩固练习,使学生变苦学为乐学,把数学课上得有趣、有益、有效。

三、学法

通过本节教学使学生学会运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、概括知识及联想的方法。

四、教学程序

(一)谈话法导入新课

在商店里,经常把商品的标价写成这样的小数:手套每双2.50元,毛巾每条3.00元。这里的2.50元、3.00元分别是多少钱?(2.50元是2元5角,3.00元是3元)为什么能这样写呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。

(二)讲授新课

1.研究小数的性质

(1)出示例1,比较0.1米,0.10米和0.100米的大小。

首先让学生拿出事先准备好的米尺(10厘米以上),在米尺上找出1分米、10厘米、100毫米是同一点,说明:1分米=10厘米=100毫米(板书)。

请同学们看米尺想,1分米是1/10米,可写成怎样的小数?(0.1米);10厘米是10个1/100米,可写成怎样的小数?(0.10米),100毫米是100个1/1000米可写成怎样的小数?(0.100米)

板书:因为1分米=10厘米=100毫米

所以0.1米=0.10米=0.100米

在这里应用直观演示法,变抽象为具体。然后板书准备比较,观察上下两个等式,说明0.1、0.10、0.100相等,再添上“因为”、“所以”、“=”。

A.从左往右看,是什么情况?(小数的末尾添上"0",小数大小不变)

B.从右往左看是什么情况?(小数的末尾去掉"0",小数大小不变)

C.由此,你发现了什么规律?(小数的末尾添上"0"或去掉"0",小数的大小不变)

在这里应用了比较法,便于发现规律,揭示规律,总结性质。

(2)为了进一步证明小数性质的可靠性出示例2:比较0.30和0.3的大小。(图略)

教师指导学生自学例2。

教师指示,学生思考:

①左图是把一个正方形平均分成几份?(100份)阴影部分占几分之几?(30/100)用小数怎样表示?(0.30)

②右图是把一个正方形平均分成几份?(10份)阴影部分占几分之几?(3/10)用小数怎样表示?(0.3)

③引导学生小结从图上可以看出:0.30是30个1/100,也是3个1/10。0.3是3个1/10。所以得出:0.30=0.3。

④由此,你发现了什么规律?

师生共同小结、板书如下:

例2:0.30=0.3

小数的末尾添上"0"或者去掉"0",小数的大小不变,这叫做小数的性质。

为了帮助学生对小数性质的理解,教师强调指出:为什么在小数的末尾添"0"或去"0",小数的大小就不变呢?(因为这样做,其余的数所在数位不变,所以小数的大小也就不变。举例说明)小数中间的零能不能去掉?能不能在小数中间添零?(都不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。举例说明)整数是否具有这个性质?(没有,理由同上第二点)

2.小数性质的应用

教师谈话:根据这个性质,遇到小数末尾有"0"的时候,一般地可以去掉末尾的"0",把小数化简。

(1)化简小数

出示例3:把0.70和105.0900化简。

提问:这样做的根据是什么?(把小数末尾的"0"去掉,小数的大小不变)弄清题意后,学生回答,教师板书:0.70=0.7;105.0900=105.09。通过这组练习巩固新知,为以后小数作结果要化简作准备。

口答:课本“做一做”第1题。

(2)把整数或小数改写成指定数位的小数

教师谈话:有时根据需要,可以在小数的末尾添上"0";还可以在整数的个位右下角点上小数点,再添上"0",把整数写成小数的形式。

如:2.5元=2.50元3元=3.00元

出示例4:不改变小数的大小,把0.2、4.08、3改写成小数部分是三位的小数。

小组讨论后,2人板演,其余学生齐练,订正,表扬。

0.2=0.20xx.08=4.0803=3.00

练习:口答课本第65页的“做一做”第2题。

讨论小结:改写小数时一定要注意下面三点:

A.不改变原数的大小;

B.只能在小数的末尾添上"0";

C.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添"0"。(想一想为什么)

3.学生仔细阅读课本第64页的例1、例2,记住并理解小数的性质;阅读课本第65页例3、例4掌握小数性质的应用。

五、巩固练习

1.练习十三第1题:下面的数,哪些"0"可以去掉,哪些"0"不能去掉?指名同桌对口令,其余学生当小评委。

第2题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。

第3题:下面的数如果末尾添"0"哪些数的大小不变,哪些数的大小变化?小组讨论,提问订正,找规律(小数的末尾添"0"大小不变,整数的末尾添"0"大小变了)。

第4题:化简下面小数,采取抢答来完成。

第5题:先填书上再口答订正。

2.练习十三第6题:用元作单位,把下面的钱数改写成小数部分是两位的小数。2人板演,其余学生齐练,评价鼓励。

附板书设计:

小数的性质

例1:比较0.1米、0.10米和0.100米的大小。

因为1分米=10厘米=100毫米

所以0.1米=0.10米=0.100米

0.1=0.10=0.100

──────→

←──────

例2:0.30=0.3

小数的末尾添上"0"或者去掉"0",小数的大小不变。这叫做小数的性质。

小数的性质教案【篇3】

教学内容:青岛版小学数学四年级下册第4单元信息窗2第2课时

教学目标

1、初步理解小数的基本性质,并应用性质化简和改写小数。

2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。

3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。

教学重难点

教学重点:理解并掌握小数的性质。

教学难点:能应用小数的性质解决实际问题。

教具、学具

教师准备:课件

学生准备:直尺、每人两张同样大小的正方形卡(一张等分成10个长方形,一张等分成100个小正方形)、0.5分米和0.50分米的纸条、数位顺序表

教学过程

一、创设情境,提出问题

1.我是小小魔法师

教师在黑板上出示:111,这三个数相等吗?

教师在1的后面添写0,板书:110100,这三个数还相等吗?你有办法使它们相等吗?启发学生加上长度单位后就可以相等了。

1米=10分米=100厘米,1分米=10厘米=100毫米。

(设计意图:学生想当魔法师的愿望强烈,激起学习兴趣,同时也为后面的新知学习做铺垫。)

2.情境引入,提出问题

同学们,我们这节课再一次走进动物世界,进一步学习有关小数的其它知识,好吗?课件出示:

师:从图中你发现了那些数学信息?又能提出什么数学问题?

预设:哪个动物的尾巴长呢?

师质疑:哪个动物的尾巴长?实际上是比较什么的呢?

引导学生说出:哪个动物的尾巴长?实际上就是比较0.5和0.50哪个数大。

二、自主学习,小组探究

1.大胆猜测。

师:0.5与0.50到底哪一个数大?同学们不妨猜一猜。

预测:有的同学说0.5分米大,有的同学说0.50分米大,还有的同学说两个数一样大。

师:这只是我们猜想的结果,数学是一门严谨的学科,要用事实说话,下一步,我们该怎么办?(验证)

2.实验操作。

出示问题:0.5和0.50哪个数大?

探究提示:

⑴做一做,利用老师提供的纸条或正方形方格纸等学具验证一下你的猜想。

⑵比一比,根据上面的验证比较一下0.5和0.50哪个大?

⑶说一说,你发现了什么?

我们利用学具来研究,老师为大家提供了几种学具,

1号学具袋:8张纸条,4张长0.5分米,4张长0.50分米,一把直尺;

2号学具袋:8张同样大小的正方形卡,4张等分成10个长方形,4张等分成100个小正方形;

3号学具袋:一张数位表。

教师边说边展示给同学们看看。下面以小组为单位,任选一种学具,利用我们学过的知识来证明0.5=0.50,按要求完成我们的活动。

温馨提示:

四人一组,先在小组里商量一下,选用哪种学具来研究;由小组长分发每人一份。

2.想一想,怎样利用学具来证明0.5=0.50,然后动手做。

3.在小组里交流你的想法和做法,学生进行探究,教师巡视指导。

三、汇报交流,评价质疑

1.汇报交流,验证猜想。谁愿意把你的研究成果汇报一下?

学生的汇报与展台展示同步,师生相互评价,质疑对话。

学生作品预设:

●借助直尺。

从直尺图上,你有何发现?

0.5分米是把1分米平均分成10份,取其中的5份,就是5厘米;0.50分米是把1分米平均分成100份,取其中的50份,就是50毫米;5厘米=50毫米,所以0.5分米=0.50分米。所以0.5与0.50相等。教师可配合展示图片进行理解。

●借助数位顺序表。

十位

个位

小数点

十分位

百分位

0

·

5

0

·

5

0

从数位顺序表中,你发现了什么?

根据数位顺序表填写,依据小数的意义,十分位上的5表示5个0.1,而百分位上的0表示0个0.01,也就是没有,所以写0或不写0都一样,因此我们就认为0.5=0.50。

●借助正方形纸片。

师:同学们根据图,想到了什么?能自己说出什么吗?小组讨论交流,独立解答,师巡视。最后师指名回答。

生:把写0.5的正方形纸涂了5份,写0.50的正方形纸涂了50份,然后把它们叠放在一起,涂色部分正好完全重合,所以我认为0.5=0.50。

师:为什么这一张(师举起生手中的正方形)涂了5份,而另一张涂50份呢?能解释一下吗?

生:这一张纸平均分成10份,涂5份就是十分之五,十分之五就是0.5;而这一张纸平均分成100份,涂50份就是一百分之五十,一百分之五十就是0.50。

2.举例验证,得出性质。【M.YjS21.cOm 幼儿教师教育网】

师:通过刚才的比较,验证了0.5=0.50这个猜想。我们的猜想是不是对所有的小数都适用呢?同学们还能列举出更多的数据来证明我们的猜想吗?

学生:0.500和0.5相等吗?

师:请同学们仔细观察这些算式00,有什么发现?这两个小数的大小有没有发生变化?什么变了?教师引导学生从左往右观察,再从右往左观察,请同学们用自己的话说说这些算式所包含的规律吧?(出示课件)

学生回答时,教师注重学生的语言描述,用词的引导。师生共同归纳:小数的末尾添上“0”或者去掉“0”,小数的大小不变。让学生读一读,教师指出这就是小数的性质,然后师板书课题:小数的性质。

同学们认为这个性质中哪些词语比较重要?生发表自己的看法后,教师强调:添0或去0只能在小数末尾进行,而不是小数点的后面。

3.利用性质,体会价值。

●理解化简

我们学习了小数的性质,有什么用处?你能利用它来解决问题吗?

教师出示:你能将0.300和0﹒504化简吗?

生读题后问:有什么疑问吗?(什么是化简?)生答后师出示课件:

学生化简:0﹒500=0﹒5;0﹒504=0﹒504

教师质疑:0.504小数点后面的第一个0可以去掉吗?为什么?

师引导学生回答去掉这个0,小数的大小就变了。

●练习改写(课件出示课本小电脑)

学生独立解答,同位交流,汇报时说说改写小数又根据什么?引导学生回答:两个小数大小相同,而位数和表示的意义是不同的,可以让学生根据具体的例子说一说。指名回答。

4、质疑问难,强化性质。(判断)

你们对这句话理解的够不够透彻呢?挑战一下你们。(以下题目陆续出现)

(1)一个数的末尾添上0或去掉0,这个数的大小不变。

举例说明后返回小数的性质,红字强调“小数”。

(2)小数点的后面添上0或去掉0,小数的大小不变。

举例说明后返回小数小性质,红字强调“末尾”。

四、抽象概括,总结提升

同学们,我们今天通过运用猜测、操作、检验、观察、对比等方法,探索并发现了小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变。同时我们还尝试了“猜想—验证”,“比较—归纳”的学习方法,许多科学知识都是猜想的基础上进一步验证,比较归纳出来的,希望在以后的学习中用这样的方法探索更多更深奥的知识。

那么我们学习小数的性质有什么作用呢?比如说当我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.

五、巩固应用,拓展提高

1.

2.下列数如果末尾添0,哪些数的大小不变,哪些数的大小有变化?

2.365.10070012.0108.250

学生独立完成后出示下列问题:

(1)想一想,这样做的根据是什么?6和700能不能直接在后面添0?

(2)议一议,如果整数想改成大小不变的小数,必须先做什么?

通过此题重点训练学生整数改写时应该先添上小数点,再添0。

3.

温馨提示:

以元为单位,就是把1元看作整体“1”

1元分成10角,其中的1角就是1/10元,即0.1元。

1元分成100分,其中的1分就是1/100元,即0.01元。

小组合作完成习题

全班交流订正:3.50元0.80元36.00元9.08元

4.摆数游戏。

出示5张卡片:2、5、0、0、和“·”;同时出示游戏要求:

●每小组利用老师发给的数字卡片按要求摆数;3个人摆数,一个人做记录。

●想一想:怎样摆才能既不重复又不遗漏。

分别摆出下面两种情况:

(1)用五张卡片摆一个数,这个数中的两个“0”都能去掉。

(2)用五张卡片摆一个数,这个数中的两个“0”一个能去掉,一个不能去掉。

本题可通过学生板演汇报,不完全的可以补充。同时让学生说说这样摆的技巧,你为什么这样摆?以此强化小数的性质。

小数的性质教案【篇4】

教学目标:

知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。

过程与方法:培养学生观察、比较、抽象和归纳概括的能力。

情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。

教学重难点:

重点:理解和掌握小数性质的含义。

难点:小数基本性质归纳的过程。

教学过程:

一、 创设情境,引入新课

师:同学们,认识这个数么?(出示卡片5)老师会变魔术,我能这个数变大,在它的末尾添上一个“0”,这个5发生了什么变化?

生:扩大了10倍。

师:我还能让它变大,现在又发生了什么变化?现在的数和“5”相比,末尾添了几个“0”,它的大小发生了什么变化?

生:末尾添了2个“0”,扩大了100倍。

师:那我们能让它变小么?

生:把末尾的“0”去掉。

师:现在去掉一个“0”,这个数发生了什么变化?再去掉一个“0”呢?

生:略。

师:看来在整数的末尾添上或去掉“0”,整数也随之扩大或缩小。那再看看这个数“0.5”,我在这个小数的末尾添上“0”这个数会变么?

生:不会变。

师:那我再添上一个“0”呢?

生:还是不变。

师:你是怎么知道的?

生:略。

师:所以你认为在小数的末尾添上“0”或去掉“0”小数的大小不变。(板书)这只是你的猜测,所以老师先在后面打上一个问号。刚刚某某同学说的只是一个个例,不具有普遍性,那如果要证明它具有普遍性,该怎么办呢?

生:验证。

二、讲授新课

师:在这老师给你们几点建议。先写出一个小数,在它的末尾添上“0”或者去掉“0”。利用手中的学习材料研究,或者借助已有的知识进行说明,小组合作,证明猜想,并记录在乐学单上。可以证明一组或者几组。小组内交流研究方法后,全班汇报。这些清楚了么?现在我给大家一点时间,开始。

(生动手操作)

师:好了,同学们。我发现大家的智慧真了不起,在短短的时间内研究的都很不错。那我们接下来开始汇报,在汇报前老师还有一个要求,一个组在汇报的时候,其他小组认真倾听,听完之后看看你们组研究的方法与他们一不一样,再做补充,在汇报的时候要说明两件事,你们是怎么验证的?你么验证的结果是什么?哪个小组先来汇报?

(生汇报)

师:这位同学描述的非常完整,而且通过他们的操作我们更一目了然了,还有哪个小组也是用了正方形纸来验证的,说说你们验证的结论。

生:略。

师:有没有哪个小组是借用皮尺来验证的,谁来说一说?

(生汇报)

师:老师也准备了一把米尺,我把一米平均分成10份,取了其中2份,是2分米用小数表示也就是0.2米,把一米平均分成100份,取了其中20份,是20厘米用小数表示就是0.20米,再把一米平均分成1000份,取了其中200份,是200毫米用小数表示就是0.200米,它们都表示这段长度,所以0.2=0.20=0.200,结论是在0.2的末尾添上“0”小数的大小不变。

师:有哪个小组是借用数位顺序表来验证的么?

(生汇报)

师:还有哪个小组也来说说你们组研究的结果。

师:刚才我们借用了教具来验证我们的猜想,有没有哪位同学是借助已有知识来验证的?前面我们已经学过了小数的意义……

生:略。

师:我们再来看看开始是的卡片,整数5,5在什么位表示什么?在它的末尾添上一个“0”,5被挤到什么位,表示什么?再添上一个“0”5又被挤到什么位表示什么?5的位置发生了变化么?由于5的位置发生了变化,那你们认为他的大小会怎么样?

生:略。

师:整数是这样,我们再看看小数,这是小数0.5,这时5在什么位表示什么?在0.5的末尾添上“0”,这时5在什么位表示什么?再添上一个“0”这时5在什么位表示什么?

师:5的位置有没有发生变化,照这样看,无论在0.5的末尾添上多少个0,5的位置不变,小数的大小也不变。

师:刚才我们举了那么多例子,都是在末尾添0的,从左往右看是单向思维,如果我们从右往左看,你们发现了什么?以这个为例谁来说一说。

生:略。

师:你们真棒,如果我们把从左往右和从右往左合成一句话,会是什么?

生:略。

师:在小数末尾添上0或去掉0小数的大小不变后面的问号是不是可以去掉了?我们发现的这个规律就是小数的性质,(板书)这是大家共同探究出来的,大家一起齐读一遍。

三、巩固练习

师:这是一张购物小票,老师圈出了几个数,你们认为这几个小数当中哪些0是可以去掉的?

生:略。

师:1.05中的0可以去掉么?

生:不能,因为0不在末尾。

师:那你们认为在小数性质这句话中,哪个词是最重要的?

生:末尾。

师:接下来,我们来看这题,你们知道什么是化简么?

生:略。

师:把末尾的0去掉,没有改变小数的大小,这样是不是更简单呢?那谁来回答这几题?

生:略。

师:其实在不改变小数大小的情况下,我们除了可以化简还可以改写。把小面小数改写成三位小数。

生:略。

师:今天我们学习了小数的性质,大家知道了什么?

生:略

师:老师根据本节课的内容设计了一幅思维导图,课后请同学们叶发挥自己的想象,根据本节课的内容设计一幅美观,内容详实的思维导图。

师:好的同学们,今天这节课上到这,下课。

小数的性质教案【篇5】

一、 创设情境,引入新课

1. 出示:1  10   100

师:说一说在生活中你比较喜欢这3个数中的哪个数?今天就让我们用100分的热情10分认真的上1节你喜欢的数学课。

2. 你有办法让这3个数相等吗?(比如说加上点什么……)

生1:1元=10角=100分

生2:1分米=10厘米=100毫米

生3:……

二、探索交流,解决问题。

1. 出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0.1米,0.10米和0.100米长的纸条,各打上记号。各小组合作共同完成。

老师巡视并引导学生观察米尺图

2、各小组汇报:结合学生回答,教师板书:

0.1米是1/10米,就是1分米

0.10米是10/100米,就是10厘米

0.100米就是100/1000米,就是100毫米

因为1分米=10厘米=100毫米

所以0.l米=0.10米=0.100米

教师小结:这三个数虽然各不相同,但表示大小相等.

3、观察比较:教师指着“0.l米=0.10米=0.100米 这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。

教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.小数中间的0不能去掉.

师质疑:那整数有这个性质吗?

学生分小组讨论,并举例证明得出结论。

(师强调出小数与整数的区别)

4、练一练:

(1)多媒体出示58页做一做:比较0.30与0.3的大小

师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

( 2)师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作)

( 3)在两个大小一样的正方形里涂色比较。

汇报结论:0.3=0.30

师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)

设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。

5.小数性质应用.【继续演示课件“小数的性质”】

(1)教学例2:把0.70和105.0900化简.

思考:哪些“0”可以去掉,哪些“0”不能去掉?

105.0900中“9”前面的“0”为什么不能去掉?

(0.70=0.7;105.0900=105.09)

教师强调:末尾和后面不同。

(2)教学例3:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数.学生独立完成,全班共同订正。

(0.2=0.200;4.08=4.080;3=3.000)

思考:“3”的后面不加小数点行吗?为什么?

(3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)

三、巩固深化,拓展思维

1.完成59页的做一做。

重点指导学生说一说为什么有些“0”不能去掉和

说一说为什么有些数的末尾添上“0”,原数就发生了变化.

2、挑战自我。

(1)谁能只动三笔,让下面三个数之间划上等号?

6020 = 602 =60200

(2)每人写几个和3.200相等的数.

设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。

四、全课小结

1.这节课你有哪些收获?

2.你对自己或同学有什么评价?

五、布置作业.

完成练习十1—3题。

板书设计:

小数的性质

例1  1分米  =  10厘米 = 100毫米

从右往左 从左往右

0.1米  =  0.10米 =  0.100米

小数的末尾添上0或者去掉0,小数的大小不变 。

0.3= 0.30  =0.300

例2   化简小数。

0.70= 0.7         105.0900=105.09

例3    不改变数的大小,把下面各数写成三位小数。

0.2=0.200     4.08=4.080      3=3.000

小数的性质教案【篇6】

一、说教材

1、教学内容:六年制小学数学第八册P100例1、2。

小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。

2、教材的重点和难点:

掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。

3、教学目标:

(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。

(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。

二、说教法

1、通过直观、图示,让学生充分感知,经过比较归纳,最后概括出小数的性质;从而使学生的思维从形象思维过渡到抽象思维。

2、采用引探教学法,依据学生认知规律对例题进行加工调整,在探求知识规律处适当给予启发、引导,以调动学生学习的自觉性、积极性,从而达到感知新知,概括新知,应用新知,巩固和深化新知的目的。

三、说学法

通过本节教学,要使学生掌握一些基本的学习方法:

1、学会通过比较、归纳,最后概括出一类事物的本质属性。

2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

四、说教学程序

(一)情景导入激趣揭题

(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.1米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。

同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)

这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

(二)调整例题探索新知

1.教学例1

(1)出示米尺投影图

(2)引导学生观察米尺图,提问:

A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(1分米)

B、0.10O米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少毫米?(10厘米)

C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)

结合学生回答,例1图上的标注应改为:

0.1米是1/10米,就是1分米

0.10米是10个1/100米,就是10厘米

0.100米就是10个1/1000米,就是100毫米

因为1分米=10厘米=100毫米

所以0.1米=0.10米=0.100米

这样,学生根据小数的意义,主动从“0.1米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准)强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。

幼儿教师教育网的幼儿园教案频道为您编辑的《小数的性质教案收藏》内容,希望能帮到您!同时我们的小数性质教案专题还有需要您想要的内容,欢迎您访问!

相关文章

最新文章