我创建了这份“有理数的乘法课件”,目的是为了让它的口感更好,希望它能够对你的学习和工作产生帮助。同时,教案和课件也是老师日常工作不可或缺的部分,每天都需要不断地制作更新。教案是针对学生个性差异而设计的重要工具。
我说课的内容是义务教育课程标准实验教科书(人教版)《数学》七年级上册第一章第四节《有理数的乘法》的第一课时,我将从教材分析、教学目标、教学方法、学法指导、教学程序设计等五个部分进行阐述。
一、教材分析
1、教材的地位和作用
有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上。因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。由于有理数的乘法是有理数最基本的运算之一,因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。学好这部分内容,对增强学习代数的信心具有十分重要的意义。
2、教材的重点和难点
本节课的重点是有理数的乘法法则。这是因为:
(1)要熟练地进行有理数的乘法运算,就得深刻理解运算法则,对法则理解得越深,运算才能掌握得越好。
(2)学好有理数的乘法法则,对将要学习的有理数的除法以及其他的运算都是至关重要的。
本节课的难点是有理数乘法中的符号法则。由于初一年级的学生刚接触负数,对负数的意义理解不深,因此,与小学算术数的乘法比较,学生对含有负数特别是两个负数相乘的意义的理解,思维角度变化较大,思维强度也增大。
二、教学目标
1、知识与技能:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2、过程与方法:通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力。
3、情感与态度:激发学生学习数学的兴趣,培养学生勇于探索新知的精神。
三、教学方法
本节课的教学是以启发式教学为主,通过教师的引导,启发调动学生学习积极性,让学生在课堂上多活动,多观察、主动参与到整个教学的全过程,通过自己的努力,发现规律,总结出法则。它符合教学论中的自觉性和积极性。并有利于培养学生勇于探索新知的创新精神。
四、学法指导
通过本节课的教学,教师引导学生学会观察、比较、归纳等学习方法。让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则,学会自主探究、合作的学习方式,培养学生良好的学习品质。
五、教学程序设计
本节课我的设计理念是:遵循“教学、学习、研究”同步协调的原则,依据教材,恰当地创设情境,激发学生对数学的好奇心和求知欲,通过独立思考,不断发现和提出问题,分析并创造性地解决问题,教师为学生构建开放的学习环境引导学生体验探索、研究的过程。让学生在探究合作交流的过程中,展示思维过程。
以下我将对每一教学环节分别教什么怎么教,为什么这么教,教学目标的控制等方面加以说明:
(一)创设情境、引入新课
教师利用课件出示问题,学生根据教师交给的问题,独立思考并解决问题,为今后讨论做准备。提供这一组问题,目的在于前两个学段学过求几个相同加数的和用乘法,沿用这个规定,就可以得到(—2)+(—2)=(—2)×2;(—2)+(—2)+(—2)=(—2)×3,……于是就得到我们前两个学段没有学过的负数与正数相乘的乘法,从而引入新课,使学生思路清晰。
(二)观察——猜想
这一教学环节首先让学生观察算式感知两个有理数相乘的三种情况,再以如下问题使学生初步感悟两个有理数相乘的符号法则,最后猜想出有理数的陈法则。
意图是以学生已有知识结构为基础,由一系列算式,猜想出有理数乘法法则,培养学生观察、猜想、归纳、概括的能力。
(三)探究——验证
教师启发学生“为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正”。学生根据教师给出的蜗牛爬行的例子结合问题(1)——(4)先独立思考,然后合作探究,互相启发,互相学习,激发灵感,并得出算式。意图是利用数轴通过蜗牛运动的例子验证有理数乘法法则学生容易接受,并有意识地引导学生主动去探索,从而充分验证了学生的猜想。
(四)比较——提炼
在学生探究的基础上让同学们完成下面的填空题,从而使学生更进一步明确了两个有理数相乘的符号规律,通过观察比较使学生用自己的语言归纳提炼出法则,有利于培养学生观察、比较、分析和概括的思维能力。
(五)分析法则、掌握实质
教师设计以下例子目的使学生归纳出有理数乘法法则步骤,初步培养学生的化归意识。设计抢答题是想让学生熟悉法则,掌握法则实质。
(六)应用——巩固:
例1和例2的教学通过学生板演来完成,再由师生共同评价与完善。例1是运用乘法法则进行运算的基本题,而且一举两得,不仅让学生练习了有理数的乘法,而且得出了有理数范围内倒数的定义;例2是说明有理数乘法的意义,即在什么情况下用乘法解决问题。通过课堂练习不仅巩固了课堂所学的知识由可以使学生体会学习数学成功的喜悦。
(七)小结——反思这一环节我设计了三个问题:
1、本节课你学到了什么?
2、本节课你有何收获?
3、你还有什么疑问?
目的是使学生学会反思回顾总结梳理课堂所学知识完善认知结构,发挥学生的主体作用,提高他们的表达能力。
(八)作业——延展
为了满足不同的学生需要本节课后作业设置了必做题和选做题,通过作业不仅巩固有理数乘法的运算而且也为下节课将要学习的几个不等于零的数乘法和有理数的乘方做铺垫设下伏笔。进一步体现《数学课程标准》所要求的人人都能获得必需的数学、不同的人在数学上得到不同的发展。
人教版数学有理数乘法教学设计
设计理念
1.注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的.活动来获取、理解和掌握这些知识。
2.本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的运算技能。
3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
教学目标
1.使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算。
2.使学生掌握多个有理数相乘的积的符号法则。
过 程 与 方 法: 培养学生观察、归纳、概括及运算能力。
情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。
重点 乘法的符号法则和乘法的运算律。
难点 积的符号的确定。
教学过程
一、复习引入;
观察并计算
①(-2)3456
②(-2)(-3)456
③(-2)(-3)(-4)56
④(-2)(-3)(-4)(-5)6
⑤(-2)(-3)(-4)(-5)(-6)
二、自主学习探索:
1.以上几个式子有何区别与联系?
2.你认为多个数相乘先干什么?
3.你能总结出什么规律?
教学目的:
1、要求学生会进行有理数的加法运算;
2、使学生更多经历有关知识发生、规律发现过程。
教学分析:
重点:对乘法运算法则的运用,对积的确定。
难点:如何在该知识中注重知识体系的延续。
教学过程:
一、知识导向:
有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。
二、新课:
1、知识基础:
其一:小学所学过的乘法运算方法;
其二:有关在加法运算中结果的确定方法与步骤。
2、知识形成:
(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。
情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的东方6米处
拓展:如果规定向东为正,向西为负
情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的西方6米处
发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6
同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6
概括:把一个因数换成它的相反数,所得的积是原来的积的相反数
3、设疑:
如果我们把中的一个因数2换成它的相
反数-2时,所得的积又会有什么变化?
当然,当其中的一个因数为0时,所得的积还是等于0。
综合:有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
三、巩固训练:
P52.1、2、3
四、知识小结:
本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。
五、家庭作业:
P57.1、2,3
六、每日预题:
1、小学多学过哪些乘法的运算律?
2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?
三维目标
一、知识与技能
经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。
二、过程与方法
经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。
三、情感态度与价值观
培养学生积极探索精神,感受数学与实际生活的联系。
教学重、难点与关键
1.重点:应用法则正确地进行有理数乘法运算。
2.难点:两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆。
3.关键:积的符号的确定。
教具准备
投影仪。
四、教学过程
一、引入新课
在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?
五、新授
课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O.
(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。
一、知识与能力
掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力
二、过程与方法
经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算
三、情感、态度、价值观
培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性
四、教学重难点
一、重点:熟练进行有理数的乘除运算
二、难点:正确进行有理数的乘除运算
预习导学
通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律
五、教学过程
一、创设情景,谈话导入
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律
二、精讲点拨质疑问难
根据预习内容,同学们回答以下问题:
1.有理数的乘法法则:
(1)同号两数相乘___________________________________
(2)异号两数相乘_____________________________________
(3)0与任何自然数相乘,得____
2.有理数的乘法运算律:
(1)乘法交换律:ab=_________
(2)乘法结合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理数的除法法则:
除以一个不等于0的数,等于乘这个数的__________
比较有理数的乘法,除法法则,发现_________可能转化为__________
三、课堂活动强化训练
某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?
注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结
四、延伸拓展,巩固内化
例2.(1)若ab=1,则a、b的关系为()
(2)下列说法中正确的个数为( )
0除以任何数都得0
②如果=-
1,那么a是非负数若若⑤(c≠0)⑥()⑦1的倒数等于本身
A 1个B 2个C 3个D 4个
(3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变( )
A两数相等B两数互为相反数
C两数互为倒数D两数相等或互为相反数
教学目标
1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
教材背景:本节课是有理数的乘法的第一课时,是学习好有理数乘除法的基础和关健。教材安排的内容较简单,从生活实际背景引入算术乘法,用相反意义的量过渡到负数与正数的乘法,通过让学生观察发现"把一个因数换成它的相反数,所得的积是原来积的相反数".接着安排了"试一试"让同学自己体会演绎推理得出正数与负数,负数与负数相乘,任何数与零相乘的规律,进而讨论归纳得出有理数乘法法则。并配有例习题让同学理解应用此法则。最后通过练习3让同学想一想找规律,得出一个数与1及-1相乘积的特征。整篇教材突出了让学生自己探索、试验、体验新知识的产生,规律的发现,自主探索,主动获得知识的新教改思想。
知识目标:掌握有理数的乘法法则并会运用它进行计算。
能力目标:学会探究式合理推理,培养构建思想和创新意识;训练从特殊到一般归纳推理及合情演绎推理能力。
情感目标:会用已学的知识探索解决新问题,勇于向自己挑战,开放思维空间,善于合作与交流,提高自主学习能力,体验获得知识的过程,在生活实际中感受应用数学。
两个有理数相乘的符号法则和有理数乘法法则的得出及应用。
从正数与正数相乘过渡到正数与负数相乘及负数与负数相乘符号的变化。
因本节课教学内容较简单,练习量不多。为了更好地使数学融入生活,使所学的知识更贴近学生的生活实际,增加了环保公益广告引入新课。为了达到面对全体同学,使不同的人学习不同的数学,本节课对例习题进行删补,增加了小数、带分数的乘法例型,增设了不同层次的思维训练题组A与思维训练B.
遵循新教改提倡的"以学生为主体"的精神,让学生自己发现、探索、讨论、协作的主导思想,本节课采用了"发现、探究法""分层递进法""分组学习""合作与交流"等有利于学生学习教法与学法。
多媒休课件
(一)看公益广告,渗透环保思想,引入新课。
1、复习简单的算术数乘法
(1)计算48×1/2, 5/12×3/5,
(2)全世界每分钟砍伐森林30公顷,平均每年减少的雨林面积为750万公顷。50年后全世界将减少雨林面积多少公顷?
(引入环保问题,放映公益广告,激发学生学习数学的兴趣,增强学生的环保意识。)
(3)你会计算(-3)×(+2),(-3)×(-2)吗?由此引出正数与负数相乘,负数与负数相乘怎么乘,设置悬念,提出本节课要解决的问题。
(二)创设问题情景,建立数学模型,探究新知。
1、老虎从东西方向的直道上以每分钟100米的速度前进,请同学确定
(1)向东走2分钟后老虎位于原来位置的哪个方向?相距多少米?
(2)向西走2分钟后老虎位于原来位置的哪个方向?相距多少米?
从此问题情景建立数学模型,让同学画数轴写出算式:100×2=200,(-100)×2=-200.
2、把问题1中的"老虎从东西两个方向以每分钟100米的速度前进"改为"一只小虫从东西方向的跑道以每分钟3米的速度前进",结果有何变化?大家写出算式:(+3)×(+2)=6,(-3)×(+2)=-6比较这两个算式,有什么发现?
当我们把(+3)×(+2)=6中的一个因数"3"换成它的相反数"-3",所得的积是原来积"6"的相反数"-6".再看上一题得到的算式100×2=200,(-100)×2=-200,一般地, "一个因数换成它的相反数所得的积是原来积的相反数".
3、引导学生观察所得的两个算式的不同,通过小组协作探究3×(-2),(-3)×(-2),(-3)×0,怎么求,有几种求法,展现学生思维的多样性与广阔性,培养学生创新意识。
4、让同学多写几个两有理数相乘的算式,小组讨论,试着归纳出正数乘正数,正数与负数相乘积的符号及积的绝对值如何确定,直观得出两个有理数相乘的符号法则,类型,规律。老师再用图象符号显示出来,使学生深刻理解两个有理数相乘的符号法则:"同号得正,异号得负"进而帮助学生结合绝对值的算术关系归纳得出有理数的乘法法则,并用屏幕显示"两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零".随后应用此法则计算,讲解课本上的P51例题。
例1(1)(-5)×(-6);(2)(-1/2)×1/4;并补充(3)
解:(1)(-5)×(-6)=+(5×6)=30;
(2)(-1/2)×1/4=-(-1/2×1/4)=-1/8;
(3) =-(5/3×12/5)=-4
强调学生应用乘法法则时注意两点
(1)先确定积的符号
(2)定积的绝对值即绝对值相乘。使学生轻松解决本节课所提出来的重点问题及本节课的难点。
(三)小组交流,练习巩固,演绎应用所学的知识。
让同学做书上的配套练习P52的1、2、3,演绎应用有理数的乘法法则。通过小组讨论,推选代表解答,并回答老师的现场提问,活跃课堂气氛,增强学习积极性与集体荣誉感。使学生在交流学习中体会成功的喜悦。
(四)分层次思维训练,使不同的学生得到不同的发展。
学习目标:
1、要熟记有理数除法的法则,会进行有理数除法的运算。
2、掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。
3、能熟练地进行简单的有理数的加减乘除混合运算。
4、体会比较、转化、分类的思想方法,在探索有理数除法法则时的应有
学习重点:有理数除法的法则及应用;求一个有理数的倒数。
学习难点:在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则。
学习过程:
一 前置复习 :
1、有理数的乘法法则是:
举例说明。
2、多个有理数乘法:(1)几个不等于0的有理数相乘,积的符号由 决定,当 时积为正;当 时积为负。
(2)几个有理数相乘, ,积就为零。
二 探究新知:(教师寄语: 现实世界中的事物都是既相互联系又可以相互转化的,在数学上加与减,乘与除也是可以相互转化的.)
自学课本58页至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法。,一定要熟记:
(1) 有理数除法运算转化为乘法运算的法则:除以一个数,________________________。
____________________。
(2) 有理数的除法法则:两数相除,_____________,_____________,_____________。
0除以任何_______________________________。
(3) 与以前学过的倒数的概念一样,___________两个有理数互为倒数。
如,3与____互为倒数,-6与_____互为倒数,2.25是____的倒数,___是 的倒数。
三 新知应用:
例1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则(1),在两个_______数相除时,可选择法则(2)
学以致用 计算:
(1) (42)7 (2) ( )( )
例2、计算(1) ( )( )( ) (2) ( )( )
(温馨提示:1、 有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。2、 加减乘除混合运算的运算顺序和小学一样。)
四 课堂练习:独立完成课本P59练习2,3题。(将完整的计算过程写在下面空白处)
五 达标测试:(独立完成)
1 填空:(1)2 的倒数与 的相反数的积是_______。
(2)(1)(3)( )=______。
(3)两个数的商为正数,那么这两个数一定是_________。
(4)一个数的倒数是它本身,则这个数是____________。
2、计算:(1) (2)
(3)、 (4) ( + )
六 总结反思:
1、说一说:
本节课我学会了 ;
使我感触最深的是 ;
我感到最困难的是 ;
我想进一步探究的问题是 。
2、:评一评
自我评价 小组评价 教师评价
七 布置作业
1(必做题) 课本60页习题A组3,4题。(要求:做在作业本上)
2(选做题) 课本60页习题B组1,2题。(要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流)
一、教材分析
本节是在学习了有理数加法和减法的基础上,进一步将有理数加减混合运算统一成加法运算,并通过省略加号、括号,得出省略括号的代数和形式,对于有理数加减混合运算,首先要将混合运算的式子写成省略括号的代数和的形式,然后按加法法则和运算律进行简便运算。本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。
二、学情分析
学生是在学习了有理数的乘法第一课时的基础上来学习这一节内容的。学生在本节内容的学习中可能存在以下方面的困难:
(1)学生有理数乘法的法则、运算律记忆不牢固;
(2)在实际做题中不能灵活运用乘法运算律;
(3)在运用乘法运算律的过程中不能准确确定每一步运算符号,尤其是乘法的分配律。
三、设计思路
本节课我采用“引导—合作—探究”的教学模式,从实际问题出发,通过创设问题情境,提出探究任务,让学生自主探究解决问题,并在解决问题的过程中发现新问题,并能提出创造性的想法。让学生体验探究的全过程,充分体现学生的主体地位,激发学生学习兴趣,培养学生创新精神和合作能力。
四、教学目标
按照课程标准,本节的教学目标如下:
1、知识与技能
熟练有理数的乘法运算并能用乘法运算律简化运算。
2、过程与方法
让学生通过观察、思考、探究、讨论,主动地进行学习。
3、情感态度与价值观
培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。
五、教学重点和难点
教学重点:
运用运算律,使运算简化
教学难点:
正确运用运算律,使运算简化
六、教学方法
教法:主要采用实验探究法、谈话法、讨论法、多媒体辅助教学法。让学生通过自己动脑思考,同学之间相互讨论,来学习有理数的加减混合运算,培养学生的分析、综合能力以及探索能力和合作精神,有效地突出重点,突破难点。让学生最大限度地参与到学习的全过程。
学法:
小组合作探究法:
以小组讨论为模式,积极参与合作探究,在小组合作探究中认真思考,操作,讨论,学会合作交流,培养借助团队力量解决自己无法完成问题的团队合作意识。
七、教具及电教手段
电子白板、多媒体课件
八、教学过程
一、做练习复习乘法法则导入
在做练习时我们看到如果像小学一样能利用乘法的交换律和结合
计算:
(1)5×(—6);(4)(—6)×5;
(2)[3×(—4)]×(—5);(3)3×[(—4)×(—5)];
(4)5×[3+(—7)];(5)5×3+5×(—7).
教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.
二、探究学习乘法运算律:
(1)乘法交换律
文字叙述:两个数相乘,交换因数的位置,积不变。
代数式表达:ab=ba。
(2)乘法结合律
文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
代数式表达:(ab)c=a(bc)。
(3)乘法分配律
文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
代数式表达:a(b+c)=ab+ac。
提问:这里为什么只说“和”呢?3×(5—7)能不能利用分配律?
答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3 ×(5—7)可以看成3乘以5与—7的和,当然可利用分配律。
提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?
答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;
乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;
分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加。
继而教师作如下小结:
(1)小学学习的乘法运算律都适用于有理数乘法。
(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样。掌握了学习的方法,就掌握了自学的钥匙,希望予以注意。
三、课堂练习
计算(能简便的尽量简便):
(5)(—23)×(—48)×216×0×(—2);
(6)(—9)×(—48)+(—9)×48;
(7)24×(—17)+24×(—9).
四、小结
教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.
五、练习设计
1.计算:
(7)(—7。33)×42。07+(—2。07)(—7。33);
(8)(—53。02)(—69。3)+(—130。7)(—5。02);
六、布置作业:
《伴你学》有理数的乘法第二课时
九、板书设计:
(一)乘法交换律:a×b=b×a
乘法结合律:[a×b]×c与a×[b×c]
乘法分配律:(a+b)×c=a×c+b×c
(二)典例示范:
十、教学反思:
在以上设计中,我力求体现“以学生发展为本”的教学理念,突出数学学科学以致用的特征,积极倡导“自主探究”的学习方式,让学生在开放而富有创新活力的氛围中学习,从而落实学生的主体地位,促进学生主动自主学习。
本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律.为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固。这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力.因此,我们采取了上述作法。
为了充分发挥每个学生思维的积极性,上述设计强调学生与教师一起共同参与教学活动.只要我们坚持把数学活动过程体现在教学中,又尽力发挥学生的思维积极性,那么学生所学到的就不仅是一些数学知识,而且会学到分析问题和解决问题的一般方法。
教材分析
“数的运算”是“数与代数”学习领域的重要内容。有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。因此本节内容具有承前启后的重要作用。
学情分析
1.让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。
2.通过观察、归纳,提高学生的理性认识。
3.培养学生学会表达、学会倾听的良好品质。
教学目标
1.知识技能:
(1)经历探索有理数乘法运算的过程,归纳有理数乘法运算法则。
(2)掌握有理数乘法法则,能解决简单的的实际问题。
2.数学思考:
通过自主合作探究经历探索有理数运算的过程,发展学生观察、归纳、猜想等能力。
3.问题解决:
通过自主探索和合作交流,发展学生逆向思维及化归思想。
4.情感态度价值观:
通过经历探索有理数乘法运算的过程感受数学与生活的紧密联系,提高学生对知识的应用能力以及勇于探索、敢于发言的个性品质。
教学重点和难点
教学重点是:有理数的乘法法则的理解和运用.
教学难点是:使学生体会有理数乘法法则规定的'合理性;探究出确定两个负数相乘和多个有理数相乘的符号符号规律。
一、 教学内容
人教版七年级数学(上)第一章第四节《有理数的乘除法》,见课本p28.
二、学情分析
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。
三、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
四、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学手段
制作幻灯片,采用多媒体的现代课堂教学手段.
六、教学方法
注意创设问题情景,选择“情景---探索---发现”的教学模式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。在整个学习过程中,以“自主参与,勇于探索,合作交流”的探索式学法为主,从而达到提高学习能力的目的。
七、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题(出示蜗牛爬的动画幻灯片)
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题.
2、 学生探索、归纳法则
学生分为四个小组活动,进行乘法法则的探索。
(1)教师出示蜗牛在数轴上运动的问题,让学生理解。
蜗牛现在的位置在点o,规定向右的方向为正,向左的方向为负;现在时间后为正,现在时间前为负.
a.+ 2 ×(+3)
+2看作向右运动的速度,×(+3)看作运动3分钟后。
结果:3分钟后的位置
+2 ×(+3)=
b. -2 ×(+3)
-2看作向左运动的速度,×(+3)看作运动3分钟后。
结果:3分钟后的位置
-2 ×(+3)=
c. +2 ×(-3)
+2看作向右运动的速度,×(-3)看作运动3分钟前.
结果:3分钟前的位置
+2 ×(-3)=
d. (-2) ×(-3)
-2看作向左运动的速度,×(-3)看作运动3分钟前。
结果:3分钟前的位置
(-2) ×(-3)=
e.被乘数是零或乘数是零,结果是仍在原处。
思考:积的符号与两个因数的符号有什么关系?
积的绝对值与两个因数的绝对值又有什么样的关系?
(2)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
b.积的绝对值等于 。
c.任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。(出示幻灯片)
3、 运用法则计算,巩固法则。
例1计算:
(1) (-5) ×(-3); (2) (-7)×4; (3) (-3)×9; (4)(-3) ×(- )
引导学生观察、分析例1中(4)小题两因数的关系,得出:
有理数中仍然有:乘积是1的两个数互为倒数.
例2. 见课本p30页
4、 分层练习,巩固提高。
巩固练习
(1)确定下列两个有理数积的符号:
(2)计算(口答):
① ② ③ ④
⑤ ⑥ ⑦ ⑧
(3).判断下列方程的解是正数、负数还是0。
(1) 4x= -16 (2)-3x=18
(3)-9x=-36 (4)-5x=0
5、小结
(1)有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。
(2)如何进行两个有理数的乘法运算:
先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。
6.作业布置
课本p30页练习1,2,3.
课后反思:
本节内容是学生在小学学习过的乘法以及初中学习了有理数的加法,减法及混合运算的基础上,进一步学习的基本运算,它既是对前面知识的延续,又是以后学习有理数除法等数学知识的铺垫,起了承上启下的作用.对经历有理数乘法法则的探索过程,使学生体验分类讨论的数学思想方法.
教学设计上,强调自主学习,注重交流合作,让学生在自主探索过程中理解和掌握有理数的乘法法则,并获得数学活动的经验,提高学习能力.
作为一位教师,编写教案和课件是一项必不可少的任务,如果尚未完成,就必须引起注意。编写教案时,需要关注学生对教学内容的接受能力的差异。本文的重点是讨论与“多位数乘一位数课件”有关的问题,我相信这篇内容可以满足您的需求!
教学设计
一、教学内容:
人教版小学数学教材三年级上册第56-57页
二、教学目标:
(1)理解并能掌握整
十、整百、整千的数乘一位数的口算算理和口算方法。
(2)理解并掌握非整十的两位数与一位数相乘的口算算理和口算方法。
三、教学重难点:
重点:整十、整百、整千的数乘一位数及任意两位数乘一位数的口算算理和口算方法。
难点:理解整十、整百、整千数乘一位数的口算过程。
四、教学过程:
1、复习旧知:
唤起学生对乘法口诀运用的回忆,为后续将学习的“类推方法”做“垫脚石”。让学生对乘法的意义进行回忆,为理解算理做铺垫。
2、揭示课题:《多位数乘一位数》
3、出示学习目标
4、新知探究
(1)出示主题图。儿童公园
出示情境图(1):坐旋转木马每人2元,9人要多少钱?进一步复习乘法的意义,引出新知:10人又该付多少钱呢?交流汇报结果,并迅速解决下面的题目。10×2= 20 100×2= 200 1000×2= 20xx观察三道算式,找出简便的算法。合作交流,组员汇报。
(2)归纳总结出整十整百整千数乘一位数的方法。练习巩固新知探究。
(3)观看ppt上木块的变化,小组合作探究出非整十的两位数和一位数相乘的算法。
(4)组员汇报归纳总结方法。
5、知识闯关
(1)第一关:口算下面各题,说说你是怎样想的。说一说怎么想的,是对不同类型题目方法的进一步巩固。 (2)第二关:判断题目设计紧密结合本节知识点,除了设计一些巩固提升的题目,还设计了一些易错题。
6、全课小结
教学内容:一位数乘多位数的笔算乘法。
教学目标:
1、整理和复习笔算乘法。
2、能够利用乘法笔算解决生活中遇到的问题。
教学过程:
一、整理和复习笔算乘法
1.做整理和复习中的第1题。
指名不同的学生读出每个算式,并说出得数.
2.做第2题;
先让学生说一说笔算乘法的计算法则,再说一说哪些地方最容易出错。
二、整理和复习口算乘法
让学生口算下面各题.
2045031421000X5630
20045003140280063203
让学生竖着口算每一组题目.然后让学生说一说每一种口算乘法应该怎样算.接着让生口算第3题。
三、课堂练习
1.做整理和复习中的第4题.先让学生独立做一做,然后集体订正.订正时,指名让学生说一说是怎样想的.
2.做整理和复习中的第5题.
先让学生自己做,订正时,让学生根据竖式说得数是怎么样算的。
3.做练习七中的第1题.
让学生独立列式计算,教师行间巡视,个别指导.然后集体订正.
4.做练习七中的第2题.
让学生用竖式计算,并把得数写在教科书上。
四、数学游戏
教师先说明游戏的内容并把2、3、4、5、6写在黑板上并举例说明一个数,把这个数连续乘2、3、4、5、6的意思.然后说一个14以内的数并宣布游戏开始,让全班学生一起。
1、沟通分数与平均分的关系,加深对分数含义的理解,能解决有关分数的简单实际问题。
2、在图形、语言与算式表征不断转化的过程中提升思维的逻辑性。
学生对新事物的认识得有个过程,同时有他的局限性和规律性。在教学过程中,我根据三年级学生的年龄特点和认识规律,先复习旧知,然后从生活实际入手, 引出问题,接着提供操作提纲,引导学生思考与讨论。然后通过学生分小组的讨论交流与PPT的演示,使学生掌握“解决求一个数的几分之几是多少的问题” 的思路、算理、以及方法。最后利用两题不同层次的练习题的讲解,让学生把新学的知识和生活实际需要解决的问题联系起来,使得新知识得以深化和巩固。这样逐步推进的过程,既符合学生的学习规律及特点,也有助于培养学生学习的`能力。
本节微课围绕“解决求一个数的几分之几是多少的问题”内容来进行,它是在学生充分理解分数含义的基础上进行教学的。根据分数的含义,用整数乘除法的知识来解决实际问题。微课的教学设计在编排上分三步来展开。首先是“阅读和理解”,引导学生从问题题收集、提取和解读信息;接着是“分析与解答”,借助孩子们的讨论形式,把直观图分析、动手操作分析数量关系的策略展现出来,并结合孩子们之间的对话说明解决问题的两个步骤;最后是“回顾和反思”,对解答的步骤和结果进行检验与小结,并结合练习题的讲解进行实际运用。这样的设计,使得整节微课层次清晰,自然流畅,易于学生对知识点的掌握。
环节,内容,时间:
一、复习回顾,提出问题。利用PPT把上一节课的知识点展示出来,既是对上一节课知识点的回顾,也顺势提出本节课要研究的问题。 0-55秒
二、阅读与理解,提操作要求。结合PPT的演示逐步分析问题,把已知条件和所求问题展现,并提出接下来的动手操作的要求。 56秒-2分05秒
三、学生操作,小组讨论。学生根据老师提出来的操作要求进行实践,并尝试列式解答。然后进行小组内的讨论与交流。 2分06秒-5分05秒
四、回顾与反思。利用PPT的演示把孩子们的思路整理并展现出来,再次小结解题的思路、算理、以及方法。 5分06秒-6分00秒
五、实际运用。利用PPT讲解两道比较经典的习题。第一题是基础题,通过讲解,巩固孩子对“分数的简单应用”知识点的掌握;第二题是提高题,通过对比与分析,让孩子进一步把握本节微课的知识点。 6分01秒-9分46秒
教学内容:课本P80第2题第4题
补充练习
教学要求:
I能正确地、熟练地应用一个因数是一位数的乘法法则进行计算。
2.通过练习,体现认真、细致的重要性,培养良好的计算习惯。
教学过程:
一、知识铺垫:
一个因数是一位数的乘法法则。
二、练习设计:
1.听算:(只写得数)
50072143203100094302
2.找出下面各题的错误,并改正
1355=5252696=656442735=8456
3.计算下面各题。
(1)5乘173是多少?(2)4个2531是多少?(3)23的2倍是多少?
4.课本P80第2、3题。其中
5.第4题可用比赛形式(看谁用最短的时间完成或3分钟内全做对的给予表扬。
6.做好练习的订正工作。
三、作业:
1、34548967983695
教学反思:
一、课时内容
1.经历整理和复习的过程,理清知识脉络,进行分类归纳,学会有序整理的学习方法,提高学习能力,形成清晰、完整的知识结构。
2.进一步巩固多位数乘一位数的口算、估算、笔算方法,能熟练、准确地进行计算。
3.进一步体验“归一”和“归总”问题的数量关系,提升解决此类问题的能力。
二、教学过程
小组交流,整理归纳
师:同学们,第6单元的学习已经结束了,我们学习了哪些知识呢?现在给大家一点时间,以小组为单位把本单元的知识进行整理,请各小组长做好记录。
【学情预设】学生互相交流,教师巡视,掌握学生的'整理情况和方法。
师:现在请各个小组来汇报一下你们的成果吧!
教学提示:教师根据小组的汇报用知识网络图的形式板书各部分主要内容(或出示课件),同时对学生用结构图、表格等方式进行整理给予肯定。
师:同学们整理得非常好。看一看知识网络图,就能把这个单元的知识点给整理好了。
设计意图:通过学生自主整理,交流汇报,明确本单元知识脉络,进一步培养学生整理知识的良好习惯和能力。
三、、复习巩固,提升认识
1.复习两、三位数乘一位数的笔算。
师:请同学们完成教材第75页第1题,比比看谁算得又对又快。
【学情预设】 学生独立完成,指名汇报,并要求学生说一说计算时乘的顺序。
师:笔算两、三位数乘一位数的题目需要注意哪些问题?哪些地方容易出错?
【学情预设】 有学生会说出忘记加上进位数;也有学生会说有0时不知道怎样对齐。
2.复习用乘法解决问题。
师:现在我们再来解决教材第75页的第2题。大家先独立完成第(1)题。
【学情预设】 学生能很快用口算完成。
师:第(2)题应该怎样解决呢?
【学情预设】 列式为136×6,可以用笔算来解决,这样不容易出错。
师:从第(3)题中你能得到什么信息?
【学情预设】 学生可以提炼出有效信息。
师:这个问题应该怎么解决呢?
【学情预设】 同桌之间进行讨论。
预设1:可以用笔算解决,列式为65×7,算出结果后再与400比较。
预设2:可以用估算解决,65×7的结果肯定比400大,所以能走到。
四、补充练习,发散思维
1.完成教材第76页“练习十六”第3题。
把握课堂节奏,以点名口答的形式练习用乘法解决单位转化的问题。
2.完成教材第76页“练习十六”第5题。
指导学生观察数据,通过尝试找出规律并进行验证,最后完成表格。
教学提示:对于三年级学生来说,有时候很难找出数据之间蕴含的规律,教师要注意引导他们从学过的运算着手去尝试。
3.完成教材第76页“练习十六”第6题。
先请学生提取信息,再根据数量关系列出算式,并求解作答。注意引导列分步算式的学生如何列综合算式。
设计意图:充分利用教材素材,对复习内容进行运用。以学生独立完成和表达为主,加深对笔算和解决问题的理解,提高计算能力和解决问题的能力。
五、作业设计,检验成果
完成课时练习。
六、教学反思
根据本课内容与复习目标,依据学生当前的学习经验和能力,充分发挥学生自主学习、归纳总结和探索交流的能力。使学生在计算和解决实际问题中,寻求知识间的内在联系,体会数学与生活的密切关系,从而更深入地理解算法和算理,有效地掌握解决实际问题的思路和方法。但是由于平时过于偏重笔算,而忽视口算和估算,会导致部分学生在这方面有所欠缺,应适当布置一些专项练习。
三年级上册数学多位数乘一位数教案已经为大家准备好啦,老师们,大家可以参考以下是教学设计模板,整理自己的教学思路!
教学内容:教科书p76例2,练习十七的第1、2、3题。
教学目标:1、通过学习,使学生感知乘法处处在生活中。
2、培养学生观察和思维能力。
1、学生观察情境图。
⑴、这幅图是在什么地方?
⑵、在小组里说说自己观察到的内容。
⑴、将图中提供的信息用文字表达出来。
书店有许多书,连环画每套18本,王老师买了3套,一共是多少本?
⑶、学生独立完成,把自己的算法说给同组的同学听。
⑷、各组代表汇报本组的各种算法,并说说本组的新发现。
⑸、教师将小组的汇报板演到黑板上。
学生在练习上完成做一做的三题,教师巡视了解情况。
1、练习十七题第1题,学生独立完成后,同桌互相检查。
2、练习十七题第2题,学生独立完成后,同桌说说为什么用乘法计算。
3、练习十七题第3、4题,学生独立完成后,小组交流,说说你是怎样想的,又是怎样做的。
五、全课小结。
1、这节课你学到了什么?你还有什么想说的。
教学反思:
[三年级上册数学多位数乘一位数教案]
教学目标
1.使学生能够比较熟练地口算整十、整百数乘一位数,两位数乘一位数(每位乘积不满十)。
2.使学生经历多位数乘一位数的计算过程,学会多位数乘一位数的计算方法。
3.使学生能够结合具体情境进行乘法估算,并说明估算的思路。
4.使学生能够运用所学的知识解决日常生活中的简单问题。
教材说明
本单元是在学生已经熟练地掌握了表内乘法,能够正确地口算100以内加减法的基础上进行教学的,主要内容包括口算乘法和笔算乘法两部分。
本单元的知识结构如下表:
本单元先出口算乘法,内容包含整十、整百数乘一位数的口算和相应的估算。先出口算,是因为学生在表内乘法的基础上继续学习用一位数乘整十、整百数比较容易接受。同时,由于笔算乘法,如12×3,在计算时要算2×3和10×3,这就要用到整十数乘一位数。因此在教学笔算乘法时需要有口算的基础。此外,乘法估算也同样需要有一定的口算乘法的基础,所以先出口算有利于学生掌握笔算和学习估算,在进行笔算和估算的同时又可以巩固口算,从而有利于培养学生的计算能力。
多位数乘一位数的笔算是本单元教学的重点,它是多位数乘法的基础。但笔算乘法与笔算加、减法有很大差异,在计算过程中,多位数乘一位数不是相同数位上的数相乘,而是要用一位数分别去乘另一个因数的每一位,再把所得的积相加。其中计算步骤较多,要顾及的问题也很多,学生在计算过程中容易出错。因此教材在帮助学生理解笔算算理的基础上,采取各个突破的办法来克服笔算乘法的难点。本单元的笔算乘法分两个层次编排:(1)通过两位数乘一位数(不进位),引出笔算竖式,帮助学生理解笔算的算理。(2)突破笔算乘法的难点。主要解决两个问题,一是进位问题,二是因数的中间和末尾有0的问题。在进位中,先出不连续进位的,再出连续进位的,两种情况都以两位数乘一位数为主。这样编排重点突出,分散了难点,便于学生在已学知识的基础上,用类推的方法掌握新知识,从而既节省了教学时间,又培养了学生的学习能力。
本单元加强了“解决问题”的教学。主要体现在两个方面,一是创设了一些问题情境,让学生提出乘法计算问题,使学生体会到乘法计算并不是孤立存在的,而是蕴涵在许多现实情境中的一个个问题。二是将乘法计算置于现实情境中,增加练习的趣味,同时让学生体会数学知识与现实生活的密切联系。
教学建议
1.让学生在具体生动的情境中学习计算,培养学生对数学的兴趣。
计算本身是枯燥乏味的,机械的训练更使学生厌烦,这是学生对数学失去兴趣的一个重要原因。因此适当地创设一些具体生动的学习情境,让学生在一种愉悦的氛围中来学习多位数乘一位数,使他们感到学习数学是有趣的,这是我们教学时必须高度注意的一个问题。
教材在这方面做了很多努力,如,创设丰富、生动有趣的情境:游园、买书、运动会等让学生倍感亲切;七仙女摘桃、老寿星散步的神话情境更是使学生印象深刻。再如,练习中提供一些动物的体重、身长、飞行速度等数据,既增加了练习的兴趣,又扩展学生的知识面。教学中,教师可以充分开发这些素材,同时也可收集一些有趣味、有新意的素材,激发学生的学习欲望,让他们饶有兴趣地学习数学。
2.引导学生独立思考、合作交流,体验探究的乐趣。
根据《标准》精神,小学数学教学应该让学生经历知识产生和形成的过程,发挥他们在学习上的主体作用,促进学生的全面发展。本单元的几个重点内容,如整十数乘一位数的口算,笔算乘法中从不进位乘法到第一次出现进位的情况,教材都是先让学生自主探索,探寻解决问题的方法。教学时,教师可以在学生充分独立思考、合作交流的基础上,再进行必要的引导。学生的探索可能有多种形式,如画图、列表、摆学具(如小棒)、应用已有知识迁移类推等,应允许他们用自己的方法展示思维的过程和结果。
创设学生自主或合作探索的情境和空间是这次教学改革的一个突破口,教师应尽可能以学生为主体,创设让学生自己想一想、试一试、做一做、比一比、找一找、算一算等的探究情境,多给学生一些提问质疑、探究发现的机会和条件,让他们在多种多样的数学活动中来学习数学。
3.抓住重点,突破难点,使学生打下扎实的知识基础。
本单元的教学重点应放在两位数乘一位数上,因为它体现了多位数乘法的基本算理和算法,掌握了它,多位数乘法就可以在此基础上迁移、类推。而且两位数乘一位数的熟练程度还会影响到除数是两位数的除法试商的准确率和速度。因此一定要让学生掌握好这部分知识。
多位数乘一位数中连续进位是个难点,为此教材专门安排了两个例题进行突破。教学时,教师应重视这部分内容的教学。
4.注重学生对计算过程和方法的理解。
对于多位数乘一位数的计算方法,教材淡化了对计算法则的文字表述,没出计算法则或结语。教学中,不必要求学生概括出严密的法则,更不要求学生记忆或背诵相应的结论,重在学生对计算方法的正确理解和灵活运用。
5.重视估算的教学,注意各种算法的结合,加强算法选择的教学,进一步提高学生的计算能力。
乘法估算在日常生活中有广泛的应用,并且还可以用来检验计算的结果,同时估算意识的建立也有利于数感的培养。因此估算教学不能走过场。学好估算的方法并不难,关键在于培养估算的意识和习惯,这要靠教师持之以恒经常给学生创设估算的情境和提供估算的机会,让学生多做估算的练习。
在这一单元中,口算、估算、笔算都出齐了,怎么处理好这三算之间的关系也是教师在教学中必须要注意的问题。这里要处理好两个方面,一是要做到三算互相促进,达到共同提高。二是三算各有其适用场合和范围,教师要引导学生分析判断在什么情况下需要使用什么样的计算方法,提高学生在实际生活中灵活应用的能力。
一、说教材:
我说课的内容是三年级上册第七单元第二课时:多位数乘一位数进位的笔算乘法。
本课时的学习是建立在学生知道了乘法各部分名称、掌握了整十、整百数乘一位数的口算、估算这一计算技能的基础之上。本课时的内容既是本单元教学的重点,同时也为继续学习多位数乘法,两位数除法的试商打好基础。
教材创设了生活中的实际情景,从解决问题入手,这也是体现了计算的实用价值。通过让学生经历多位数乘一位数笔算的探究过程,让学生理解笔算算理、掌握算法。教材呈现了两种不同的算法即分步口算方法和笔算方法。透过两种算法寻找不同算法之间的联系。另外教材安排了做一做三道有层次性的对比练习,既为了正确书写竖式,同时也进一步巩固笔算的方法。练习十六共4大题,既有对笔算方法的巩固同时又与解决实际问题相结合,体现了计算与生活的紧密联系。其中,第4大题乘加(减),使学生综合计算能力得到了训练。由于笔算乘法与笔算加、减法存在有很大差异,在计算过程中,多位数乘一位数不是相同数位上的数相乘,而是要用一位数分别去乘另一个因数的每一位,再把所得的积相加。其中计算步骤较多,要顾及的问题也很多,学生在计算过程中容易出错。
二、说学习目标:
1.创设情境,引导学生亲历“多位数乘一位数(进位)”笔算策略的探索过程。
2.通过算法提炼,帮助学生清晰理解乘法竖式的各步含义,逐步建立乘法竖式的计算方法,并能正确笔算“多位数乘一位数(进位)”。
3.凭借贴近生活的学习材料,使学生感受计算活动的现实意义,让学生品味数学学习的成功体验。
说教学重点:理解和掌握两位数、三位数的笔算乘法的算理和算法。
说教学难点:引导学生充分经历笔算策略的形成过程。
三、说课堂教学结构:
基于以上的分析以及对计算教学的认识,我将教学过程设计成以下几个环节:
一、创设情景引出新知;
二、探究新知
(三)巩固练习内化新知;(四)总结归纳。
五、说教学过程与教学方法:
第一环节:创设情景引出新知;
新课标指出:要让学生在生动具体的情境中学习数学,我通过看国庆期间文昌遭遇洪水灾害的视频为素材创设了贴近学生实际的生活情景。出示信息:3只冲锋艇,每只坐12人,让学生了解信息并提出问题:一共能坐多少人?引导学生列出算式:12×3=?从而引出新知的学习。
第二环节:自主探究获取新知,分以下几个层次教学:
1、让学生先试着算一算,并把算法与同桌说一说。这样设计既是对学生起点的把握,同时也能让每个学生能充分暴露自己的想法。
2、反馈算法学习新知。学生的算法可能会出现书上提及到的口算和笔算两种。我先让口算的学生说算法,要求学生说清口算每一步的算法、算理,我想这是为笔算服务。同时板书计算过程。
当学生出现笔算时,我接着学生的话引入课题。同时顾及全体学生的想法。因此教师还是有必要对笔算进行规范地书写,我想这也是教师主导地位的体现。使学生明确:因数的位置按上下来书写,并且第二个因数3应与个位对齐,积写在横线的下面。虽然这些看似不重要,但是学生良好书写习惯的培养是有帮的。然后重点探究笔算的算法,也是本堂课的重点。
然后,教师说笔算乘法从个位乘起,先用第二个因数乘第一个因数12中个位上的2得6,表示6个一,把6写在个位上,接着用第二个因数3乘第一个因数12中个位上的1得3,表示3个十把30写在6的下面,最后把两次乘得的`积加起来就是12×3的积。接着介绍简便写法在这里我强调2乘3得6个一,所以6写在个位上。2乘12中十位上的1得3个十,所以3在十位上。然后用两个竖式比较,从而联系到生活中我们做事情都选简单的方法。为了让学生更好地掌握乘法竖式的方法我让学生说说计算过程。以上的讲解为了突出重点、突破难点。
由于,本堂课作为笔算课,所以为了掌握笔算的计算方法,我将通过指名说计算过程、达到对笔算方法的熟练掌握。
当然,通过计算课单有语言思维还远远不够,还需要进行动作思维即大量的笔头练习。
第三层次,尝试练习,巩固新知
练习作为掌握知识、形成技能、发展思维的有效途径在课堂教学中必不可少。为了让计算不枯燥在做练习时我设计了情境,也是让整节课都贯穿于文昌遭遇洪水灾害的情境中。
1.我安排先做“做一做”中的第1.2小题和练习十六的第1题。是为了巩固笔算两位数乘一位数的笔算方法,同时也是和前面的情境想呼应。接着完成课本74页“做一做”第3小题。我用创设情境导入。再让学生用竖式计算并请学生说说计算过程,讲清乘的顺序、积的写法。接着比较“做一做”3道题。做后进行比较,总结出三位数乘一位数与两位数乘一位数的算法是一致的,方法同样可以用到四位数乘一位数、五位数乘一位数等。然后总结出笔算乘法的方法:1、相同数位要对齐,2、从个位乘起,3、乘到哪一位上积就写在那一位上。
2、做练习十六第2题下面的3道题。请学生说说计算过程,讲清乘的顺序、积的写法。
3、做练习十六第4题我用创设情境导入,接着让学生用竖式计算,并提问2是哪来的。创设情境,激发学生兴趣,使他们积极思考,主动参与,活跃课堂气氛,轻轻轻松做数学。
4、判断题。让学生判断是对还是错,并说错在哪并改正。通过判断,加深学生对用竖式乘法的认识。
5、做拼图题。
全班合作把题完成。这道题我设计题的下面有天安门前美丽的景色。和前面文昌重建家圆相呼应。构成一个完整现实情境。通过全班合作培养学生的合作意识。
四、课堂小结
第四环节:总结归纳
让学生说说今天学到了什么?在学生总结的同时,教师用规范的语言复述笔算乘法的计算的方法1、相同数位要对齐,2、从个位乘起,3、乘到哪一位上积就写在那一位上。使学生对所学知识有一个清晰的结构。
课堂是富有生命的,说课设计毕竟不是现场上课,所以面对课堂上的生成我们还需要作出灵活的应对,我想这才是我们最大的挑战。
教学目标:
知识与技能:
理解认真听讲、积极思考、动手实践的过程,理解0和任何数相乘都得0这一知识。并且能口算出有一个因数为0的乘式。过程与方法:
经历观察、猜测、计算等过程,发展数据分析观念和推理能力。增强对事物进行分析、综合和解决问题的能力,体会数学知识之间的联系。情感、态度、价值观:
在学习过程中,体验获得成功的乐趣,增强学好数学的信心。
教学重点:认识零在乘式中的特殊地位。教学难点:认识零在乘式中的特殊地位。教学准备:PPT教学过程
一、复习导入
1.出示题目
口答:3×4表示几个几相加? 2×5表示几个几相加?
计算:有3盘苹果,每个盘子有2个苹果,一共有多少个苹果?(2×3=6)这个式子表示什么?(2×3=6,表示3个2相加的和是6)
(设计意图:复习之前学过的乘法的知识和乘法的意义,为接下来的学习做铺垫。)
二、探究新知
1.观察主题图a.教师指出小猴的盘子里没有桃了。一个桃都没有用哪个数表示?(用0表示)。 b.数一数有几个空盘子。(7个)
c.提出问题:这个盘子里一共有还有多少个桃子?可以用哪个式子表示。(0+0+0+0+0+0+0=0;7×0=0;0×7=0) 2.学生尝试计算0×3 9×0 0×0 a.教师指其中一题(0×3)进行提问,为什么0×3等于0?(0×3表示三个0相加,所以结果得0。)
b.上面的几个式子都有什么特点?(1.都是有0为因数的乘式。2.答案都是0) c.从这个特点,我们可以推出什么结论?(0和任何数相乘都得0) d.你能不能举个例子来证明这个结论?(请不同层次的学生进行回答) (设计意图:学生从乘法的意义的层面上来理解0×7=0这一式子,并举出多个例子,让学生自己总结归纳出零乘以任何数都得零的结论。请不同层次的学生回答问题是要关注学生的层次性。)
三、巩固练习
P66做一做
1、2 (设计意图:学生在做题时再次验证零乘以任何数都得零这一结论,并能拓展延伸得出零加上任何数等于那个数本身的结论。)
四、课堂小结
回顾这节课学习的主要内容(0与任何数相乘都得0。)
五、课后作业
练习十四第3题
六、板书设计
老师在开学前需要把教案课件准备好,每个人都要计划自己的教案课件了。教案是落实素质教育的重要途径,怎么才能快速写好一份优质教案课件?幼儿教师教育网编辑将带您探索“小数乘法课件”的背后故事请跟随我们的脚步,希望我的回答能够解决你的问题别忘了收藏哦!
设计说明
1.创设情境,引入新课。
教学中巧妙地创设问题的情境,吸引学生积极地投入,积极地思考。课件出示三道应用整数乘法运算定律的计算题,在学生计算后,利用课件演示把刚才做的三道题加上小数点,巧妙地变成了小数乘法计算题。接着质疑:整数乘法变成了小数乘法,它们能应用整数乘法的运算定律进行计算吗?由此引出新知的学习。为下面学生将整数乘法运算定律迁移到小数乘法做好准备。
2.充分放手,让学生自主探究新知。
自主学习能力可以说是学生学会求知、学会学习的核心。本课让学生带着疑问去计算这三组题,通过计算发现每组中的两个算式的结果相同。然后组织学生观察算式,交流发现的规律,进而共同总结出整数乘法的运算定律对于小数乘法同样适用。在学生明确了整数乘法的运算定律对于小数乘法同样适用的基础上出示例题,让学生试着运用乘法的运算定律进行简便运算。在板演时重点引导学生说一说每一步各应用了哪一个运算定律,使学生体会整数乘法的运算定律在小数乘法中的应用,培养学生思维的逻辑性。
3.运用新知解决问题。
用学到的知识解决问题才是数学学习的真谛,因此在新知学习之后,我设计一系列形式多样的练习题,让学生通过练习巩固新知,提高学生运用知识解决问题的能力,并培养学生自觉进行简算的意识,提高思维的灵活性。
课前准备
教师准备 PPT课件
学生准备 探究报告单
教学过程
⊙创设情境,引入新课
1.引发思考。
想一想,小数四则混合运算的顺序和整数是一样的吗?(一样)
2.观察发现。
观察下面的每组算式,左右两边的结果相等吗?分别运用了什么定律?
7×12○12×7
(8×5)×4○8×(5×4)
(24+36)×5○24×5+36×5
(学生独立解答,并交流)
3.提出问题。
顽皮的小精灵给上面各题中的数加上了小数点,不用计算,你能很快知道答案吗?
0.7×1.2○1.2×0.7
(0.8×0.5)×0.4○0.8×(0.5×0.4)
(2.4+3.6)×0.5○2.4×0.5+3.6×0.5
4.质疑,揭题。
整数乘法变成了小数乘法,它们能应用整数乘法的运算定律进行计算吗?这节课我们就来探究整数乘法的运算定律适不适用于小数。(板书课题)
设计意图:生动的情境和亲切的开场语调动了学生的学习热情,作为知识铺垫的复习题以添上小数点的方式呈现出来,激发了学生的学习积极性。
⊙探究新知
1.验证整数乘法的运算定律对于小数乘法同样适用。
(1)探究验证方法。
师:怎样验证小精灵的猜想对不对呢?
预设 生1:看两边的算式结果是否相等。
生2:举例验证。
(2)验证。
①笔算验证。
师:动笔算一算,运用运算定律得到的算式结果与原式是否相等?
(学生独立计算,汇报结果)
②举例验证。
小组合作:根据每个运算定律写一个小数乘法的例子,算出两边算式的结果,看是否相等,并填写探究报告单。
乘法运算定律
字母表示
举例
结果是否相等
乘法交换律
乘法结合律
乘法分配律
③交流、汇报自己的发现。
小结:我们通过实例推导证明了整数乘法的运算定律对于小数乘法同样适用。那么我们就可以利用乘法的运算定律来解决小数乘法的实际问题了。
设计意图:引导学生通过观察、计算、讨论等形式验证小精灵的猜想,从而自主发现规律:整数乘法的交换律、结合律和分配律对于小数乘法同样适用。
2.教学例7。
(1)课件出示例7中的第1道小题。
师:请你试着做一做,并说一说每一步各应用了哪一个运算定律。
(学生试做,并板演汇报)
0.25×4.78×4
=0.25×4×4.78→乘法交换律
=1×4.78
=4.78
强调:运用乘法的运算定律进行简便计算时,要注意观察数的特点。
(2)课件出示例7中的第2道小题。
师:你认为解此题的关键是什么?
预设 生:先把202改写成200+2,再应用乘法分配律进行计算。
师:你会做吗?谁来说一说这道题的解题思路?(指名上台讲解、演示)
设计意图:充分放手,让学生在运用乘法运算定律解决例7的过程中巩固新知,训练思维,使学生获得成功的体验。
课题:
小数乘法和除法
教学目的:
1、整理小数乘法和除法的计算法则。
2、理解小数乘法和除法的结果与第二个因数和除数的关系。
3、能进行小数乘法和除法的简便运算。
4、理解循环小数的意义,会用循环小数表示商。
5、能用进一法和收尾法解决简单的实际问题。
教学过程:
一、概念回顾。
1、小数乘法和除法的计算方法与整数乘法和除法的计算方法有什么相同点和不同点?
2、计算小数乘法和除法要注意什么?
3、计算结果有几种取近似值的方法?
4、什么叫循环小数?
二、在判断中辨析概念。
1、 两个因数都是两位小数,它的积是两位小数。
2、 M×0.98的积一定小于M.
3、 3.636363是循环小数。
4、 2.5×17+2.5×13=2.5×(17+13)运用了乘法结合律。
5、 小毛看一本120页的故事书,每天看35页,要看4天。
三、在计算中理解法则。
3.25×4.8 3.6÷0.25
四、简便计算。
0.25×32×1.25 2.85×5.2+2.85×5.8-2.85
3.6÷0.25÷0.4 3.69-(1.69-5.8)
五、在运用中掌握方法。
1、李老师用200元买字典,每本48.5元,可以买几本?
2、工地上有160吨货物,用载重8.5吨的汽车要运多少次?
六、作业。
1、总复习第1、2题。
2、练习二十五第1---5题。
教学内容:
人教版小学数学教材五年级上册第5~6页例3、例4及做一做,练习二第1~5题。
教学目标:
1.通过旧知迁移,引导学生自主探究、逐步理解小数乘小数的算理,掌握基本算法。
2.使学生掌握在确定积的小数点位置时,小数位数不够的,要在前面用0补足;引导学生发现一个因数比1大(或小)时,积和另一个因数的大小关系。
3.培养学生运用迁移的数学思想解决新问题的能力。
教学重点:
小数乘小数的计算方法。
教学难点:
小数乘法中积的小数位数和小数点位置的确定。
教学准备:
课件、课本。
教学过程:
一、类比迁移,情境展开
教学例3。
1.出示例题。
(1)师:同学们,最近我们要给学校宣传栏刷油漆,你能帮忙算算需要多少千克油漆吗?
(2)师:在计算需要多少千克油漆之前,需要先算出什么呢?
(3)板书(或用PPT课件演示):2.40.8=________
2.尝试计算。
(1)师:同学们,请观察这个小数乘法算式,它与我们上节课学习的小数乘法有什么不同?(两个因数都是小数。)
(2)师:我们上节课学习的小数乘整数是怎样计算的?那两个因数都是小数又怎么计算呢?
(3)师:小数乘整数是把小数转化成整数进行计算的,现在能否还用这个方法来计算2.40.8呢?如果能,应该怎样做?
(4)指名学生口答,教师适时板书(或PPT课件演示)学生的讨论结果。
3.理解算理。
引导学生得出:先把第一个因数2.4乘10变成24,积就乘了10;再把第二个因数0.8乘10变成8,积就又乘了10,这时的积就乘了100。要得到原来的积,就应把乘得的积192除以100,得1.92。
4.进一步明确算理(两个因数的小数位数不同)。
(1)计算出了宣传栏的面积后,怎样计算需要多少千克油漆呢?
(2)板书(或用PPT课件演示):1.920.9=________
(3)师:这道题也可以先按整数乘法计算吗?积里的`小数点应该点在哪里呢?
【设计意图】在给宣传栏刷油漆的问题背景下,迁移已有的小数乘整数的经验,为学生进一步探究小数乘小数的计算方法奠定坚实的基础。
二、深化探究,总结算法
(一)探究因数与积的小数位数的关系
1.学生独立完成第5页的做一做。
2.师:观察例3及做一做各题中因数与积的小数位数,你能发现什么?
(二)小结小数乘法的计算方法
1.组织学生回顾、讨论小数乘法是怎样计算的。
2.组织学生汇报、交流自己的计算方法。
(1)师:你是怎样计算的?(先按整数乘法算出积,再点小数点。)
(2)师:怎样确定积的小数点的位置?(点小数点时,先看因数中一共有几位小数,就从积的最右边起数出几位,再点上小数点。)
3.根据学生的讨论和交流,逐步归纳概括出小数乘法的计算方法,并让学生将教材第6页小数乘法的计算方法补充完整。
【设计意图】教材上安排了计算方法的小结,通过本环节的教学有意识地培养学生由具体到抽象的归纳概括能力。
三、引发冲突,突破难点
(一)教学例4
1.出示例题。
(1)师:同学们,我们刚刚总结了小数乘法的计算方法,你能运用小数乘法的计算方法来计算下面这道题吗?
(2)板书(或用PPT课件演示):0.560.04=________
2.尝试计算。
(1)学生尝试计算,教师巡视,了解学生的计算情况和遇到的问题。
(2)师:在计算时,遇到了什么新问题?
(3)师:乘得的积的小数位数不够时,怎样点小数点呢?
(二)及时巩固
1.学生独立完成教材第6页做一做的第1题。
(其中既有一般的小数乘法,也有积的小数末尾有0和积的小数位数不够的类型,帮助学生全面掌握小数乘法的计算。)
2.学生完成教材第6页做一做第2题的计算。
(三)探究积与因数的大小关系
1.集体订正做一做第2题时,引导学生分别将每组题中计算的结果和第一个因数比较大小,发现其中的规律。
2.组织学生交流、总结自己发现的规律。
(1)一个数(0除外)乘大于1的数,积比原来的数怎么样?
(2)一个数(0除外)乘小于1的数,积比原来的数怎么样?
3.帮助学生进一步明确积与因数的大小关系,并结合具体例子明确应用这个关系可以判断乘法计算中的一些错误。
【设计意图】乘得的积的小数数位不够,怎么点小数点?是小数乘法中的难点,让学生用刚刚总结的小数乘法的计算法则来进行例4的计算,意图就是引发学生的认知冲突,促成学生用已有的知识和经验化解冲突,解决遇到的新问题,从而突破学习难点。引导学生自主探索积和因数之间的大小关系,不仅为确定小数点的位置提供了操作依据,避免在确定积的小数位数时发生错误,而且也有利于培养学生的探究意识和分析归纳能力。
四、实践应用,内化提升
(一)基本练习
1.练习二第1题(基本计算)。
(1)学生独立练习。
(2)组织学生交流和订正。(其中有第一个因数的位数比第二个因数的位数少、积的小数末尾有0和积的小数位数不够等多种类型同时出现的小数乘法计算,让学生充分地交流和发表意见,教师适时给予指导,帮助学生全面掌握小数乘法的计算方法。)
2. 练习二第2题(基本应用)。
(1)帮助学生理解题意,指导学生看懂每种商品各有多少千克。
(2)引导学生回顾单价、数量和总价之间的关系。
(3)学生独立完成。
(二)拓展练习
补充题:在下面算式的括号里填上合适的数。(你能想出不同的填法吗?)
0.48=( )( )
=( )( )
【设计意图】通过分层次的练习,旨在让学生通过基本计算全面掌握小数乘法的计算方法,培养学生的运算能力;通过基本应用感受小数乘法在现实生活中的实际应用,培养学生的应用意识;通过拓展练习进一步体会因数与积小数位数之间的关系,培养学生灵活运用小数乘法计算方法的能力。
五、全课总结,畅谈收获
说说这节课你有什么收获?
六、课堂练习
练习二第3、4、5题。
教学内容:教科书第96~97页,练习十八第5~14题。
教学目标:
1、通过练习,使学生进一步掌握一个数除以小数的计算方法,能真确计算。
2、使学生在练习中感受商的一些变化规律,在解决简单实际问题的过程中,体会除法计算的实用价值,发展学生的数学思考能力。
1、完成第5题。
集体口答,说说0.1÷0.05、0÷0.24的思考过程。
2、完成第6题。
独立完成,比一比每组中的三道算式和结果,说说有什么发现?
引起商的变化的原因是什么?
3、完成第7题。
独立计算,按要求比较。
什么情况下,商比被除数小?什么情况下,商比被除数大?
4、完成第8题。
1、独立完成第(1)题的计算。
你还能提出用除法计算的问题吗?怎么解决呢?
2、完成第10题。
先计算每组中的两题,再比价,说说有什么发现?
哪一道题计算比较简便?
3、完成第11题。
每一题应该先算哪一步呢?
运算顺序是怎样的?和整数四则混合运算顺序相同吗?
4、完成第12题。
你怎样理解“层高”的意思的?
你是怎样想的?怎样列式呢?
每一步什么意思?为什么要加1?
通过这节课的练习,同学们的计算又有了进步,解决问题的能力也提高了。
发现了小数除法中的规律,并且能把这些规律应用在计算上,在后面的学习中,还要多思考,多练。
一、复习:
1、钱的问题:我们通常会把钱用两位小数表示。以前学填写表格的时候,整数也可写成两位小数,如100元写成“100.00元”。现在学了小数乘法时,当乘得的结果是三位小数时得默认保留成两位小数。如:1.25×0.3=0.375元≈0.38元
2、哪些计算算得快?
(1)口算。举例:0.24×0.2,算的时候先确定“数字”,再确定“位数”,写成“0.048”。
(2)估算。老师在批作业的时候常用估算的方法检查学生的错误。它能检查出明显的错误。
(3)简便计算。这节课我们来学习小数乘法的简便计算。
二、学习新知
1、乘法运算律:乘法交换律,乘法结合律、乘法分配律。
指名用字母分别表示这三种运算律。
2、重点讲解:
(1)乘法分配律。板书:3.6×4.8,问:后面补个算式,让它能简便计算,你能补吗?为什么?
方法一:3.6×5.2(一个因数不变,是“3.6”,另一个因数能凑成整数。)指名说说简便的过程。
方法二:6.4×4.8。(指名说理由,说简便计算过程。)
变化:①3.6×4.8+3.6×4.2+3.6
这个算式你会用简便方法算吗?说说怎么想的?
②3.6×4.8-3.6×0.8
学生指名说说简便过程。
指出:利用乘法分配律的时候,有两个积相加也有三个积相加,还可以两个积相减。要灵活运用。
(2)拆数简便计算:
①用乘法拆。通常和两个算式有关“25×4=100,125×8=1000”
举例:0.25×2.4 2.4×1.25
分别用乘法拆,并写出简便计算的过程。
如果有学生提出也可以用加法拆,可通过比较发现,乘法拆更简便所以应该用乘法不用加法。
②用加法拆。通常有一个数接近整数。
举例一:7.8×1.02
举例二:7.8×0.99
写出具体的简便计算过程。
3、练习:p.90的试一试和练一练5道简便计算。
指名说出完整的简便计算过程。
4、口算:p.91第6题。
可检查几个易错的学生。强调口算时先确定数字再确定位数。
三、布置作业:
1、计算并验算。观察第8题因数有什么特点?(位数一样多,都是两位)指出:这种算式是最适合用交换律验算的。
2、p.91第7、9题
四、检查预习作业(略)
教学内容:
人教版小学数学教材五年级上册第16页例9,练习四第6~9题。
教学目标:
1.经历分段计费问题的解决过程,自主探究分段计费问题的数量关系,能运用分段计算的方法正确解答这类实际问题,进一步提升解决问题的能力。
2.在解决问题的过程中,学会用摘录的方法收集和整理信息,能从不同的角度分析和解决问题。
3.通过回顾与反思,积累解决问题的活动经验,初步体会函数思想。
教学重点:
运用分段计算的方法正确解答分段计费的实际问题。
教学难点:
探究分段计费问题的数量关系,初步体会函数思想。
教学准备:
将例题与相关习题制成PPT课件。
教学过程:
一、联系生活,提出问题
1. 同学们,你们都乘坐过出租车吧!你知道出租车是怎样收费的吗?(PPT课件演示。)
2. 出租车的收费标准是采用分段计费的,今天这节课我们就一起来探究、解决分段计费的实际问题。
3. 板书课题:解决问题(2)。
【设计意图】引导学生从自己熟悉的日常生活中发现、提炼具体的数学问题,使学生感受到数学与现实生活的密切联系,体会到数学广泛应用于我们日常生活的方方面面。
二、引导探究,解决问题
(一)阅读与理解
1. 呈现情境,明确问题。
(1)出示例9的问题情境。(PPT课件演示,暂不出示收费标准。)
(2)提问:这一情境中要我们解决的问题是什么?解决这个问题还需要知道什么信息?(出租车的收费标准。)
(3)出示收费标准(PPT课件演示)。
2. 读懂图文,摘录信息。(教师逐步板书或PPT课件适时演示。)
(1)收费标准:
3 km以内: 7元;
超过3 km: 每千米1.5元(不足1 km按1 km计算)。
(2)行驶里程:6.3 km。
3. 集体交流,理解标准。(PPT课件突出显示。)
(1)3 km以内7元是什么意思?(出租车从起步到行驶3 km里程,应付的车费都是7元。)
(2)你为什么认为3 km以内7元包括3 km呢?(因为超过3 km,每千米就要按1.5元收费。)
(3)超过3 km后就要按每千米1.5元的标准收费,并且不足1 km按1 km计算。这里不足1 km按1 km计算又是什么意思呢?你能举例说明吗?
(4)问题中行驶里程是6.3 km,根据收费标准,应按多少千米收费呢?(用进一法取整数,按7 km收费。)
4. 教师归纳,概括要点。(PPT课件演示。)
(1)问题中的收费标准是分两段计费的,3 km以内是一个收费标准,为一段;超过3 km又是一个收费标准,又为一段。
(2)超过3 km部分,不足1 km要按1 km计算,也就是要用进一法取整千米数。
【设计意图】解决分段计费问题的关键是理解题意,尤其是理解计费标准。为了帮助学生理解问题中的收费标准,教师采用条件摘录的方式收集信息,引导学生逐条逐句地解释含义,并结合具体数据(学生的举例的和题中的6.3 km)帮助学生切实理解,在此基础上教师再对收费标准的两个要点进行明确的归纳和概括,既促使学生养成认真审题的良好学习习惯,又有效地突破了分段计费问题的教学关键和难点。
(二)分析与解答
1. 启发学生用自己的方法尝试解答。
(1)教师启发引导:我们已经理解了题意,也理解了这个问题中的收费标准是分两段计费的,那么同学们能不能尝试用自己的方法进行解答?
(2)学生尝试解答。
预设一:7+1.54=7+6=13(元);
预设二:1.57=10.5(元),7-1.53=2.5(元),10.5+2.5=13(元)。
2. 组织、引导学生讨论、交流不同的解答方法。(PPT课件适时演示解答过程。)
(1)预设一(分段计算):
生:我是分两段计算的,前面3 km为一段,应付车费7元;后面4 km为一段,每千米1.5元,应付车费是1.54=6(元);再把两段应付的车费合起来就是13元。
师(质疑):后面一段里程为什么是4 km,计算后面一段车费为什么用1.54?
生:根据收费标准,6.3 km按7 km计算,前面一段是3 km,后面一段就是4 km,所以计算后面一段的车费就应该用1.54。
(2)预设二(先假设再调整):
生:我是用先假设再调整的方法解答的,先假设总里程7 km都按每千米1.5元计算,结果是10.5元;而这样前面3 km的费用少算了7-1.53=2.5(元);再来调整,用10.5元加上少算的2.5元,所以应付车费13元。
【学情预设】根据学生已有的知识和经验,大多数学生容易想到用第一种解答方法解答。但第二种解答方法学生不容易想到,因此,在组织学生讨论、交流时,教师可以根据学生的具体情况进行引导。如:如果把前面一段3 km也按每千米1.5元收费,车费是少算了还是多算了?
3. 引导学生积累解决分段计费实际问题的经验。
(1)变换例题条件:如果行驶里程是8.4 km,你还能用刚才的方法计算出车费吗?如果行驶里程是9.8 km呢?(PPT课件演示。)
(2)学生自主解答,教师巡视。
(3)集体交流订正。(教师板书或PPT课件呈现解答过程。)
【设计意图】沿用例题情境,变换问题条件,让学生在熟悉的情境中解决变换后的问题,不仅有利于学生进一步体会解决分段计费问题的思路和方法,也有利于学生在对比中发现解决分段计费问题的规律,积累解决实际问题的经验,促进学生观察分析、归纳概括能力的发展。
(三)回顾与反思
1. 回顾。
(1)我们刚才解决的实际问题都具有什么特点?
(2)这些问题我们是怎样解决的?
2. 反思用分段计算解决分段计费问题的过程与方法。
(1)呈现例题及变式题的解答过程。(PPT课件呈现。)
(2)提问:观察、比较上面的解答过程,你发现了什么规律?
(3)揭示规律(PPT课件演示):应付车费=7+1.5(总里程-3)。
(4)质疑:为什么总是用7元去加后段里程的车费?(引导学生说出:根据收费标准,前段里程3 km的车费7元是固定不变的。所以,只需要计算出后段里程的车费,再和7元相加,就求出了应付的车费。)
3. 反思用先假设再调整方法解决分段计费问题的过程与方法。
(1)呈现例题及变式题的解答过程。(PPT课件呈现。)
(2)提问:观察、比较上面的解答过程,你发现了什么规律?
(3)揭示规律(PPT课件演示):应付车费=1.5总里程+2.5。
(4)质疑:为什么总是用假设车费再加上2.5元?(引导学生说出:如果把所有里程都假设为每千米1.5元,那么前段里程3 km的车费就只算了4.5元,少算了2.5元。所以,算出假设车费后,再加上2.5元才是应付的车费。)
4. 教师归纳。
(1)通过同学们刚才的讨论和交流,我们发现了解决分段计费问题的规律,找到了解决分段计费问题的两种一般方法。(PPT课件演示。)
(2)在解决问题时,我们都应该像这样对解答的过程与方法进行回顾与反思,从中发现所蕴含的规律,找到解决问题的一般方法,提高我们解决问题的能力。
5. 拓展(制作、应用出租车价格表)。
(1)这节课,我们用两种方法解决了乘出租车付费的实际问题。其实,我们还可以用制作价格表的方法来解决乘出租车付费的问题。
(2)你能完成下面的出租车价格表吗? (PPT课件出示价格表。)
(3)学生完成出租车价格表。(教材第16页。)
(4)思考:观察表中的数据,你发现行驶里程与出租车费之间有什么关系?它们之间的变化情况又是怎样的?(PPT课件呈现。)
(5)应用出租车价格表解决问题。(PPT课件呈现。)
①妈妈坐出租车行驶了7.2 km,应付车费多少钱?
②王叔叔乘坐出租车,下车后付了16元车费,他至少乘坐了多少千米?至多呢?
【设计意图】通过回顾与反思,引导学生分别反思用分段计算和先假设再调整的方法解决分段计费问题的过程,帮助学生建立解决这类问题的两种一般方法。通过引导学生完成出租车价格表,并观察、思考表中行驶里程与出租车费之间的关系及变化情况,感受分段计费的特点和规律,让学生初步体会函数思想。
三、实践应用,内化提升
(一)基本应用
练习四第7题。
(1)理解题意:你怎样理解合影价格表中的信息?问题一共需付多少钱是分哪两段计费?
(2)学生独立完成。
(3)全班集体交流:你是怎样解决这个问题的?
(二)拓展应用
1. 练习四第8题。
(1)理解题意:这道题是实际生活中的一个什么问题?它的收费标准是怎样的?
(2)学生独立完成。
(3)全班集体交流:通话时间8分29秒应该按几分钟计算?你是怎样解答的?
2. 练习四第9题。
(1)理解题意:这道题里有几种收费标准?解答这道题除了考虑分段计费外,还要区分什么?
(2)学生独立完成。
(3)全班集体交流:你是怎样解答第(1)问的?第(2)问呢?
(4)你还能提出其他数学问题并解答吗?
【设计意图】直接选用教材提供的练习,让学生充分感受分段计费问题在实际生活中的广泛应用。练习根据问题的复杂程度分了基本应用和拓展应用两个层次,在练习中特别注意引导学生理解题意,理解问题中的计费标准,这既是解决这类问题的基础,又是解决这类问题的关键。解答时放手让学生自己独立完成,并通过交流让学生体会解决问题的多种方法,增强学生分析问题、解决问题的能力。
四、全课总结,畅谈收获
1. 说一说,这节课的学习你有什么收获?
2. 本节课是本单元的最后一节课,本单元的学习你有什么收获?
五、作业练习
1. 课堂作业:练习四第6题。
2. 家庭作业。
(1)回顾本单元的学习内容,你有哪些收获?
(2)学习中遇到了哪些问题?你是怎样解决的?
教学目标:
1.让学生自主探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释。
2.使学生会用“四舍五入”法截取积是小数的近似值。
3.使学生理解整数乘法运算定律对于小数同样适用,并会运用这些定律进行关于小数乘法的简便运算,进一步发展学生的数感。
4.使学生体会小数乘法是解决生产、生活中实际问题的重要工具。
教学措施:
1.重点引导学生用转化的方法学习小数乘法。
2.指导学生对小数乘法的算理做出合理的解释,提高简单的推理能力。
3.注意引导学生探索因数与积之间的大小关系的规律。
课时安排:6课时。
第一课时小数乘以整数
教学目标:
1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的联系,渗透转化思想。
教学重点:小数乘以整数的算理及计算方法。
教学难点:确定小数乘以整数的积的小数点位置的方法。
教学过程:
一、复习
①下面各数去掉小数点有什么变化?
0.343.50.20xx.02
②把353缩小到时它的1/10是多少?缩小到它的1/100呢?1/1000呢?
二、引入尝试:
大家喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。
出示例1的图片,引导学生理解题意,从图中你了解到了哪些数学信息?
(1)例1:燕子风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元
3.5元=3元5角
3元×3=9元
5角×3=15角
9元+15角=10.5元
用乘法计算:3.5×3=10.5元
3.5元=35角35×3=105105角=10元5角=10.5元
理解3种方法,重点研究第三种算法及算理。
(3)理解意义。为什么用3.5×3计算?3.5×3表示什么?(3个3.5或3.5的3倍.)
(4)初步理解算理。怎样算的?
把3.5元看作35角
3.5元扩大10倍35
×3×3
10.5元缩小到它的1/10105
105角就等于10.5元
(5)买5个4.8元的风筝要多少元呢?会用这种方法算吗?P2做一做
2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的0.72×5你们会算吗?能不能将它转化为已学过的知识来解答呢?(生试算,指名板演。)
(1)生算完后,小组讨论计算过程,然后板书,并指名说是如何算的.
(2)强调依照整数乘法用竖式计算。
(3)示范:0.72扩大100倍72
×5×5
3.60缩小到它的1/100360
引导性提问:
0.72变成72发生了怎样的变化?
72×5算完了,再该怎么办?
为什么要缩小到它的1/100?
(4)回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小到它的1/100。(提示:根据小数的基本性质,将小数末尾的0可以去掉)
注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。
(5)小结小数乘整数计算方法
l计算
7×425×7
0.7×42.5×7
观察这2组题,想想与整数乘整数有什么不同?
怎样计算小数乘以整数?
①先把小数扩大成整数;
②按整数乘法的法则算出积;
③再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
三、运用
1、填空。
4.5()0.74()
×3×3×2×2
()135()148
2、判断
13.5
×2
2.70
3、P2做一做
三、体验:(1)今天我们学习了什么?(板书课题)
(2)小数乘以整数的计算方法是什么?
四、作业:P7练习一第1、2、3题。
第二课时小数乘小数
1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。
2、比较正确地计算小数乘法,提高计算能力。
3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。
教学重点:小数乘法的计算法则。
教学难点:小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
教学过程:
一、引入尝试
1、出示例3图:同学们最近我们校园宣传栏的玻璃碎了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8×1.2)
2、尝试计算
观察算式和前面所学的算式有什么不同?
这就是我们要学的“小数乘小数”,两个因数都是小数,怎样计算呢?和同桌讨论一下,然后自己尝试练习,指名板演。
3、1.2×0.8,刚才是怎样进行计算的?
引导学生得出(先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。)
4、观察一下,因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?
5、小结小数乘法的计算方法。
二、教学例4
请做下面一组练习
(1)练习(先口答下列各式积的小数位数,再计算)P4做一做
(2)引导学生观察思考。
①你是怎样算的?(先整数乘法法则算出积,再给积点上小数点。)
②怎样点小数点?(因数中一共有几位小数,就从积的最右边起,数出几位,点上小数点。)③计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)
通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?
(3)根据学生的回答,逐步抽象概括出P.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)
(4)练习:
①判断,把不对的改正过来。
0.0240.013
×0.14×0.026
96782426
0.3360.000338
②根据1056×27=28512,写出下面各题的积。
105.6×2.7=10.56×0.27=0.1056×27=1.056×0.27=
三、应用
1、在下面各式的积中点上小数点。
0.586.252.04
×4.2×0.18×28
11650001632232625408
2436112505712
2、P5做一做
3、P8页5题:先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。
四、体验:回忆这节课学习了什么知识?
五、作业:P8第7、9题,P9第13题
第三课时小数乘小数
教学目标:
1、使学生进一步掌握小数乘法的计算法则,并能正确计算。
2、使学生初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
3、理解倍数可以是整数、也可以是小数,学会解答倍数是小数的实际问题。
4、养成认真计算,及时检验的良好学习习惯。
教学重点:运用小数乘法的计算法则;正确计算小数乘法。
教学难点:正确点积的小数点;初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
教学过程:
一、复习准备:
1、口算:P.5页10题。
0.9×67×0.081.87×00.24×21.4×0.3
老师抽卡片,学生写结果,集体订正。
2、不计算,说出下面的积有几位小数。(P9第10题)
3、思考并回答。
(1)做小数乘法时,怎样确定积的小数位数?
(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。
4、揭示课题:这节课我们继续学习小数乘法。(板书课题:较复杂的小数乘法)。
二、新授:
1、教学例5:非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍,鸵鸟的最高速度是多少千米/小时?
(1)想一想这只非洲够能追上这只鸵鸟吗?为什么?(鸵鸟的最高速度是非洲狗的1.3倍,表示鸵鸟的速度除了有一个非洲狗那么多,还要多,所以非洲狗追不上鸵鸟。)
(2)是这样的吗?我们一起来算一算?
①怎样列式?
②为什么这样列式?(求56的1.3倍是多少,所以用乘法.)
使学生明确:现在倍数也可以是比1大的小数。
(3)生独立完成,指名板演,集体订正。
(4)算得对吗?用什么方法可以判断他做正确没有?所以每个小朋友要养成认真做题,仔细检查的良好习惯.
(5)通过刚才同学们的计算、验算,鸵鸟的速度是72.8千米/小时,比非洲狗的速度怎样?能追上鸵鸟吗?说明刚才我们的想法怎样?现在我们再来看一组题。
2、看乘数,比较积和被乘数的大小。
①(出示练习一第10题中积和被乘数的大小)先计算。
②引导学生观察:这两道例题的乘数分别与l比较,你发现什么?
③乘数比1大或者比1小时积的大小与被乘数有什么关系?为什么?(因为1.20.4的乘数是0.4比1小,求的积还不足一个1.2,所以积比被乘数小;而2.4×3的乘数是3比1大,求的积是
2.4的3倍(或3个2.4那么多),所以积比被乘数大。
④你能得出结论吗?(当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。)
⑤专项练习:练习一第12题
先让学生独立判断。集体订正时,让学生讲明道理,明白每一小题错在什么地方。
三、运用
1、做一做:3.2×2.5=0.82.6×1.08=2.708
先判断,把不对的改正过来。
2、P9页第13题
四、体验:今天,你有什么收获?
五、作业:P8页8题,P9页11、14题
第四课时积的近似值
教学内容:P10例6、做一做,P13练习二第1—3题。
教学目的:
1、使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。
2、培养学生根据具体情况解决实际问题的能力。
教学重点:用“四舍五人法”截取积是小数的近似值的一般方法。
教学难点:根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。
教学过程:
一、激发:
1、口算。
1.2×0.30.7×0.50.21×0.81.8×0.5
1-0.821.3+0.741.25×80.25×0.4
0.4×0.40.89×10.11×0.680×0.05
2、用“四舍五人法”求出每个小数的近似数。(投影出示)
保留整数保留一位小数保留两位小数
2.095
4.307
1.8642
思考并回答:(根据学生的回答填空)
(1)怎样用“四舍五人法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、尝试:
谈话引出例题:
生列式,板书:0.049×45
生独立计算出结果,指名板演并集体订正,说一说是怎样算的。
引导学生观察、思考:
(1)积的小数位数这么多!可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。
(2)保留一位小数,看哪一位?根据什么保留?
教学内容:课本第102页回顾与整理以及练习与应用1-6题。
教学要求:使学生进一步理解小数乘法的意义,掌握计算法则,能够比较熟练进行小数乘法、除法笔算和简单的口算;会用“四舍五入”法截取积、商是小数的近似值。
教具准备:小黑板
教学过程:
回顾与整理
(一)计算:0.67X7.5 8.36X0.25 0.125X0.24
学生计算后集体订正。
小组讨论然后汇报交流:
1、小数乘法和整数乘法有什么相同和不同的地方?
2、计算小数乘法时,怎样确定积的小数位数?算出积后,积的小数位数不够应该怎么办?
(二)小数除法的计算法则。
(1)提问:小数除法的计算法则是什么?怎样把除数是小数的除法转化为除数是整数的除法?商的小数点的位置怎样呢?
(2)计算:1.89÷0.5 4 7.1÷2.5 0.51÷0.22学生做完后集体订正。
二、练习与应用
1、第1题:学生独立计算,教师巡视指导。集体订正。
2、第2题:先分组完成题目,然后通过计算和比较,让学生进一步整理小数乘除法的计算方法。
3、第5题:学生独立审提题解答,教师巡视。让学生根据平均数的意义估计得数范围。
4、做第6题。主要让学生练习根据具体的问题情境合理截取商的近似值。
小结。
三、作业设计
完成整理与练习第3题和第4题。
今天说课的内容是:北师大版四年级数学下册第三单元46—47页《爬行最慢的哺乳动物》。我准备从“内容与资源”、“理念与目标”、“教学方法”、“教学过程”、“板书设计”五个方面来展开我的说课。
一、说内容与资源
1、说教材
本单元:学生在第一学段学习了整数乘法,本册书第一单元学习了小数的意义、小数加减法,本单元综合地运用前面的相关知识理解小数乘法的意义,探究小数乘法的计算方法,对学生数与代数知识进一步发展和扩充具有重要作用。
本课:是在本单元学习了小数乘法的意义、小数点移动引起小数大小变化规律、乘数的小数位数与积的小数位数关系等知识基础上学习的,将应用前面所学习的内容,解决小数乘法的竖式计算以及方法的归纳,涉及到数目、数位增多,特殊情况的处理等问题,比如:教材呈现了两位小数乘一位小数和其中一个乘数是整十数的算式,让学生进一步理解小数乘法的计算方法,灵活掌握如何确定积中小数点的位置。既是对前面几课的发展和综合运用,又是今后学习相关乘、除法,混合运算等知识的基础,具有重要作用。
2、说学情:
四年级下学期的学生,在知识上已具备解决小数乘法的知识基础,已经积累了一定的数感和学习经验,应该说对本课的知识不陌生,能够尝试独立解决;但是学生在如何解释、说明抽象的竖式计算过程与方法上,有一定难度。所以本节课我认为:一是应该借助学生已有经验,充分放手,让学生独立列式计算,应用前面所学知识解决如何确定积的小数位数、如何选择合理计算方法等问题上。二是引导学生在讨论交流中,探究算理,归纳算法,逐步达成共识,掌握有效的计算方法,发展学生的抽象思维和有条理的表达思维过程的能力。
二、说理念与目标
课标理念:数学教学活动,特别是课堂教学应激发学生兴趣,引发学生的数学思考,教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生主动探索,合作交流,体会和运用数学思想方法。
依据课标理念,教材特点和学生情况,我制定了以下教学目标:
1、说教学目标:
知识与技能:学会用竖式计算数目比较大的小数乘法,进一步掌握小数乘法的计算方法。
过程与方法:经历探究计算方法的过程,引导学生观察、比较、分析、概括、归纳,发展学生的抽象思维能力,培养良好的估算意识,解决相关简单实际问题。
情感态度与价值观:积极参与学习活动,锻炼学生思维的条理性、概括性,体会数学的应用价值,在与同伴合作的过程中体验学习快乐,养成独立思考、合作交流、反思质疑的学习习惯。
2、说教学重点:
教学重点是数学教学学生必须掌握的基本知识,基本技能,对以后继续学习起着重要的桥梁纽带作用。理解小数乘法的算理,归纳竖式计算小数乘法的方法,为日后学习小数计算奠定坚实的基础,所以我把它定为教学重点。在教学中让学生带着问题合作尝试探究,加之有效的练习很好地突出了重点。
3、说教学难点:
教学难点是学生不容易理解或接受的地方,归纳计算方法和灵活解决计算数目比较大的小数乘法,正确处理乘数积末尾“0”的问题,学生不易理解,计算易错,所以我把它定为难点。教学中我引导学生自己思考,同伴交流补充,在提供充足时间与空间的探索后,很好地突破了难点。
三、教学方法
(一)根据教材特点和学生年龄特点,我设计以下教法:
(1)启发式谈话法;教师充分发挥引导作用,反复推敲提问语言,加之语气生动,力争有效提问,激发学生兴趣,引发其思考。
(2)尝试练习法:课程标准提倡“做数学”,学生只有亲历了知识的形成过程,才能真正地理解知识。两个例题充分发挥学生主体地位,让孩子独立思考,大胆尝试,再加之同伴讨论,互相提出问题,彼此合作练习,解决问题。
(二)说学法
苏霍姆林斯基说:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”课改的目标之一就是改善学生学习方式,依据学生已有的知识水平和认知规律,本节课主要采用自主探究、合作交流的学习学法。本节课的所有数学问题,都是学生自己小组合作,讨论、交流中得以解决的。
四、教学过程
(一)创设情境,激趣导入:
首先多媒体出示学生喜欢的动物相关资料,引发学生兴趣,接着自然复习几道小数乘法口算,为课堂学习奠定好基础,紧跟着出示树懒在地面和树上爬行速度的信息,启发学生发现问题。在短短的几分钟内,让学生轻松愉悦的进入学习活动,在了解自然知识的同时去思考数学,学会从数学角度去观察、理解信息。在这里需要解释的是,“三只蛞蝓”,我仔细查找了相关资料,蛞蝓俗称鼻涕虫,是一种软体动物,而树懒才是哺乳动物,我反复思考,和组内老师研讨,把教材中的蛞蝓换成树懒,目的是想给学生一个准确的认识。
(二)提出问题,探究算法:
1、学生根据信息,提出乘法问题。
2、引导学生先重点研究“树懒在树上每分大约爬行多少米”的问题。集体列出算式后,老师故意说出错误计算结果,激发学生估计欲望,交流估算方法时,只要言之有据,就给予肯定。学生在草稿本上独立尝试计算,教师巡视,及时发现问题,为下一步教学做准备。接着选择有代表性的一位同学板书竖式计算的过程。通过学生之间互相提出问题,解答问题,集体讨论计算小数乘法的方法。紧接多媒体演示竖式计算步骤,学生再次回忆口述规范的竖式计算方法。最后对照估算结果,一起写答语后,进行有针对性的反馈练习,给积的末尾点上小数点。
3、出示第二个问题:树懒在地面上1时大约爬行多少米?
学习方式和例一很相似,列出算式,学生估算,独立列竖式计算,与同桌互相检查计算过程、结果,师巡视并挑选具有代表性的竖式板书在黑板上,学生通过比较,对简便方法形成共识。通过学生讨论辨析的过程,越辩越明,突破难点。最后规范格式,写上答语。
4、简单小结
(三)巩固练习,深化理解:
练习本着由易到难,针对性强的特点,第一题是基础性练习:两个紧紧围绕例题的竖式练习,第二题是先比较大小,引导学生发现规律,再利用规律三组算式排序,第三题是第二题的拓展,第四题我把书上两个一步的乘法应用题的信息提出来,但打乱了顺序,让学生先找到两个相关信息,再提出数学问题并解答,第五题是一道机动题,给不完整的竖式填空,适当的逆向思考加深了对本节课乘法竖式的理解。
(四)交流评价,总结提升。
引导学生从知识、学习方法、学习习惯等多方面进行自评、互评。
五、说板书设计
板书设计:本节课板书本着简洁,突出重点的原则这样设计,上面正中间是课题,下面左右两边分别是两个例题完成的解答过程,给学生起到一定示范作用。
教学内容:人教版小学数学教材五年级上册第11页例6及“做一做”,练习三第1~3题。
教学目标:
1.使学生在比较熟练地掌握了小数乘法计算方法的基础上,能根据实际需要和题目要求正确地用“四舍五入”法求积的近似数。
2.培养学生灵活、合理地运用求积的近似数的方法解决实际问题的意识和能力。
3.使学生进一步体会数学知识之间、数学知识与现实生活之间的联系,提高学习数学的信心和兴趣。
教学重点:正确地用“四舍五入”法求积是小数时的近似数。
教学难点:初步理解求积的近似数往往是“实际应用”的需要。
教学过程:
一、以旧引新,激活经验
1.计算下面各题。
1.5×24 0.37×2.6 4.02×8.3
(1)学生独立完成,指名演板,集体订正。
(2)说一说小数乘法应该怎样进行计算?
2.求下面各小数的近似数。
保留一位小数:3.12;5.549;0.3814。
保留两位小数:4.036;7.7963;8.42378。
(1)独立完成,集体反馈。
(2)7.7963的近似数为什么是7.80?
(3)我们刚才是用什么方法来求小数的近似数的?用这种方法求小数的近似数应该注意什么?
【设计意图】由于本课学习内容涉及小数乘法计算和用“四舍五入”法求近似数的应用,而学生对“四舍五入”法已经有较长时间没有接触了,所以通过简单复习,帮助学生唤起对已学知识,特别是对“四舍五入”法的记忆,为后续学习做好知识准备。
二、创设情境,自主探究
(一)谈话导入,揭示课题
1.谈话导入:在实际应用中,小数乘法的积往往不需要保留很多的小数位数,这时可以根据需要,按“四舍五入”法保留一定的小数位数,求出积的近似数。(PPT课件呈现谈话内容。)
2.揭示课题:积的近似数。(板书课题:积的近似数)
(二)了解信息,解决问题
1.出示情境图(PPT课件)。
小狗正在做什么?人们训练小狗缉毒是利用了小狗的什么特点?小狗嗅觉灵敏与嗅觉细胞的数量多少有很大关系,下面请看一个与之相关的实际问题。
2.出示例6(PPT课件)。
(1)题目中有哪些数学信息?提出了什么问题?
(2)你会解答这个问题吗?怎样解答?
(3)题目中对解答这个问题有什么特殊要求?
(4)这里的“得数保留一位小数”表示要求出积的近似数,那么条件中的“0.049亿”是近似数还是准确数呢?为什么不用准确数?
3.学生独立尝试,指名两名学生演板。
4.组织学生观察、评价黑板上两名演板同学的解答过程。
5.组织学生交流、反馈自己的解答过程。(教师适时演示PPT课件。)
(1)你是怎样解决这个问题的?
(2)解决这个问题时需要注意什么?
(3)你是怎样将“得数保留一位小数”的?
(4)写横式的得数时要注意什么?
【设计意图】本环节的教学除了通过例题中对得数的要求来揭示求“积的近似数”的教学内容外,还有意识地引导学生判断已知条件中“0.049亿”是近似数还是准确数?为什么不用准确数?进一步让学生体会在实际应用中有时准确数既无必要又不可能,而用近似数就可以了。至于例题的具体解答过程,难度并不大,放手让学生自己去解决,教师只是在重点处有针对性地引导学生交流、反馈,突出用“四舍五入”法求积的近似数的方法和过程,强调书写时应注意的细节。
三、巩固练习,强化认知
(一)求“积的近似数”的基本练习
1.第11页“做一做”第1题。
(1)出示题目(PPT课件)。
1.计算下面各题。
0.8×0.9 (得数保留一位小数)
1.7×0.45 (得数保留两位小数)
(2)全班齐练,指名两人演板。
(3)集体订正。
2.补充题。
(1)出示题目(PPT课件)。
补充题:
将“1.35×0.96”的积用“四舍五入”法保留两位
小数,所得的近似数是( )。
A.1.29 B.1.30 C.0.13
(2)学生独立思考,用自己的方法进行判断和选择。
(3)组织学生集体交流自己是怎样做出判断和选择的。(教师强调:用“四舍五入”法按要求保留小数位数时,所求得近似数末尾的“0”必须保留,不能随意去掉。)
(二)求“积的近似数”的实际应用
1.第11页“做一做”第2题。
(1)出示问题(PPT课件):一种大米的价格是每千克3.85元,买2.5 kg应付多少钱?
(2)全班齐练,教师巡视。(选择两名同学演板,一人的得数是准确数,一人的得数是近似数。)
(3)集体订正,追问质疑。
质疑一(对得数是准确数的同学):这节课学习的是求“积的近似数”,你为什么用准确数表示求得的积?
质疑二(对得数是近似数的同学):这一题的问题没有保留几位小数的要求,你为什么用近似数表示求得的积?
2.集体讨论。
(1)再遇到这样的实际问题,我们应该怎样处理?
(2)通过这道题的解答,你感受到了什么?(在实际应用中,应该根据需要按“四舍五入”法保留一定的小数位数,求出积的近似数。)
【设计意图】用“做一做”的第1题和补充的选择题来巩固求积的近似数的方法。而在“做一做”的第2题中,不同的学生可能会有不同的处理方式,如:有的求的是积的准确值,有的求的是积的近似数,甚至求出的近似数也可能不完全相同,可能保留的是两位小数,也可能保留的是一位小数,还有“舍”与“入”的问题。教师应充分利用这些生成的教学资源,及时进行评价,引导学生在比较和争论中积极思考,让这些丰富的资源引发出精彩、自然的认知冲突,让学生从实际例子中体会求积的近似数往往是“实际应用”的需要。
四、全课总结,畅谈收获
谈谈这节课你有哪些收获?
五、作业练习
1.课堂作业:练习三第1题第(2)小题、第3题。
2.家庭作业:练习三第1题第(1)小题、第2题。
教学内容
教科书第1页的例1和做一做,练习一的第1~4题.
教学目的
1.使学生理解小数乘整数的意义,掌握小数乘整数的计算法则.
2.培养学生的迁移类推能力.
教具准备
教师将教科书第1页的复习中的表格写在小黑板上.
教学过程
一、复习
1.复习整数乘法的意义.
教师:我们已经学过整数的乘法,同学们还记得整数乘法的意义是什么吗?让两个学生说一说整数乘法的意义.
教师:在乘法算式中各部分的名称是什么?(因数、因数、积)
2.复习整数乘法中因数变化引起积变化的规律.
教师出示小黑板的复习题.让一名学生在小黑板上做,其他学生打开教科书,在书上自己独立做.教师巡视,集体订正.
订正后,教师可以引导学生观察、比较:
第2栏与第1栏比较,因数有什么变化?积有什么变化?(第2栏与第1栏相比,第一个因数扩大了10倍,第二个因数没变,积也扩大了10倍.)
第3栏与第1栏比较,因数有什么变化?积有什么变化?(第3栏与第1栏相比,第一个因数扩大了100倍,第二个因数没变,积也扩大了100倍.)
第4栏与第1栏比较又怎样呢?(第一个因数扩大了1000倍,第二个因数没变,积也扩大了1000倍.)
我们现在再倒过来观察,第3栏与第4栏比较有什么变化?(第一个因数缩小了10倍,第二个因数没变,积也缩小了10倍.)
那么,第2栏、第3栏与第4栏比较呢?(第一个因数分别缩小了100倍、1000倍,第二个因数没变,积也分别缩小了100倍、1000倍.)
根据上面的观察、比较,我们能得出什么结论呢?可以让学生适当讨论,从而得出:一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍积也扩大(或缩小)10倍、100倍、1000倍
教师:这个规律非常重要,对我们以后的学习会有很大的帮助,同学们一定要很好地掌握.
二、新课
1.教学小数乘整数的意义(例1的前半部分).
教师出示例1.
教师:想一想,这道题可以怎样解答,该怎样列算式?多让几名学生回答,教师把学生的列式写在黑板上.(如果学生中没有列出乘法算式,教师可以借助加法算式启发学生想:加法中的各个加数有什么特点?还能用别的方法计算吗?怎样列式?引导学生列出乘法算式.)
学生列出算式以后,着重让列出乘法算式的学生说一说是怎样想的.
13.55表示什么意思?(5个13.5)
还表示什么?(求13.5的5倍是多少.)
教师:过去我们学习的是整数乘整数,今天我们列的乘法算式是小数乘整数.同学们想一想,小数乘整数的意义同整数乘法的意义比较相同不相同?(相同)
让两名学生说一说小数乘整数的意义.教师板书:小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
2.教学小数乘整数的计算法则(例1的后半部分).
教师:我们已经知道了小数乘整数的意义与整数乘法的意义相同,那么该怎样计算呢?想一想,能不能把这些小数乘法转化成整数乘法呢?
教师:我们先复习一下小数点位置移动引起小数大小变化的规律.让两个学生说一说.
教师:小数乘法可以依照整数乘法用竖式进行计算.
教师板书:13 . 5
5
教师:如果把这个式子变成整数乘法,就要去掉小数点,那么这个式子变成了什么?(1355)教师在小数乘法的竖式右边写出整数乘法的竖式:
13 . 5135
55
让学生说一说整数乘法应该怎样计算.教师在整数乘法下面写出积(675).
13 . 5135
55
675
教师引导学生讨论:
13.5变成135相当于小数点怎样移动,因数扩大了多少倍?(小数点向右移动一位,因数扩大了10倍.)教师依照教科书例题的形式,用彩色粉笔画出从13.5到135的箭头,并在箭头上标明扩大10倍.
另一个因数变化了没有?(没有)
一个因数扩大了10倍,另一个因数没有变化,那么新的积与原来的积相比发生了什么变化?(积比原来扩大了10倍)
那么,要得到原来的积就要把新的积怎么样?(缩小10倍.)教师用彩色粉笔画出从675到小数乘法竖式积的箭头,并在箭头上标明缩小10倍.
要把675缩小10倍,就要把小数点怎样移动?(小数点向左移动一位)
13.55的积应该是多少?(67.5)
教师在小数乘法竖式下面积的位置上板书:67.5
教师:买5米花布要用多少元?(67.5元)教师在横式上写出得数,注明单位名称,板书答案.
教师引导学生回顾一下小数乘整数的计算方法,使学生明确:先把小数看作整数,小数扩大10倍,这样乘出来的积也扩大10倍,要求原来的积,就要把乘出来的积再缩小10倍.
3.基本练习.
做教科书第84页下面的做一做.
教师:这道题该怎样列式?(9.7614)
同学们能根据例题的方法计算出这道题的得数吗?让学生独立计算,教师巡视,了解全班学生掌握的情况以及存在的问题.
集体订正时,让两名学习好的学生说一说是怎样想的.特别要让学生比较一下这道题与例题的异同.(这道题因数有两位小数,都是小数乘整数.)使学生初步认识到积的小数位数与因数的小数位数应该一样.
三、巩固练习
1.做练习一的第1题.
指名让学生说一说每个乘法算式的意义.可有意识地让学习有困难的学生说,并按照下面的问题顺序回答:读算式;说出是什么数乘什么数;算式的意义是什么?
2.做练习一的第2题.
教师说明题目要求,学生独立列式.集体订正时,让学生再说一说小数乘整数的意义.
3.做练习一的第3题的前两道小题.
学生独立计算,教师巡视,对学习有困难的学生进行个别辅导.集体订正时,可让计算有错误的学生说一说是怎样算的,使他们知道自己错在哪里,以提醒全班学生注意不要犯类似的错误.
四、小结
教师引导学生根据例题与练习中因数的小数位数的不同情况,总结小数乘整数的计算方法:小数乘整数,先按照整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起数出几位点上小数点.
五、作业
练习一的第3题的后四道题,第4题.
教材分析。
1、本部分资料实在学生掌握了整数四则运算,小数的好处和性质以及小数加减法的基础上进行教学的。由于小数与整数有密切的联系,所以这部分资料在编排上和讲解上都注意联系整数运算,一边是学生把整数运算的知识迁移到小数运算中。
2、教学的主要资料和教材编排的特点。小数乘法的好处是在整数乘法的好处、小数的好处、分数的初步认识(包括求一个数的几分之几的应用题)的基础上进行教学的。小数乘法的好处比整数乘法的好处有了进一步的扩展。它包括两种状况:小数乘以整数,这同整数乘法的好处相同;一个数乘以小数,则是求一个数的十分之几、百分之几是乘法好处上的扩展。小数乘法的计算法则和整数乘法的计算法则相似,唯一不同的是在积里要确定小数点的位置。小数乘法的计算法则是在整数乘法积随因数的变化的规律,小数点的位置的移动引起小数大小的变化的基础上教学的。
学情分析
学生在以前的学习中掌握了整数的四则运算、小数的好处和性质以及小数加减法的基础上已经具备了一些知识和方法。在这种状况下进一步学习小数乘法的好处比整数乘法好处有了进一步的扩展。小数乘法的计算法则同整数乘法的计算法则相似。唯一不同的是要确定小数点的位置,这也许是有必须难度的,需要结合例题的讲解来掌握其方法。
学习目标
1、使学生理解小数乘以整数的好处;
2、掌握小数乘以整数的计算方法,并能正确地进行计算。
教学重难点
1、以练习为主;
2、小数乘法的好处和计算法则。
教学活动过程
(一)、复习。
1、口算:
2.4扩大()倍是24;72缩小()倍是7.2;
5.24扩大()倍是524;702缩小()倍是0.702;
0.056扩大()倍是56;5320缩小()倍是5.32;
2、下面各数,把小数点去掉,各扩大了多少倍?
6.3
3.04
0.9
0.35
0.008
3、下面各数,缩小10倍,100倍,1000倍后各是多少?
4
58
6340
5000
3090
4、说出155,20815各表示什么好处?并用竖式计算。
(二)、新授
1、提示课题
这天我们从这节课开始学习小数乘法(板书)
2、出示复习题,师生共同观察讨论
(1)算出积填在空格里
(2)观察因数变化与积的变化关系
从左到右观察比较,提问:两个因数有没有变化?分别起了什么样的变化?积起了什么样的变化?
从右到左观察比较,提问:两个因数又起了什么变化?积又起了什么变化?
从而引发学生得出:一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍积也扩大(或缩小)10倍、100倍、1000倍
3、教学例1
花布每米1.50元,求买5米要用多少元?该怎样列算式?
(1)读题,理解题意,根据题列式
用加法计算:1.5+1.5+1.5+1.5+1.5+1.5
提问:这几个加数有什么特点?还能用别的方法来计算吗?怎样列式?
用乘法计算:1.55
提问:1.55表示意思?(5个1.5)也能够表示什么?(1.5的5倍是多少?)
(2)引导学生思考得出:小数乘以整数的好处与整数乘法的好处相同,就是求几个相同加数的简便运算。
(3)小数乘以整数的计算方法
①提问:小数乘法中内含小数位,能不能把这些小数乘法转化成整数乘法呢?采用什么方法呢?
②指导学生看书,讲解解题思路
1.5扩大10倍》15
55
7.5缩小10倍》75
1.5里有一位小数,先把1.5扩大10倍变成15,把15乘以5得75,求得的积比原先要求的积扩大了10倍,根据是前面所复习的因数与积的变化规律,为了使原先的积不变,务必把75缩小10倍,即把积里的小数点向左移动一位,这样乘得的积就应有一位小数。
③共同小结:
为什么要把1.5扩大10倍?(把小数转化成整数)为什么要把积缩小10倍?(使原先的积不变)小数乘以整数的计算步骤怎样?(先把小数扩大成整数,按照整数乘法的法则算出积,再把积缩小相同的倍数,点上小数点)
指出:实际计算时,不必写出思维过程
(三)巩固练习
1、根据小数乘以整数的计算方法边说边填
2.5》()5.8》()
7733
()《()()《()
2、直接说出积是多少
3.25.48.56.75.21.2
263895
得出:一位小数乘以整数,计算方法也整数乘法相同,只是乘得的积是一位小数。
3、试算做一做
提问:你会做吗?
学生计算后继续提问:你是怎样算的?第一个乘数是几位小数?积是几位小数?第一个乘数小数位数与积的小数位数有什么关系?为什么?
4、总结出计算方法:
小数乘以整数,先按照整数乘法法则算出积,再看第一个乘数有几位小数,就从积的右边起数出几位点上小数点。
(四)作业:练习一1、2、3(并计算出积)
教后反思:
透过本节课的教学,学生对小数乘法的好处和计算法则掌握得比较好,大部分同学对例题的解题思路认识清楚并能正确完成所给的巩固练习,有几个学生对小数的乘法好处掌握不够,个性是对练习中的扩大与缩小认识迟钝,移位不熟练,个别学生忘记点小数点的现象,针对这些状况,要进一步加强以前的基础知识的复习和训练,耐心、细心地帮忙差生,全面提高学生的学习成绩。
你是否对“分数乘法课件”有深入的探索兴趣?这里我们为你精选了一些相关的资料,建议你立刻将此页面存为书签,方便以后需要时参考。在上课前精心准备用于课堂的教案课件是非常关键的,仔细规划自己的教案课件是每位教师每日必备的工作之一。所以,教案和课件的周详考虑是提升教师专业形象的重要途径。
教学内容:
教材第2页例1练习一1~3。
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少? 9个11是多少? 8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的'简便运算)
(2)计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数。
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
(1)分析演示
题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )
确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。
借助示意图理解题意
根据题意列出加法算式 + +
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
(3)比较 和125两种算式异同
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,125是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
我将要从七个方面展开说课:说教材、说学情、说教学目标与教学重难点、说教法与学法、说教学过程、说板书设计、说教学效果。
一、说教材
《分数乘法(二)》是北师大版小学数学新课标教材五年级下册第三单元分数乘法第二课第一课时的内容,它是在学生理解了整数乘法的意义,分数的意义,并学会“求几个几分之几是多少?”的基础上进行教学的。是对《分数乘法(一)》的拓展和延伸,为进一步学习分数乘分数,分数除法和分数四则混合运算奠定基础。起着承前启后的作用。是学习分数多步计算的关键,教材中创设两个问题情境,通过直观图形引导学生利用转化的方法思考,将旧知与新知有机联系在一起,应用分数乘法解决实际问题。
二、学情分析
1.已具备的知识经验:学生在学习《分数乘法(一)》的过程中已经经历了算理和算法的推导过程,本课的学习是对《分数乘法(一)》的拓展和延伸,依据知识的迁移,应用转化的思想,学生可以通过探究,把新知识转化为已经学习过的旧知识,理解并掌握分数乘整数的意义与计算法则。
2.学习态度及习惯:五年级学生有很强的自学能力,求知欲强烈,但由于个性的差异,主动参与积极探究程度各不相同。
三、说教学目标
知识与能力:
1.结合具体情境在操作活动中探索并理解求一个数的几分之几,扩展分数乘法的意义并熟练计算。
2.会解决有关的应用问题,进一步体会分数乘法在生活中的应用。
过程与方法:在具体情境中运用直观模型,通过折一折、分一
分、画一画的方法,理解一个数乘分数的意义,探究一个数乘分数的计算方法。
情感、态度、价值观:体会数学与生活的密切联系,渗透德育教育。
教学重点:进一步理解分数乘法的意义。
教学难点:正确计算分数乘法并能解决简单的实际问题。
四、说教法、学法
焦老师在本节课主要采用了情境创设法、实践操作法、引导法、点拨法、多媒体演示法来提高学生的学习兴趣,有力的突出重点,突破难点,引导学生理解分数乘法的意义和计算方法。
学法:学生以自主探究为主,小组合作学习为辅,通过动手实践、讨论交流、展示汇报、迁移归纳、应用拓展的方法,在学生动手、动脑、动口的过程中获取新知。
五、说教学过程
本节课,焦老师分成了五个环节进行教学,逐步递进;创设情境,激趣导入——动手操作,探究新知——学以致用,提升能力。——拓展应用,延伸新知——畅谈收获,体验成功。
焦老师首先进行了课前小热身,巧用学生人数与班级的关系激起学生的学习欲望。有意识的唤醒了孩子用已经掌握的《分数乘法(一)》的知识来解答,既复习了旧知,又为学习新知做好铺垫,自然过渡,揭示课题。
(一)创设情境,激趣导入。(3分钟)
观察情境图,培养学生整理数学信息,根据相关信息提出问题的能力。
(二)动手操作,探究新知。(20分钟)
这一环节焦老师设计了二个活动,重点引导学生进一步体会分数乘法意义及计算方法。
活动1:动手操作,自主探究。
以问题“笑笑吃了多少块饼干?”为引领和调控课堂教学的主线,重点引导学生理解“奇思饼干数的二分之一”这句话,打通学生的思维通道。转化为求6的二分之一是多少?把图形语言作为理解的基础,以学生动手折一折、分一分。让学生在动手操作中观察、思考、交流将抽象、枯燥的内容活动化、直观化。学生能够很快的探究出方法,由于个性的差异,部分学生没有真正理解,只停留在表象。找到解决问题的关键。焦老师给学生提供展示在平台,由学生在黑板上实物操作展示,表述方法,出现表述不清时,焦教师及时启迪学生深思,依据旧知的迁移,应用转化的思想,把“一个数的几分之几是多少?”转化成已经学过的知识“几个几分之几是多少?”来获取新知。体现了我校的“‘134问题导学模式’” 培养了学生观察分析的能力,锻炼了学生归纳及口头表达的能力。
活动2.推理归纳,验证结论
抛出问题“淘气吃了多少块饼干?”,请学生画一画理解方法。由具体到抽象,引导学生归纳出解题的思路,“求一个数的几分之几用乘法计算”,并请学生利用身边的资源操作验证。使学生豁然开朗。中肯的评价更加激发学生展示的欲望。学生对一个数只能是整数吗?产生质疑,焦老师抓住机会引发学生想象分数还可以与分数相乘,可以跟小数相乘,打破学生思维固有的框架。学生的质疑,实现了课堂的升华。
巧妙的为下一节《分数乘法(三)》的学习埋下了伏笔,实现了知识的融会贯通。对学生数学思想的渗透更加丰富。开阔了学生的视野,发散了学生的思维。培养了学生的问题意识、创新意识。
(三)学以致用,提升能力。(10分钟)
二个练习,由易到难,层层深入,“说一说”学生轻松应对巩固了解题方法,“列一列”使学生体验了从数量到计量的转化,考察学生是否会灵活应用,拓宽了知识的范畴,从多种角度为学生理解问题、解决问题提供了思路和灵感。使不同层次的学生都参与练习,得到不同层次的发展。
(四)拓展应用,延伸新知。(5分钟)
焦老师根据课堂实际情况,临时调整为拓展应用,延伸新知。将数学知识与“为灾区捐款”生活问题自然联系,发展学生根据实际情境和运算意义解决问题的能力,将数学与生活,服务于生活的理念体现的淋漓尽致。渗透德育教育,激发人人献爱心。
(五)畅谈收获,体验成功。(2分钟)
谈谈“通过这节课的学习,你有什么收获?还有什么遗憾?”学
生不仅将整个学习过程进行回顾,形成整体印象,巩固了新知。而且分享学习数学的感受,合作的快乐,成功的喜悦。
六、说板书设计
分数乘法(二)
6的 相当于6个 6×
6的 相当于6个 6×
一个数的几分之几 这个数×几分之几
板书设计直观、突出重点,明确了新知与旧知的连接点。突显了转化方法的运用。点明了结论。更加体现出分数乘法知识的内在联系。扩展了学生对分数乘法意义的理解。
七、说教学效果
整节课焦老师以问题作为引领和调控课堂的主线,以策略作为方法与应用的统一,以活动作为体会知识与生活的有机联系,以评价作为学生探究的动力。以德育的渗透得到情感的升华。让学生自主参与学习的全过程,经历感知—操作—推理—验证—应用。符合新课标的理念,充分发挥了学生的主体作用,体现了自主、合作、探究的学习方式。培养了学生的探究意识、创新意识。使学生学有所获,获有所悟,悟有所成。
我的说课到此结束,谢谢大家。
教学重点:
1、掌握两步分数应用题的解题思路和方法。
2、画线段图分析应用题的能力。
教学难点:
渗透对应思想。
教学过程:
一、复习、质疑、引新
1.指出下面分率句中谁是单位1(课件一)
①乙是甲的;
②小红的身高是小明的
③参加合唱队的同学占全班同学的;
④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。
2.口头分析并列式解答
①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?
②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?
3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。
二、探索、悟理
1.出示组编的例题
例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?
学生审题后,教师可提出如下问题让学生思考讨论。
①小华储蓄的钱是小亮的,是什么意思?谁是单位1?
②小新储蓄的是小华的,又是什么意思?谁是单位1?
思考后,可以让学生试着把图画出来。
(演示课件)
然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。
由此基础上试列综合算式:
2.做一做
小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?
1)可先让学生一起分析数量关系,然后独立画图并列式解答。
请一名中等学生板演。
(张)
(张)
答:小明有40张。
③你能列综合算式吗?
三、归纳、明理
1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。
①认真读题弄清条件和问题
②确定单位1找准数量关系
根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。
③列式解答
板书为:抓住分率句,找准单位1,
画图来分析,列式不用急。
2.质疑问难
四、训练、深化
1.联想练习根据下面的每句话,你能想到什么?
①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)
②修了全长的
③现在的售价比原来降低了
2.先口头分析数量关系,再列式解答。
①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?
②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?
3.提高题。
六、板书设计
分数乘法应用题
小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?
教学目标:
1、使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、培养学生分析能力,发展学生思维。
教学重点:
理解题中的单位1和问题的关系。
教学难点:
抓住知识关键,正确、灵活判断单位1。
教具准备:
多媒体课件。
教学过程:
一、复习引入(激发兴趣,引入铺垫)
1、列式计算。
(1)20的 是多少?
(2)6的 是多少?
二、自主探究(自主学习,探讨问题)
1、教学例1。
出示例1:学校买来100千克白菜,吃了 ,吃了多少千克?
(1)指名读题,说出条件和问题。
(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。
先画一条线段,表示100千克白菜。
吃了 ,吃了谁的 ?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?
教师边说边画出下图
(3)分析数量关系,启发解题思路。
A.请同学们仔细观察图画,并认真想一想,吃了 ,是吃了哪个数量的 ?
B.分组讨论交流:依据吃了100千克的 把哪个量看作单位1呢?为什么?你是怎样想的?
(4)列式计算。
A.学生完整叙述解题思路。
B.学生列式计算,教师板书: (千克)
C.写出答话,教师板书:答:吃了80千克。
(5)总结思路。
根据以上分析,让学生讨论一下解题顺序:吃了 吃了谁的 谁是多少(已知)谁的 是多少乘法。
(6)反馈练习。(14页)1-3题,做完后订正。说一说你是怎样想的?
2、阅读课本:把书中的想的过程和线段图认真看一下,不懂提问。
三、拓展总结(应用拓展,盘点收获)
1、判断下面每组中的两个量,应该把谁看作单位1。
(1)乙是甲的 ,甲是乙的 。
(2)甲是乙的 ,乙是甲的 倍。
2、练习四1、2题,完成在练习本上,然后订正。
3、操作:画出体育小组的人数是美术小组的 倍的线段图自己补充条件和问题并解答。
《整数乘法运算定律推广到分数》说课稿今天我说课的内容是六年级上册第一单元的例6、例7《整数乘法运算定律推广到分数》,我的设计理念是从学生已有的生活经验出发,创设情境、激发兴趣、建构知识、发展思维。下面我从教材、教法和学法、教学过程、教学反思四个方面来对本课进行阐述。
一、说教材1、教材分析:
“整数乘法运算定律推广到分数乘法”是在学生已经掌握了分数乘法计算、整数乘法运算定律、整数乘法运算定律推广到小数乘法的基础上进行教学的。教材从生活入手,通过几组算式,让学生计算出○的左右两边算式的得数,找出它们的相等关系,总结出整数的运算定律对分数同样适用。学好这部分内容,不仅培养学生的逻辑思维能力,而且以后能用本课所学的使一些分数的计算简便,也为以后学习用不同方法解答应用题起着积极的推动作用。
2、教学目标的确定:
根据教材特点,依据数学课程标准的要求及学生实际,我确定本课教学目标如下:
(1)知识能力目标:理解整数乘法运算定律对于分数乘法用样适用,并能应用这些定律进行一些简便计算。
(2)过程方法目标:引导学生在经历猜想、验证等数学活动中,发展学生的思维能力。
(3)情感态度目标:通过小组合作学习,培养学生进行交流的能力与合作意识,体验到解决问题策略的多样性。结合相关内容,渗透“事物间是普遍联系”的观点,对学生进行辨证唯物主义的启蒙教育。
3、教学重点、难点:
重点:能运用运算定律对一些分数计算采用简便的算法;
难点:学生能掌握运算定律,根据题目的特征,灵活、合理地进行计算。
4、教具:
多媒体课件。
二、说教法和学法本课的教学中,我坚持“以人为本”的理念,充分利用知识间的内在联系,向学生提供了充分从事数学活动的机会,让学生在自主探索、合作交流的过程中得到发展。通过创设问题情境,引发学生的认知冲突,进而组织学生猜想,让学生自由地、充分地发表观点后,引导学生自行设计方案来验证猜想,开放了教学的时空。在这样的设计下,学生的思路突破了教材的束缚,使学习数学的过程真正成为了生动活泼的、主动的、富有个性的过程。学生在学习过程当中,从个体尝试到小组间交流,再到全班汇报,步步为营,层层递进,获得成功体验,增强了学习数学的自信心。
三、说教学过程基于以上认识我安排了六个环节进行数学活动,分别是:
知识链接,接题示标;
引入情景,探究新知;
运用规律,简便计算;
课堂检测,巩固提高;
反思体验,总结评价。
(一)知识链接,接题示标根据小学生掌握知识的遗忘规律,在这个环节,我设计了两个复习题,一是让学生回忆四年级学过的乘法的运算定律,二是五年级学的娴熟的乘法简便运算。对已学知识进行巩固、温习,架起与新知识间的桥梁,达到温故知新的目的。在学生完成练习后,我创设了这样一个问题:整数乘法的运算定律对于小数也同样适用,那么对于分数适用吗?如果适用,又是怎样简便的呢?我这样问的目的是引发学生的认知冲突,刺激他们的求知欲望,接着让学生带着自己的猜想开始学习。
(二)引入情景,探究新知。
接着我出示例题:
学生会有两种方法:
引导学生思考:对比两个算式和计算结果,你有什么发现?通过小组讨论得出结论:分数混合运算的顺序和整数混合运算的顺序相同。有的同学可能会发现这道题是运用了乘法分配律,于是让学生大胆猜想在分数乘法中,是不是也能使用乘法交换律、结合律、分配律。接下来出示通过计算、学生讨论达成共识:乘法交换律、结合律、分配律在分数乘法中同样适用。
(三)运用规律,简便计算。
在这个环节,我让学生独立计算例7的两道题。要求学生用简便方法进行计算,在此我不作任何提示。第一题的计算有三种方法:可以直接按顺序计算,也可以运用乘法结合律,还可以三个数一起约分,第三种方法是最简便的,但是没有运用规律,所以做第三种方法的学生很少。这时,我给学生点拨:第一道题的算法有三种,有的运用了运算定律,有的没有运用,有时候把三个分数放在一起,一次性约分是非常简单的,这种情况下,你可以不用交换律或者结合律,要灵活选择定律进行简便计算。第二题运用的是乘法分配律,大部分学生都能做对。
最后小结:在做分数简便运算时,要先观察算式的特点,然后再决定运用什么运算定律。
(四)课堂检测,巩固提高。
在这个环节,我让学生独立完成课本第9页的做一做第1题。让学生充分说明运用了哪个运算定律。前两道没问题,第三道有点难,要让学生说清楚为什么拆87,怎么拆。并在出一道类似的题进行练习巩固。
(五)板书设计整数乘法运算定律推广到分数(六)反思体验,总结评价让学生回顾这节课学习的内容说说自己有何收获,以及自己、同学本节课的学习情况。引导学生理清知识结构,形成完整认识,并通过自评和互评,使学生受到与他人合作共事的自我教育。
四、需要改进之处:
①对学生的多样思维应加大评价力度。比如:在开始的情境导入一环节中,学生除了两种做法外,还出现了另外的做法,虽然这种做法与本节课要研究的问题没有多大的联系,但老师却不应忽视孩子多样化的思维方式,应及时给予肯定,并加以合理的评价。
②课前对学生的估计过高,所以使一些事先设计好的练习,没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。
总之,通过本节课,使我在教育教学上,在落实新课改精神上,有了很大的转变和提高,让教为学服务,提高教学质量,关键在课堂。
教学目标:
能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的结果。
情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
教学重难点:
学生能够熟练的计算出整数乘以不同分数的结果。
教学方法:
师生共同归纳和推理
教学准备:
教学参考书、教科书
教学过程:
一、复习导入:
教师出示教学板书,请学生计算下列分数乘法运算题。
3/11×3 9/16×12 21×5/14
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)
二、讲授新课:
教师出示课本例题:小红有6个苹果,淘气的苹果是小红的1/2;笑笑的苹果是小红的1/3,淘气和笑笑各有几个苹果?
教师让学生思考这个例题,并对学生进行提问。
学生自己动手填完课本例题上的方格。
教师提问学生说一说自己是怎样计算的?
(学生1:6×1/2=6×1/2≤3个;学生2:6×1/3=6×1/3≤2个)
教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的数学意义。
三、巩固练习:
做课本5页试一试,36的1/4和1/6分别是多少?
注意让学生体验求一个整数的几分之几是多少的数学意义。
四、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
6×1/2=6×1/2≤3个;6×1/3=6×1/3≤2个
整数乘以分数的数学意义:就是求整数的几分之几是多少?
教学内容:
分数乘法
教学目标:
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
学生能够熟练的计算出整数乘以不同分数的结果。
教学方法:
师生共同归纳和推理
教学准备:
教学参考书、教科书
教学过程:
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)
二、讲授新课
教师出示课本例题:小红有6个苹果,淘气的苹果是小红的 ;笑笑的苹果是小红的 ,淘气和笑笑各有几个苹果?
教师让学生思考这个例题,并对学生进行提问。
学生自己动手填完课本例题上的方格。
教师提问学生说一说自己是怎样计算的?
教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的数学意义。
三、巩固练习
做课本5页试一试,36的 和 分别是多少?
注意让学生体验求一个整数的几分之几是多少的数学意义。
四、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
分数乘法
整数乘以分数的数学意义:就是求整数的几分之几是多少?
一、教学目标:
1、知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的结果。
2、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
二、重点难点:
学生能够熟练的计算出整数乘以不同分数的结果。
三、教学方法:
师生共同归纳和推理。
四、教学准备:
教学参考书、教科书。
五、教学过程:
(一)复习导入。
教师出示教学板书,请学生计算下列分数加减运算题。
1、教师:来回巡视学生的做题情况,并提问学生说说每一道算式的意义。
2、学生寻找完毕,纷纷举手准备回答问题。
3、教师提问学生回答问题,并注意更正学生的错误和表扬回答问题的同学。
(二)课堂练习。
学生做第1题,教师注意让学生对比好门和小明的高度,并注意进行长度单位的换算。
学生做第2题,教师注意提醒学生及时约分化成最简分数。并同桌之间相互说说每个算式的数学意义。
学生做第3题,教师巡视学生做题情况,并及时对有困难得学生进行帮助。
学生做第4题,教师注意让学生能够区分最少和最多这个数字范围,并提问学生说说自己的答案。
(三)课堂小结。
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
分数乘法
480 180(千克) 180=150(千克)
教学目标
1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。
2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。
3.培养学生分析、解决问题的能力,以及知识迁移的能力。
4.培养学生良好的审题习惯。
教学重点和难点
1.会分析数量关系,掌握解题思路,正确解答。
2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。
教学过程
导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)
(一)复习铺垫
1.说图意填空。(投影)
问:谁是单位1?
2.说图意回答问题。(投影)
问:①谁和谁比,谁是单位1?
3.准备题:
(做在练习本上,画图列式计算,一个学生到黑板板演。)
教师订正讲评。
提问:①谁是单位1?
③要求用去多少吨就是求什么?
少。)
④根据什么用乘法计算?
(根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)
师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)
(二)学习新课
1.学习例4。
(1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)
(2)分析数量关系。(同桌互相说。)
提问:单位1变了吗?单位1是谁?
请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。
学生汇报结果,让学生说解题思路,老师一边把图补充完整。
=2500-1500
=1000(吨)
答:还剩1000吨。
生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。
师追问:求用去多少吨你是怎么想的?
答:还剩1000吨。
生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求
(3)引导学生比较:这两种解法在思路上有什么相同点和不同点?
相同点:两种解法都是经过两步计算。
不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。
第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。
(4)练习做一做(1):
昆虫标本有多少件?
(做完让学生说解题思路、投影订正。)
2.学习例5。
六月份捕鱼多少吨?
(1)读题找出条件、问题。
(2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)
问:①谁和谁比,谁是单位1?
(3)列式解答。
师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。
学生汇报结果。(老师板书列式)
答:六月份捕鱼3000吨。
师追问:你是怎么想的?
生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。
师再追问:怎样求六月份比五月份多捕的吨数?
捕的吨数。
答:六月份捕鱼3000吨。
师追问:怎么想的?
生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。
师问:这两种解法有什么联系和区别?
(联系:两种解法都利用了分数乘法的意义求已知数的几分之几。区别:解题思路不同。)
(4)练习做一做(2)。
答。
(三)巩固练习
1.补充问题并列式解答。(复合投影片)
________?
2.选择正确答案的序号填在( )里。
包?列式是
[ ]
[ ]
A.乙队修了多少米?
B.乙队比甲队多修多少米?
C.甲队比乙队多修多少米?
D.乙队比甲队少修多少米?
(3)根据条件和问题列出算式。
已知一袋大米重40千克。
(四)课堂总结
今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?
(复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)
课堂教学设计说明
(1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。
(2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
(3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。
1、分数乘法
第一课时分数乘整数
教学内容:教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。
教学目标:让学生掌握分数乘正整数的计算方法,并能准确地进行计算。
重难点、关键
分数乘整数的计算方法。
教学准备:电脑课件
教学过程:一、旧知铺垫
1、计算下列各题
2/11+2/11+2/11
过程要求
(1)写出计算过程。
(2)说一说分数加法的计算方法。
2、想一想,能不能把2/11+2/11+2/11改写成乘法算式呢?
二、探索新知
1、教学例1
(1)出示例题
根据题意,电脑课件呈现示意图。
(2)根据题意列出解答算式:
2/11+2/11+2/11=2+2+2/11=6/11
2/11×3=6/11
(3)探索分数乘整数的计算方法。
师:2/11×3=,说一说你是怎么想的?
①学生在小组交流各自的想法
②小组讨论后反馈思维的过程和结果
教师板书:
③总结分数乘整数的计算方法。
A、学生口述分数乘整数的计算方法;
B、教师整理并板书:
分数乘整数,整数与分子相乘的乘积作分子,分母不变。
2、教学例2
计算:3/8×6
(1)学生独立计算。
(2)交流计算方法和步骤。
(3)比较计算过程,看一看哪一种更为简单
(3)归纳:能约分的要先约分,再计算。
三、巩固练习
1、完成课本“做一做”。
(1)学生独立完成,然后计算过程和结果。
(2)第3题,说一说你是怎样计算的?怎样想的?
一般要求学生列综合算式计算。如:
6/7×10×7==60(kg)
2、课本练习二第1、2题
四、课后作业设计
一、计算
7/8×73/4×81/9×31/2×4
5/6×55/18×327×2/33/816×
三、列式计算
1、3个5/8是多少?2、2/3的6倍是多少?
3、5/14扩大7倍以后是多少?4、5/6与24的积是多少?
课后反思:
第二课时分数乘分数
教学内容:教材第10页例3,第11页例4以及“做一做”,练习二中的3、4题
教学目标:
1、理解一个数乘分数就是求一个数的几分之几是多少。
2、掌握分数乘分数的计算方法,并能正确地进行计算。
重难点、关键:
1、重难点:分数乘分数的计算方法。
2、关键:理解一个数乘分数就是求一个数的几分之几是多少。
教学准备:实物投影或者电脑课件。
教学过程:
一、创设情境引入新课
教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。
出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。
师:能提出什么问题?
学生提问题,教师板书。
以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”
师:怎样列式?(板书1/5×4)
师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)
让学生计算,并说说怎样计算。
师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?
学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。
师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。
板书课题:分数乘分数
二、操作探究计算算理
1师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?
学生操作。
学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)
师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?
小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。
学生自己涂色。
师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20
师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?
学生讨论交流汇报。
教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。
教学内容:教学第84页的例3,完成随后的“练一练”和练习十六第5—9题。
教学目标:
1、使学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题。
2、使学生进一步积累解决问题的策略,增强数学应用意识。
教学过程:
一、复习导入
林阳小学去年有24个班级,今年的班级数比去年增加了。今年比去年增加了多少个班级?
独立解答,说说“今年的班级数比去年增加了”的含义及解题思路。
如果把问题改成:“今年一共有多少个班级?”就成了今天我们要研究的新内容了。
二、教学例3
1、出示例3
林阳小学去年有24个班级,今年的班级数比去年增加了。今年一共有多少个班级?
(1)比较复习题与例3的不同。
问题不同:复习题要求“今年比去年增加了多少个班级?”而例3要求“今年一共有多少个班级?”
(2)说说“今年的班级数比去年增加了”的含义。
是哪两个量比较的结果?这两个量比时把哪个量看作单位“1”?单位“1”的是哪个量?
(3)让学生在线段图上表示出今年班级的数量。
(4)要求“今年一共有多少个班级?”可以先算什么?并列出综合算式。
板书:24+24,说说24的含义,独立解答。
(5)(5)想一想,还可以怎样计算?
板书:24(1+),说说(1+)的含义,独立解答。
(6)小结:怎样解答这类应用题?
三、巩固练习
1、做练一练的第1题。
先说一说可以怎样想,再独立解答。
2、做练习十六的第5题。
独立完成,可以先画图思考,再列式解答。
比较两题的解法有什么联系和区别。
3、做练习十六的第8题。
让学生先画线段图表示两题中的已知条件和所求问题,再根据线段图说说这两小题中的数量关系有什么不同,最后再列式解答。
比较两题的解法有什么联系和区别。
4、做练习十六的第9题。
先让学生适当整理题中的条件和问题,再引导学生根据需要解决的问题选择合适的条件解答相应的问题。
比较两题的解法有什么联系和区别。
四、全课小结,揭示课题。
通过这节课的学习,你有什么收获?在解题时要注意什么?
结合学生的回答,揭题板题。
五、课堂作业
做练习十六的第6、7题。
一、教材分析和学情分析:
《分数的乘法》是六年级第一学期《分数的运算》一节的内容之一,是在学习分数的加减法之后,分数的除法之前的一节内容。它既与整数的乘法有着内在的联系,也是后期进一步学习分式的乘法的基础。但在学习这节内容前,教材中没有对“求一个数的几分之几是多少”这一内容作过详细介绍,所以我在教学设计中,增加了“一个数乘以分数的意义就是求这个数的几分之几是多少”的内容,以便为本节课的教学做好铺垫。再通过学生自我探索、观察、归纳得出分数乘法的意义和法则。
我班的部分学生还没有养成良好的学习习惯,计算能力也还有待加强;大多数学生对新鲜事物比较敏感,喜欢动手操作,但思想不易长时间集中;有30%的同学基础相对薄弱,对数学学习的兴趣不高。
二、教学目标:
知识与技能目标、过程与方法、情感与态度是新课标提出的三位一体的目标,结合这样的要求,我对本节课确定的教学目标是:
1、通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。
2、培养学生动手操作的能力和观察推理能力。
3、养成计算仔细、书写规范的良好的学习习惯。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
在设计教学时我主要从以下几方面考虑:
1、创设现实情景,提出数学问题,让学生在现实情景中学习计算,体会计算是解决实际问题的需要。
2、改变学生学习方式,通过动手操作、自主探索和合作交流的方式学习分数乘法。
三、教学方法与学法指导:
1、针对教学重点,在教学中我创设了学生熟悉并感兴趣的现实情景。并通过电脑媒体演示和学生动手操作,来增强学生的感知力,由扶到放,让学生主动探索,获取知识。
2、针对教学难点,本课遵循三条原则:直观性原则、启发性原则和循序渐进原则,从教学实际需要出发,设计了一系列学生动手操作的活动及练习整个教学过程着重突出探、疑、动、悟。
3、学法指导
根据学生的认知特点及思维能力,本课在学法上主要讲究既要重操作,又要重学习。
(虽然教无定法,但我认为不管采用什么样的教学方法,关键是要得法,在本节课中我将采用遵循教师为主导、学生为主体的原则,层层设疑、讲练结合的教法和让学生自主操作和探究的学法进行本节的教学。)
四、教学过程
一、复习旧知
1、计算下列各题并说出计算方法
1/10×5 5/8×1 3/7×2
上面各题都是分数乘整数,你能说一说分数乘以整数的意义吗?
2、说出下面各个量之间的关系
工作量工作时间工作效率速度时间路程
(这两组题都具有较强的针对性,与本课知识联系非常紧密,通过复习,唤起学生对已有知识的记忆,为促进知识的迁移,学习新知作铺垫。)
二、创设情境,引入新课
1、师:我们学校暑假期间粉刷了部分教室(出示粉刷墙壁的画面),提出问题:装修工人每小时粉刷这面墙的1/5,4小时可以这面墙的几分之几?
2、学生列式解答:1/5×4=4/5问:为什么用乘法计算?
3、刚才我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?
怎样列式?(学生根据公式“工作效率×工作时间=工作总量”列出算式)
4、揭示课题:1/5×1/4如何计算呢?这就是我们今天要学习的“分数乘分数”。(板书课题)
(结合本班学生的特点,采用创设学生熟悉的问题情景引入新课。)
三、动手操作,探究算理
1、师:下面我们一起来探讨分数乘分数怎样计算。拿出准备好的长方形纸,用它表示这面墙,先涂出1小时粉刷的面积,涂出这张纸的几分之几?
学生动手操作,交流是怎样涂的。
2、师:求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。小组讨论一下,1/5的1/4应该怎样涂?
小组汇报:把涂出的1/5部分再平均分成4份,涂出其中的1份。
3、师:从纸上可以看到,1/5的1/4占这张纸的几分之几?(1/20)我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?
4、学生讨论,交流汇报,教师小结:我们先把这张纸平均分成5份,1份是这张纸的1/5,再把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份就是这张纸的1/20。所以,1/5×1/4=1×1/5×4=1/20(板书)。
(研究表明,学生积极参与交流活动对他们学习知识是十分重要的。学生积极参与数学交流活动,不仅可以培养合作学习的精神,而且还可以达到互相学习、互相补充的目的。因此,我在教学中,注重了交流的实效性,保证了学生的全员参与,给予了充足的时间,使学生实现了表现自我的欲望。)课件演示,加深学生的印象
四、迁移延伸,归纳法则
1、提出问题:3/4小时粉刷这面墙的几分之几?
师:怎样列式?1/5×3/4表示什么?(表示1/5的3/4是多少)你能涂色表示1/5的3/4吗?
2、学生动手操作,交流计算方法和思路:有前面一样,也是把这张纸分成5×4=20份,不同的是取其中的3份,可以得到1/5×3/4=1×3/5×4=3/20(板书)。
(每一个学生都是一幅生动的画卷,他们的个性不同,智力水平、身体素质、情趣爱好都有差异。要保证学生的主体地位,就必须尊重孩子的选择,允许学生根据自身的需要进行学习,真正体现学生的主体地位)
3、想一想:分数乘分数怎样计算?
学生归纳的出:分数乘分数,应该分子乘分子,分母乘分母。
(这一层次让学生自己来总结方法。不但使学生懂得了操作实践、合作交流是一种重要的学习方法,而且提高了学生学习的积极性,丰富了“主角”意识。)
4、学习例4
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式。
(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式。
(3)学生独立解答“5分钟飞行多少千米?”,讲评中介绍分数乘整数的另一种格式。
(由于学生能够自主、积极地参加活动,活动中又为学生留出了自主探索的空间和时间,这就为学生创造思维的培养提供了前提条件。在此基础上,教师努力挖掘活动内容中的开放性因素,给学生创设了自主探索和创造的机会,让学生在独立思考和合作交流中发现、分析、解决问题。)
五、巩固练习,深化提高
1、出示:一台饲料粉碎机,每小时粉碎饲料1/2吨,3/4小时粉碎饲料多少吨?(4/7小时呢?)
提问:怎样列式?依据什么列式?然后让学生独立计算,再反馈计算过程,强调能约分的要先约分再乘,这样可以使计算简便。重点说明约分的书写格式。
2、解决问题
(虽然练习的量并不是很多,但少而精,练习内容注意了综合性、开放性、灵活性和趣味性,既让学生巩固所学的新知识,又有意识地培养了学生的创新思维。)
五、学习反思
你在学习中有什么收获?还有疑问吗?
教学目标:
1.使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。
2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。
教学重点:
分数乘整数的意义和计算法则。
教学难点:
分数乘整数的计算方法以及算法的优化。
教学方法:
自主合作探究。
教具准备:
多媒体
教学过程:
一、复习引入
1.同学们,我们已经学会了分数的加法和减法,下面口算。
2.今天我们来学习分数乘法。板书
谁能编一道分数乘法算式(择几道板书黑板一侧)
分数乘法有很多,今天先研究其中一种:分数乘整数。
看了今天的课题,可能有同学马上想知道分数乘法怎么算呢?其实,每一个新知识的产生都与原有的旧知密切相关,对于分数乘整数来说,当然也是如此。下面我们来讨论!
二、探究
1.理解意义。
出示例题1:做一朵绸花用 米绸带。
(1)小芳做了3朵这样的绸花,一共用了几分之几米绸带?
课件: + + =(米)
(2)小华做7朵这样的绸花,一共用了几分之几米绸带?
课件: + + + + + + =(米)
(3)学校庆国庆活动一共要做15朵这样的绸花,你能用加法计算出几分之几米绸带?
+ + + + + + + + + + + + + + =?
这么多米加起来,你有什么感觉?有没有什么好办法?有没有什么好办法?
导入:如果把这道加法算式改写成乘法,你特别需要知道什么?
板书: ×3= 7×= ×15=
谁能说说 ×3表示什么意思?7×呢?
前面大家所说的(黑板一侧板书的)乘法算式,谁能说说他们的意思?对比一下,你们觉得是分数加法简便,还是分数乘法简便?
2.探究算法。
现在我们来看分数乘整数怎样计算。我们先来研究×3, ×3=怎么算呢?请大家尝试解决。指名板演典型算法。
×3= =
×3=++=
……
交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系:×3=+ + = = = (教师板书),符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。
练习:×7,与原来加法结果比较,完全正确。
谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。
继续研究:×30
提示:这道题与前面几题相比可能有些新情况,你看出来了嘛?先试试看,再同桌交流。
指名板演新情况:都有相同点?(约分),不同是什么?(主要是约分的区别)
讨论:约分的先后序。(先乘后约,还是先约后乘),体会到先约后乘的简便。
练习:先判断可不可以约分?怎样约分?
总结注意事项:能约分的先约分再乘。
三、练习
填一填:练习第一、二题。
算一算:完成3第三、七题。
四、总结
本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?
五、作业
练习八第2题、第4题。
北京版六年级数学上册教案设计《分数乘法》Lesson5
教学内容:
分数乘法
教学目标:
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
学生能够熟练的计算出分数乘以分数的结果。
教学方法:
师生共同归纳和推理
教学准备:
教学参考书、教科书
教学过程:
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)
二、讲授新课
教师出示课本例题:一张长方形的纸条,第一次剪去它的,第二次剪去剩余部分的。此时,剩下的部分占这张纸条的几分之几?如果第三次再剪去剩余部分的,那么剩下的部分占这张纸条的几分之几?
教师让学生思考这个例题,并对学生进行提问。
?分析第一次剪去它的,第二次再剪去剩下的,那就是。也就是
教师让学生从图中看出是,让学生从=中思考,分数乘以分数的运算规则,让学生同桌之间相互讨论。
教师提问学生说说分数乘以分数的运算法则。并对学生的说法给以鼓励。
教师和全班学生共同总结出分数乘以分数的运算法则:分数乘以分数,分子乘以分子作为分子,分母乘以分母作为分母。
验证法则:让学生折纸验证?,并让学生分析为什么?
课堂讨论:让学生能够根据课本7页中的插图,说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?让学生进一步理解整体和部分的关系;初步理解求分数的几分之几是多少?
三、巩固练习
做课本8页试一试,
让学生运用分数乘以分数的法则来进行计算。注意能约分的先约分,如:中的7和14先约分。
四、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
分数乘法
分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。
老师在上课前需要有教案课件,只要课前把教案课件写好就可以。合理的教学过程需要有合理的教案作为基础,从哪些角度去准备写自己的教案课件呢?想要了解更多信息建议您考虑阅读一下“二年级乘法课件”,欢迎您品尝这篇文章的美味!
教学内容:九年义务教育六年制小学数学第三册第59页例1、例2。
教学目的:1.使学生知道乘法口诀的来源,会根据乘法的意义编口诀。
2.熟记7的乘法口诀。
3.运用口诀正确计算。
4.让学生学会与同桌交流。
教学重点:编口诀,记口诀,用口诀。
教学难点:
难记的口诀:五七三十五和六七四十二。
易混的口诀:六七四十二和四六二十四。
教具准备:卡片,投影片,49个三角形拼成的7条小船。
教学过程:
一、检查复习(出示卡片)
二、读题说得数,并说出用哪一句口诀。
24=35=66=46=
56=64=34=43=
三、导入新课
我们学习了2至6的乘法口诀,这节课我们继续学习7的乘法口诀。(板书课题7的乘法口诀),同样要求大家熟记,看谁记得快。
四、新课教学
1、出示准备题:7个7个地加,加到49。
1个77
2个714
3个721
4个727
5个735
6个742
7个749
师:第一个格里是7,是1个7,再加上1个7,是几个7是多少
师:第三个格里填几怎么想
生:填21,2个7加1个7是3个7,14+7=21
师:两个同学说的全对,第二个同学的方法简单,像第二个同学这样想,把下面的空格填上。(生说师板书)
师:从1个7是7读到7个7是49,边读边记,看谁能记住几个7是几。
评析:利用乘法的意义、加法的法则等基础知识为铺垫,为7的乘法口诀的编写做好充分的准备,同时注意了知识的连续性,促进学生思维的灵活性。
2、出示例1,编出口诀。
例1,摆1条小船用7个三角形,摆2条呢--摆2条呢?摆7条呢(板书)
(1)师在投仪上用7个三角形摆一条小船,(让学生看到摆的过程,然后,把1条小船贴到黑板上。)
师:摆l条小船用7个三角形,1条小船是几个7列出乘法算式。71=7,编出乘法口诀:一七得七。
(2)师出示2只小船贴在黑板上。
师:2条小船用几个三角形,想:是几个几列出乘法算式,自己编出乘法口诀。编完同桌互相检查。
生:二七十四。
生:二七一十四。
师:同桌讨论,谁编的对。
师:谁能说一说怎么编出二七十四
生:1个7加1个7是2个7,72=14,2个7是14,二七十四。
(3)师出示第三只小船。
师:下面老师和同学们合作,老师出示用三角形摆成的小船图,同学们观察是几条小船,想是几个几,列出乘法算式,编出
乘法口诀,你们能行吗
生:我们能行!
[评析:激励学生自主的学习,增强自信心。]
(生编口诀,老师巡视,发现有的学生写作三七二十一,丢掉了十老师及时反馈矫正。
(4)师分别出示4条、5条、6条、7条小船,学生自己列出乘法算式,编出乘法口诀,编完同桌互相检查。
(5)生说师板书乘法算式和后四句乘法口诀。
[评析:运用知识、思维的方法迁移,使学生积极主动的去探求新知,通过编完口诀的同桌互相检查,体会同学间互相学习,互相交流,共同
提高的协作精神。]
3.总结规律,记住口诀。
看黑板,7的乘法口诀有几句?
口诀中的第一个数与算式中的乘数相同,表示什么?
口诀中的第二个数与算式中的被乘数相同,表示什么
(2)相邻两句口诀的积相差几忘记四七得多少怎么办
生:想三七二十一,3个7加1个7是4个7,21+7=28。
师:还可以怎么想
生:5个7减1个7是4个7,五七三十五,35-7=28。
(3)练习记口诀。
①读口诀。②看卡片把口诀补充完整。③师生对口令。④同桌对口令。⑤同桌检查记口诀的情况。
[评析:通过师生共同总结规律,加深对口诀全面深入的理解。通过师生交流,生生交流,加深对口诀的记忆。]
4.出示例2,运用口诀。-
(1)7x5=算式表示什么积是多少57=算式表示什么积是多少
师:算式表示的意思不同,但是积相同,所以这两个乘法算式用同一句口诀:五七三十五。
(2)47=口诀是:()
师:用这句口诀还可以计算哪一道乘法算式
(3)口算,并说出用哪一句乘法口诀
737x57427677x17x7
师:根据七七四十九这句口诀,可以写出两个乘法算式吗为什么
三、新课小结,学生质疑
四、巩固练习
1.(出示投影片)回答:一行有7个五角星,2行呢3、4、5,6、7行呢
2.算下面各题,并说出用哪一句口诀。
747x3674x73x776
3.填空。
5()=35()3=216()=24()7=42()()=28()()=14
[评析:设计口答,求和、说口诀,用以巩固新知识。设计填空题,即巩固了7的乘法口诀,又为用7的乘法口诀求商做了渗透。]
4.把7的乘法口诀填人乘法口诀表。
五、课堂小结
这节课你学会了什么(引导学生看板书回答)
[评析:此教案的设计环节分明,结构巧妙,条理清楚,重点突出,板书合理。教学过程和激趣手段很适合低年级学生的年龄特征。
教师在教法的选择上采用了讲、扶、放的方式。讲--一七得七的口诀是边出示小船图边问,写出算式,编出口诀;扶--二七十四的口诀,利用又出示的一条小船图,想几个几,学生自己编出口诀。放--依次出示3条、4条7条小船图,让学生自己列出乘法算式,编出乘法口诀。独立完成,相互交流。充分体现学生利用知识、方法的迁移。主动、自主的获取新知,激发了学生学习的主动性,充分发挥了主导、主体作用,这一点是本节课设计的独到之处。
本教案的练习设计有层次,有坡度,注意了知识间的联系,反馈矫正及时。
整节学生在愉悦的气氛中学习,始终保持饱满的学习热情,教学效果很好,所以说是一篇较好的教案。
教学内容:教材第74页例1、例2,课堂活动
教学目标:
1、能感知除法的意义,感悟乘、除法之间的内在联系。
2、能初步理解乘法算式求商的方法。
3、在用算式表示分东西的过程中体验数学的简捷性,从而激发进一步学好数学的兴趣。
教学重点:能感知除法的意义,感悟乘、除法之间的内在联系。
教学难点:能初步理解乘法算式求商的方法。
教具、学具:视频展示台等
教学过程:
一、创设情景,引入新课
1、出示例1情景图。动物王国举行篮球比赛,小兔高高兴兴地推着4筐篮球出来了。这时小松鼠也来了,他问小兔子:一共拿来了多少个球?
2、你是怎样算出来的?板书48=32
3、森林之王老虎说:请小兔把这32个篮球平均分给4个比赛队,算一算每队分多少个篮球?
⑴反馈。算式怎样列?32除以4等于几,你是怎样算出来的?还可以怎样算?
板书:324=8四八三十二
4、森林之王老虎又说:请小兔把这32个篮球,每8个篮球分给一个队,算一算可以分多少个队?
⑴反馈。算式怎样列?32除以8等于几,你是怎样算出来的?还可以怎样算?
板书:328=4四八三十二
5、你们和小兔子一起学习,解决了3个问题,写出了3个算式,比一比,想一想这3个算式之间有什么关系?
⑴小组讨论。
⑵反馈。
⑶你能举出一个例吗?
总结除法的试商方法。
二、学习例2
1、出示例2。
⑴看图,说出商品的价钱。
⑵提出用除法计算的数学问题?(叙述时语言完整)并列出算式,
板书算式183=
......
⑶怎样求出商?
小组活动。
反馈
⑷完成书上的空。
三、小结
这节课小朋友们知道了什么?你还有什么问题吗?
四、课堂活动
1、书上75页课堂活动1题。
说一说3个算式各表示什么意思?
学生独立看图说说图意,小组交流。
反馈情况。
2、书上76页课堂活动2题。
学生独立完成,连线。
反馈情况。
五、课堂小结
教学目的
1、让学生经历几个相同的数相加还可以用乘法计算的学习过程,初步理解乘法的意义,初步体会乘法和加法的联系和区别;能正确地写、读乘法算式,知道算式中各部分的名称;会通过加法算得乘式的积。
2、使学生在简单的实际问题中抽象出求几个相加是多少的数学问题,并根据数学问题列乘法算式的活动中,培养有条理地思考思考的习惯,提高解决问题的能力。
教学重、难点
1、重点:初步理解乘法的意义。
2、难点:初步体会乘法和加法的联系和区别。
课时划分:
三课时
教学设计:
第一课时:认识乘法(1)
第十周星期一第二节20xx--.0421
教学目的
使学生认识乘号,知道乘法的含义,初步掌握乘法算式读法和算式,知道乘法算式中各部分的名称,培养学生初步的分析、综合、抽象、概括的能力。
教学准备
学具
教学过程
一、导入新课
我们已经学习了加法和减法,从今天开始,我们要学习一种新的算法,这就是乘法,这节课我们先来学习乘法的初步认识。(板书课题:认识乘法(1))
二、新授
1、教学例1。
(1)出示例1图
(2)提问:图中几处有小白兔?每处有几只?一共有几个2只?求一共有多少只小白兔怎样算?
板书:2+2+2=6(只)
图中几处有小鸡?每处有几只?一共有几个3只?求一共有多少只小鸡,怎样算?
板书:3+3+3+3+=12(只)
(3)老师指着算式提问:
这两个算式里加数分别都是几?是几个几相加?的多少?
(4)小结:求小白兔一共有多少只?就是求3各只一共是多少,可以永各连加来算。求小鸡一共有多少只,就是4个3只一共是多少,可以用4个3连加来算。
2、教学试一试
(1)出示试一试图。
(2)提问:横着一排一排地看,每排几朵?有这样的几排?求一共有多少朵?怎样算?求一共的朵数,就是求几个几相加?
教材学情分析:本单元教学两位数乘一位数。两位数乘一位数的积可能是两位数,也可能是三位数,但都在千以内。而三位数乘一位数的积有可能超过1000,因此本单元只教学两位数乘一位数,包括口算、笔算、估算和解决实际问题这四方面内容,具体见下表。
口算
几十乘一位数;不进位的两位数乘一位数
笔算
非整十的两位数乘一位数
估算
两位数乘一位数的积在什么范围内,积大约是多少
解决实际问题
与倍有关的实际问题;用乘法和加(减)法解决实际问题
教学时注意让学生在现实的情境中,通过自己解决问题感悟算法。在学习本单元之前,学生初步认识了乘法的意义,掌握了乘法口诀,能口算表内乘法。教材充分注意数学教学活动必须建立在学生的认知发展水平和已有知识经验基础上,为学生提供现实的、有意义的、富有挑战性的学习材料,通过教学内容引导学生主动地进行观察、猜想、推理、建模、优化等数学活动,从而理解算理、获得算法。同时要注意合理处理估算与精确计算的关系。《标准》指出要加强估算。不单因为估算在日常生活里应用广泛,还因为估算是解决问题的有效手段与方法,能促进数学思考、发展智力。这里的估算不同于传统数学中的近似计算,是把估计与验证看作一种学习策略。本单元里的乘法估算与笔算进位的教学结合在一起同时安排,并在练习和应用中逐步提升。让学生经历逐步抽象的过程,建立倍的概念,解决与倍有关的实际问题。在解决实际问题时,进一步发展解题思路。现在解决问题的教学过程是:进入情境收集、整理信息-学生凭已有经验独立解题-反思解题过程提炼思路。要把解题的步骤与方法作为对象,在再认识的过程中形成思路。
教学重点:掌握两位数乘一位数的计算方法以及相应的估算,会解决简单的数学实际问题。
教学难点:两位数乘一位数连续进位的乘法。
教学要求:
1、使学生经历探索两位数乘一位数算法的过程,理解并掌握两位数乘一位数的计算方法;能正确口算整十数乘一位数以及不进位的两位数乘一位数,能正确笔算两位数乘一位数。
2、使学生在具体的情境中学习两位数乘一位数的估算,掌握把两位数看成与它接近的整十数进行估算的方法,能灵活运用估算解决简单的实际问题,体验估算的作用。
3.使学生在具体情境中初步理解倍的含义,能解决求一个数是另一个数的几倍以及求一个数的几倍是多少的简单实际问题;经历用乘法和加(减)法两步计算解决实际问题的过程,初步掌握分析数量关系的基本方法,提高解决简单问题的能力。
4.使学生经历与他人交流算法的过程,增强合作交流的意识,逐步养成仔细审题、细心计算的良好习惯。
教学课时:16课时
详细介绍:教学目标
(一)借助图画,根据乘法的含义,初步掌握乘法应用题数量关系的分析,会解答乘法应用题.
(二)初步培养学生审题习惯和分析问题的能力.
教学重点和难点
重点:分析乘法应用题的数量关系,解答乘法应用题.
难点:准确地找到被乘数和乘数.
教具和学具
教具:准备3张图画,每张上有一个同学正在给4棵树浇水.
学具:3个圆片,20根小棒.
教学过程设计
(一)复习准备
1.列式计算
3个4相加是多少?(43=12)
5个2相加是多少?(25=10)
2.看图列式计算
先让学生说一说图的意思,再列式解答.
(每瓶有4朵花,3瓶一共有几朵花?3个4是多少?43=12(朵))
(二)学习新课
今天我们学习应用题,板书课题.
1.出示例9
同学们浇树,每个人浇4棵,3个人一共浇多少棵?
指名学生读题.这道题是什么意思呢?
题中的第一个条件是什么?(每人浇4棵树)出示一个女学生提水浇4棵树的图.第二个条件是什么?(有3个人在浇树)贴出第二、第三个学生每人浇4棵树的图.
这道题求的是什么?(3个人一共浇多少棵树)
再把条件和问题联系起来看,指着图:每人浇4棵树,3个人一共浇多少棵树?也就是求3个4是多少?
求3个4是多少用什么法计算?(乘法)相同加数是几(相同加数是4),4作被乘数,相同加数的个数是几(相同加数的个数是3),3作乘数.
列式是:43=12(棵)
口答:一共浇了12棵.
从图上验证一下3个人一共浇了12棵.
2.出示例10
小明买了3个扣子,每个5分钱,一共用了多少钱?
(1)先由学生读题,指名读,每人自己读.
(2)指导学生操作.
第一个已知条件是什么?(小明买了3个扣子)用圆片代表扣子,由学生摆出第一个条件.第二个条件是什么?(每个扣子5分钱)每个扣子5分钱什么意思,在每个圆片上放数字卡片5,表示每个扣子5分钱)如图29.
求的是什么?(3个扣子多少钱)
也就是求图上的哪部分?(3个5是多少?)同时教师在黑板上演示.并在3个图下面画一个括号,并写上?分.
求3个5是多少用什么法?谁当被乘数?谁当乘数?(求3个5是多少,用乘法.5是相同加数,当被乘数,3是相同加数的个数,当乘数)
教师列式;53=15(分)
口答:一共用了1角5分.
提问学生:15分也就是几角几分,因此,可以口答为:一共用了1角5分.引导学生比较:
提问:
(1)这两道题在解题方法上有什么共同的地方?为什么都用乘法?(这两道题都是求几个几的和,所以都用乘法解答)
(2)这两道题已知条件的叙述顺序有什么不同?
(例9第一个已知条件是相同加数,第二个已知条件是相同加数的个数;而例10的两个已知条件的叙述顺序与例9相反,第一个已知条件是相同加数的个数,第二个已知条件是相同加数)
因此,我们在列乘法算式时,要分清哪是相同加数,哪是相同加数的个数,谁当被乘数,谁当乘数.
(三)巩固反馈
1.尝试性练习
下面两道题是什么意思,有什么共同的地方?试一试画一个示意图,进行小组讨论.
(1)小明做数学题,每行有5道,做了2行,一共做了多少道?
(2)小明做数学题,做了2行,每行有5道,一共做了多少道?
讨论结果,两道题都可以用下面的示意图表示:只不过在叙述时两个条件先后位置不同.
________________
________________
________________
________________
________________
________________
都是求2个5是多少,列式是52=10(道).
2.基本练习
课本做一做的第1题和第2题.
第1题指名学生说出表格图的意思,怎样想,再全体列式解答.
第2题指名学生读题.每个人自己想一想,怎样分析,再在书上列式解答,做完后,指名学生说一说怎样想的,怎样列式.
3.发展性练习
做一做的第3题.
小红买了4米带子,每米2角钱,一共用了几角钱?
指名学生解释一下书中的图什么意思,求一共用了几角钱,也就是求什么.
由学生独立列式解答,指名学生说一说为什么2当被乘数,4当乘数.
这道题除了用乘法解答:24=8(角).
你还能想出另一种算法吗?
(2+2+2+2=8(角))
4.课后作业:练习十第1题和第2题.
课堂教学设计说明
这节课是在学生对乘法有初步认识的基础上进行学习的.因此,在引导学生分析乘法应用题时,紧紧抓住根据乘法的含义来分析.首先帮助学生理解题意,如例9中的每个人浇4棵什么意思,把题目中叙述的情境用图表示出来,学生看到形象的图画,很容易联系到乘法的含义,列出乘法算式.例10则要求学生把题意用学具摆出来,目的是培养学生掌握理解题意的方法.例10虽然在叙述顺序上与例9有所不同,但从摆出的图中,一眼看出是求3个5是多少,就能正确列出乘法算式.
为了帮助学生正确选择被乘数和乘数,除了对例9和例10进行对比外,还安排一次尝试性练习.同一件事,叙述顺序不同,意思完全一样,摆出来的是同一幅图,因此,列式是一样的,避免学生认为第一个条件必然是被乘数的错误.
在巩固反馈的最后,安排了一道让学生用两种方法解答的题,其目的是为了沟通乘法和加法之间的联系.
乘法应用题(参考教案二
教学过程:
一、引入新课
出示图片,创设动物学校的活动情境。
谈话:今天我们一起到动物学校去参观。动物学校的大门上写着一些加法算式。出示如下算式:
2+3+65+5+53+7+84+4+4+491+62+2+2+2+2
2+3+6中的三个加数相同不相同?5+5+5中的三个加数相同不相同?谁能根据加数的特点把这些算式分成两类?
二、感知几个几相加
1.教学第一页的例题
出示第一页例题中的场景图,提问:兔子有几只?鸡呢?你是怎么知道的?
根据学生的回答相机板书:
2+2+2=6(只)3+3+3+3=12(只)
提问:第一道算式是几个2相加?第二道算式是几个3相加?这两道算式有什么相同的地方?
2.完成第一页的试一试
(1)让学生摆小棒:每堆摆2根,摆5堆。提问:摆了几个2?求一共摆了多少根小棒,用加法怎样列式?这道算式表示几个几相加?
(2)继续要求学生摆小棒:每堆摆4根,摆3堆。提问:摆了几个4?怎样列式求一个摆了多少根小棒?
三、认识乘法
1.教学第二页的例题
出示第二页例题的场景图。
提问:一共有多少台电脑?你是在那么知道的?根据学生的回答相机板书:2+2+2+2=8
讲述:求4个2相加的和是多少,除了用加法来算,还可以用乘法来算。
(板书:乘法)
教师板书:42=8或24=8。
让学生自学课本,了解乘号、乘法算式中各部分的名称以及乘法算式的读写方法,然后组织交流。教师要关注学习有困难的学生堆这部分内容的掌握情况。
2.完成第二页的试一试
要求学生看图数一数是几个4,再分别列出加法和乘法算式。
比较列出的算式。提问:求5个4相加是多少,哪种写法比较简便?如果求9个4相加是多少,哪种写法比较简便?
让学生通过比较和思考,感知乘法算式的简便。
四、练习应用
1.做想想做做第1、2题
提问:钢笔一共有几个2枝?鲜花一共有几个5朵?怎样列出加法算式和乘法算式?
学生独立完成
2.做想想做做第3题
先自己摆一摆,再列出算式
3.读出第4题中的乘法算式,分别说说乘数和积各是多少。然后写出乘法算式。
4.应用乘法解决问题
提出要求:在日常生活中经常会碰到这种可以用乘法计算的问题。先请大家想一想,在说给同学听一听。
五、课堂总结
教学过程:
1、情境导入
课件出示赛龙舟,你能获得哪些数学信息?
生1:有9条船
生2:每条船上有9个人。
师:能提出什么数学问题?
生3:一共有多少人?
师:谁能列出算式?
生4:99=81。
师:怎么算的?
生4:9个9是81。九九八十一。
师:今天我们就来研究九的乘法口诀。(板书)。
2、编口诀
将书本84页的口诀编完整。时间为2分钟。
展示,并读一读。
师问:三九二十七是怎么编出来的?
生1:在二九十八的基础上再加九。
指名再讲。
师:有没有不一样的方法?
生2:在四九三十六的基础上减去一个九。
师:还有什么想说的?
生3:在四九三十六的基础上再加上九,就是五九四十五。
3、继续编口诀,可以修改。编完了轻轻地读一读。
学生报,师板书:
一九得九
二九十八
三九二十七
四九三十六
五九四十五
六九五十四
七九六十三
八九七十二
九九八十一
4、师问:四九三十六表示什么意思?
指名说,同桌之间说一说其他的口诀表示的意思。
5、找一找口诀的规律。
静静地独立地想一想。
小组内交流你发现了哪几条规律。
汇报:
生1:积是一个比一个大九。
师:你知道为什么会大九吗?刚才是从上往下看,如果从下往上看,可以怎么说?
生1:一个比一个少九。
生2:积的十位上的数字一个一个大1。
师:横着看呢?
生3:十位加个位是九。
师:你能举个例子吗?
师:积的十位上的数字和第一个因数比,你又发现了什么?
生4:积十位上的数字比第一个因数少1。
生5:积个位上的数字和第一个因数加起来的和是10。
6、根据发现的规律来记口诀。
7、课件播放记口诀的手指游戏。
8、指名背一背口诀。
二、练习
1、转盘游戏
2、看图编乘法算式。
三、总结
师:假如今天回家,你爸爸妈妈问你学了什么?你准备怎么说?
一、计算练习
1.完成练习九第1题
(1)先引导观察每一组算式的特征。
(2)说说你发现了什么特征?
(两个乘数的变化情况)
(3)猜一猜,乘数变化引起的积的变化情况。
(4)用口算得出各算式的结果。
(5)用计算结果验证你的猜想。
2.完成练习九第2题
(1)可将算式抄写在口算卡上出示。
(2)学生快速说出算式结果。
(3)补充口算题目
21脳313脳341脳223脳2
14脳212脳320脳330脳7
3.完成练习九第3题
(1)要求学生列竖式计算。
(2)展示学生练习结果。
计算是否正确。
竖式书写是否规范、工整。
二、解决问题
1.完成练习九第4题
(1)认真观察课文插图,找到题目所提供的信息。
(2)说说你知道哪些信息?
3盒这样的巧克力一共有多少块?
(3)列出解决问题的算式,并计算。
(4)同学交流过程与结果。
(要求几个几相加的和,可以用乘法计算)
2.完成练习九第5题
(1)观察插图,用语言描述图中提供的信息。
说说解决前两个问题时分别选择了哪些条件。
(2)独立解答。
(3)全班反馈,发现问题及时纠正。
(4)你还能提出什么数学问题?
三、课堂小结
板书设计
练习九
21脳313脳341脳223脳2
14脳212脳320脳330脳7
一、揭题
这节课我们继续练习笔算乘法。(板书课题)
二、练习
1.口算下面各题。
30脳342脳2650-50
60+300400脳2720-500
2.完成练习十一第1题。
学生独立完成,指名交流。
3.完成练习十一第2题。
1)请学生们练习第一横行、指名板演。
2)集体订正,说一说每题的笔算过程。
3)提问:笔算乘法时要注意什么?
4)小结:笔算乘法时,相同数位要对齐,从个位算起,乘到哪一位积就对齐哪一位写。在计算进位的笔算乘法,在进位以后,下一位相乘时一定不能忘记加上进上来的几。
三、解决实际问题
1.完成第3题。
1)引导学生观察图,指名完整的说题意。
2)生独立完成。
3)指名说说解题过程。
问:为什么要先算15个茶杯一共有多少元呢?
4)小结:在解答这个问题时,认真分析题目中条件与问题的关系,先确定求什么,再求什么,最后解答。
2.完成第4题。
1)生独立读题,说说已知什么,求什么。
2)生独立解答。
3)生说说解题思路。说说先算什么,怎样根据条件求出一共有多少棵大白菜。再算什么?怎么算?
4)集体核对。
3.完成第5题。
1)学生完整的读题,理解题意。
2)生独立完成。
3)指名说说解题思路。
四、课堂小结
1)这节课我们练习了什么内容?
2)需要注意什么?
教学过程:
一、创设情境:
师:森林中住着三只小象,他们三个是好朋友,经常在一起玩,小象决定盖一座大房子三个好朋友一起住,这样可以天天见面。于是他们去森林中运木头,准备盖房子。看他们干得多起劲。(出示主题图)
二、自主探究:
1、观察图说说你看到了什么?你能提出用乘法解决的问题吗?
2、解决这个问题需要哪些信息?
板书:每个小象运两根木头,三只小象一共运几根木头?
3、问:每个小象运两根是什么意思?独立解答,小组合作说一说:你是怎样想的?
求一共运几根木头,也就是求3个2是多少,所以用乘法计算。
算式是23=6(根)
三、拓展运用:
1、练习十二第1题。
先教育学生植树造林保护环境。然后认真观察画面,找出解决一共浇多少棵树?所需的信息数据,列式解答,说一说你是怎样想的?
2、练习十二第2题。
学生独立完成,说一说:题里说的是什么事,要求解决什么问题,怎样解决这个问题。
3、练习十二第3题。
先了解每种商品的价钱,独立解决提出的两个问题。
再提出用乘法计算的问题。
4、59页做一做。
出示情境图,学生自己寻找信息提出用乘法计算的问题,再独立解答。
6、开放题:森林餐厅每张桌子能坐4个人,还有5张空桌,有22位客人坐得下吗?
课后小结:
教学目标:
知识点:1、使学生知道乘法应用题的结构,初步学会根据乘法的含义解答求相同加数和的乘法应用题。
2、理解数量关系,明白为什么用乘法计算。
能力点:培养学生的思维能力、语言表达能力和初步的分析能力以及运用知识解决简单实际问题的能力。
德育点:培养学生认真审题的良好习惯和合作交流的意识。
教学重点:初步学会根据乘法的含义解答求相同加数和的乘法应用题。
教学难点:理解数量关系,明白为什么用乘法计算。
课题6的乘法练习课
1、教学目标:使学生进一步理解6的乘法口决的意义,熟记口决,会用一句口决算有关的两个乘法算式。
2、教学重点、难点:熟记口决,会用一句口决算有关的两个乘法算式
3、教具、学具准备:小黑板、投影机
4、教学过程:
步骤师生活动修改意见
1.口算
61641254
62654231
63662334
二、根据口决说出两个乘法算式
二四得八三五十五一三得三四五二十
三四十二二五一十三六十八四六二十四
三、在○里填上+、_或
4○4=8
3○3=9
6○6=364○4=163○3=6
6○6=124○4=0
3○1=2
4○2=81、乘法口决比赛
2、看乘法式题卡片写得数
32443622653466242616
3、先把有关的条件和问题连起来,再计算
妈妈买来4袋桔子,每袋5斤,一共几袋?
妈妈买来4袋桔子,5袋苹果,一共有几斤?
4、口头提出问题或条件再算出来
①6个少先队员做纸花,每人做4朵()?
②少先队员做了24朵纸花,送给幼儿园小朋友8朵,()?
复习填括号练习
1、做62页第3题
2、做练习十三第2、5、7题
本文会向大家推荐一篇题为“有理数的加法课件”的精选文章,帮助读者更加全面了解相关信息。教案课件在教师的教学过程中不可或缺,每位教师都需要制定自己的教案课件。优秀的教案编写是教师教育和教学实践能力的必要体现。欢迎大家阅读参考!
第一课时
三维目标
一、知识与技能
理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。
二、过程与方法
引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力。
三、情感态度与价值观
培养学生主动探索的良好学习习惯。
教学重、难点与关键
1.重点:掌握有理数加法法则,会进行有理数的加法运算。
2.难点:异号两数相加的法则。
3.关键:培养学生主动探索的良好学习习惯。
四、教学过程
一、复习提问,引入新课
1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?
2.比较下列每对数的大小。
(1)-3和-2; (2)│-5│和│5│; (3)-2与│-1│;(4)-(-7)和-│-7│。
五、新授
在小学里,我们已学习了加、减、乘、除四则运算,当时学习的`运算是在正有理数和零的范围内。然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?
要解决这个问题,先要分别求出它们的净胜球数。
红队的净胜球数为:4+(-2);
蓝队的净胜球数为:1+(-1)。
这里用到正数与负数的加法。
怎样计算4+(-2)呢?
下面借助数轴来讨论有理数的加法。
看下面的问题:
一个物体作左右方向的运动,我们规定向左为负、向右为正。
(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?
一、教材分析
1.地位和作用
本节课是在学生学习有理数加法法则的基础上,经历探索有理数加法运算律的探索过程,理解和把握有理数加法运算法则,并能运用加法运算律简化计算,为后面学习有理数减法做好铺垫。
2.学情分析
学生在小学学过加法运算,知道加法的交换律和结合律,学生在上一课时已经探索总结出了有理数的加法法则,并进行了一定量的练习,但熟练程度还不够,并且对过去的加法交换律和结合律是否对有理数适用未进行探讨。
3.教学目标
知识与技能:
1.进一步熟练掌握有理数加法的法则。
2.掌握有理数加法的运算律,并能运用加法运算律简化运算。过程与方法:
启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。
情感、态度与价值观:
1.培养学生的分类与归纳能力。
2.强化学生的数形结合思想。
3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。教学重点:加法运算律的灵活运用,解决实际问题。
教学难点:能运用加法运算律简化运算,加法在实际中的应用。
二、教学方法与教材处理
1.教学方法:
采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。.引导学生类比探究有理数加法运算律,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.
2.学法引导
学法突出自主探索、研讨发现.知识是通过学生自己动口、动脑,积极思考、主动探索获得.学生在讨论、交流、合作、探究活动中总结有理数的运算律.在活动中注重引导学生体会用类比和数形结合的方法扩展知识的过程,培养学生学习的主动性和积极性.
3.设计理念
教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。
本节课的教学,是在学生已有的加法知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动。
三、教学过程根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.本节课的教学设计环节:
◆前提诊测,复习提问:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判定”,所诊测的有理数的加法法则与新的内容有关。
◆提出问题,创设情景:在有理数的运算中,加法的交换律,加法的结合律还成立吗?从而提出研究有理数加法运算律的问题。
◆尝试指导,实施目标:从实例出发,让学生体会运用加法运算律可以简化运算.多个有理数相加,往往既是运用交换律,又运用结合律.
◆变式练习,巩固目标:为了更好地理解、把握有理数加法法则,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了4个由浅入深的练习题。
◆归纳总结,纳入知识系统:由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题.
【目标预览】
知识技能:1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;
2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。 数学思考:1、正确地进行有理数的加法运算;
2、用数形结合的思想方法得出有理数加法法则。
解决问题:能运用有理数加法解决实际问题。
情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。
【教学重点和难点】
重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算; 难点:异号两数如何相加的法则。
【情景设计】
我们来看一个大家熟悉的实际问题:
足球比赛中进球个数与失球个数是相反意义的量.若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:-2。它们的和为净胜球数:(+3)+(-2)学校足球队在一场比赛中的胜负情况如下:
(1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(-2)
(2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(-1)
这里,就需要用到正数与负数的加法。
下面,我们利用数轴一起来讨论有理数的加法规律。
【探求新知】
一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?
(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢? 利用数轴演示(如图1),把原点假设为运动起点。
两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①
利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:
(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?
(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?
(4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?
(5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?
(6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?
(7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?
总结:依次可得
(2)(-5)+(-3)=-8②
(3)5+(-3)=2③
(4)3+(-5)=-2④
(5)5+(-5)=0⑤
(6)(-5)+5=0⑥
(7)5+0=5或(-5)+0=-5⑦
观察上述7个算式,自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
【范例精析】
例1计算下列算式的结果,并说明理由:
(1)(+4)+(+7);(2)(-4)+(-7);
(3)(+4)+(-7);(4)(+9)+(-4);
(5)(+4)+(-4);(6)(+9)+(-2);
(7)(-9)+(+2);(8)(-9)+0;
(9)0+(+2);(10)0+0.
学生逐题口答后,教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)
=-(3+9)(和取负号,把绝对值相加)
=-12.
例3 足球循环比赛中,红队胜黄队4﹕1,黄队胜蓝队1﹕0,蓝队胜红队1﹕0,计算各队的净胜球数。
解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。
三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=2;
黄队共进2球,失4球,净胜球数为(+2)+(-4)= -2;
蓝队共进1球,失1球,净胜球数为(+1)+(-1)=0;
【一试身手】
下面请同学们计算下列各题:
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
全班学生书面练,四位学生板演,教师对学生板演进行讲评.
【总结陈词】
1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。
2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。
【实战操练】
1.计算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);
(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);
(7)33+48;(8)(-56)+37.
2.计算:
(1)(-0.9)+(-2.7);(2)3.8+(-8.4);
(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.
3.计算:
4*.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
5*.分别根据下列条件,利用|a|与|b|表示a与b的和:
(1)a>0,b>0;(2) a<0,b<0;
(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.
第一课时
三维目标
一、知识与技能
理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。
二、过程与方法
引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力。
三、情感态度与价值观
培养学生主动探索的良好学习习惯。
教学重、难点与关键
1.重点:掌握有理数加法法则,会进行有理数的加法运算。
2.难点:异号两数相加的法则。
3.关键:培养学生主动探索的良好学习习惯。
四、教学过程
一、复习提问,引入新课
1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?
2.比较下列每对数的大小。
(1)-3和-2; (2)│-5│和│5│; (3)-2与│-1│;(4)-(-7)和-│-7│。
五、新授
在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内。然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?
要解决这个问题,先要分别求出它们的`净胜球数。
红队的净胜球数为:4+(-2);
蓝队的净胜球数为:1+(-1)。
这里用到正数与负数的加法。
怎样计算4+(-2)呢?
下面借助数轴来讨论有理数的加法。
看下面的问题:
一个物体作左右方向的运动,我们规定向左为负、向右为正。
(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?
一、教学目标
(一)知识与技能
1、使学生掌握有理数加法法则,并能运用法则进行计算;
2、在有理数加法法则的教学过程中,注意培养学生的运算能力。
(二)过程与方法
1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
(三)情感、态度与价值观
1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。
二、教学重点
会用有理数加法法则进行运算。
三、教学难点
异号两数相加的法则。
四、教学方法
探究法、引导发现法
五、教具准备
多媒体课件、导学案
六、教学过程
(一)创设情景,引入新课。
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把你们认为可能的所有答案说出来。
(二)探究新知
1、大家开始画数轴,以原点为起点,规定向右的方向为正方向,向左的方向为负方向。
(1)若两次都是向右走,很明显,一共向右走了5米。
记作:(+2)+(+3)= +5
(2)若两次都是向左走,很明显,一共向左走了5米。
记作:(-2)+(-3)= -5
(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。
记作:(+2)+(-3)= -1
(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。
记作:(-2)+ (+3)= +1
2、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。我们可以借助数轴来得知两个有理数相加的结果。请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。
1、(-4)+ (-1) 2、 (+5)+(-3) 3、 (-4)+(+7) 4、 (-6)+3
3、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。但对于如1700 +(-1800),1.2 +(-5.34)这样的数字在数轴上就不容易表示出来了,怎样才能迅速准确地计算出来呢?
师生讨论、归纳出有理数的加法法则:
①同号两数相加,取相同的符号,并把绝对值相加;
②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;
除此之外,有理数相加,还有其他情况
(1)第一次向左走3米,第二次向右走3米,则小明仍位于出发点。
记作:(-3)+(+3)= 0
(2)第一次向右走3米,第二次向左走3米,则小明仍位于出发点。
记作:(+3)+(-3)= 0
(3)第一次向左(向右)走了3米,第二次在原地不动,则小明位于原来位置的左方(或右方)3米。
记作:(-3)+0 = +3 或(+3)+0 = 0
归纳为:
③互为相反数的两个数相加得0;
④一个数同0相加,仍得这个数。
(三)运用新知
1、例题讲解:(利用多媒体展示)
例1: 计算下列各题:
(1)180 +(-10); (2)(-10)+(-1);
(3)5 +(-5); (4)0+(-2)。
教师引导学生先观察符号特征,再教师示范写出过程,并强调题的类型每一步的理由。
解:(1)180+(-10)(异号型 )
=+(180-10)(取绝对值较大的数的符号,
=170 并用较大的绝对值减去较小的绝对值)
(2)(-10)+(-1) (同号型)
=-(10+1) (取相同的符号,并把绝对值相加)
=-1
对于(3)、(4) 小题,让学生解答。
在讲完例题后,教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话:①确定类型、②确定符号、③确定绝对值。
2、练习
(1)(口答)确定下列各题中的符号,并说明理由:
①(+3)+(+6); ② (-6) +(-7)
③ (+12)+(-7) ④ (+5)+(-10)
(2)计算下列各式:
①(-25)+(-7); ②(-13)+5;
③(-23)+ 0; ④ 45 +(-45)。
(3)土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?
(4)某升降机第一次上升6米,第二次下降7米,第三次又上升5米,此时升降机在初始位置的_____方(填"上"或"下")相距____米。
(四)课时小结:
1、这节课你学到了什么?
2、对于这节课你有什么困惑?
(五)布置作业
课本练习1题、2题。
2 + 3 = 5
(—2)+(—3)=—5
2 +(—3)=—1
(—2)+ 3 =1
(—2)+ 2 = 0
0 + 3 = 3
0 +(—3)= —3
同号两数相加
绝对值不相等的异号两数
异号两数相加
绝对值相等的异号两数
一个数同0相加
(法则归纳)
先定符号,再算绝对值
教学设计的说明
布鲁纳的认知理论认为:人的认知过程要经历一个从“实物操作”到“表象操作”再到“符号操作”的过程,这时知识才真正内化到人的认知结构。我觉得,这种认知规律是我在这堂课的教学的设计过程中应该遵循并且努力实现的
《有理数的加法》是一堂纯粹的运算技能课,如何在这种我们认为理所当然而学生茫然无知的课上让学生感觉自己是知识的主人,有主动探索发现的权利是我备课时反复琢磨的一个主题,怎么才能把一堂传统的“教、记、练”的课有效地发挥教师的引导作用从而使课堂富有生命力真正培养学生的各方面能力更是我所追求的我想,数学就应该是这样一种在具体、半具体、半抽象、抽象中间的铺排,是穿梭于实物与算式之间的一种形式化过渡。
弗兰德对师生语言互动进行分类时认为,课堂上教师的讲与学生的讲有三种交流方式:回应、中立、自发,在这堂课上,我希望学生能自发地运用语言表述他们的需要与探索,我充分设想学生的可能困难同时又充分相信学生、充分调动学生的积极性与参与意识,让他们的思维动起来、跳起来再沉下去,让学生思维从形式化过渡到符号化、数字化,让学生真正成为课堂的主人。
一、教学内容分析
本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。
二、学习者分析
七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。
三、教学目标
1、使学生掌握有理数加法法则,并能运用法则进行计算;
2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
四、信息技术应用分析
由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。
五、教学过程
1、复习提问,引入新知
通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。
2、出示问题情境、解决新知
在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。
3、探索发现,归纳新知
利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。
学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。
4、展示例题、应用新知
此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。
5、达标训练,巩固新知
本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。
6、规律总结,升华新知
本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。
7、作业和运用,拓展新知
通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。
幼师资料《有理数的乘法课件(范例9篇)》一文希望您能收藏!“幼儿教师教育网”是专门为给您提供幼师资料而创建的网站。同时,yjs21.com还为您精选准备了有理数乘法课件专题,希望您能喜欢!
相关文章
最新文章