小学6年级数学教案第五单元
小学6年级数学教案第五单元 2025-12-12
作为一名优秀的教师,精心设计教案至关重要,它能有效推动教学活动的顺利进行。以下是为小学六年级数学第五单元整理的教案,供大家参考和借鉴,希望能对需要的朋友有所帮助。
⬭ 小学6年级数学教案第五单元
教学内容:
教科书第81、82页练习十五第6—11题。
教学目标:
1、进一步理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,并能根据运算律和运算性质进行一些分数的简便运算。
2、在学习分数四则混合运算的过程中,进一步积累数学学习的经验,用分数四则混合运算解决一些实际问题。
教学重、难点:
根据整数的运算律和运算性质对分数四则混合运算进行简便计算。
教学措施:
设计相应的计算题和实际问题,关注学习困难生的学习情况。
教学准备:
教学光盘及补充题
教学过程:
一、基本练习
1、练习十五第6题。
学生先回忆等式的性质,指名说一说。
观察每个方程,说说方程的特点。
提示:都要把方程的左边进行化简,再应用等式的性质求方程的解。
学生独立解每个方程,指名板演,进行讲评,提醒学生自觉进行检验。
2、计算下列各题,能简算的要简算。
(7/8—2/3)×(7/10+1/5)(2/5+1/3)÷4/5+3/4
3/10÷[1/2×(2/5+4/5)] 7/16÷1/10—7/16÷1/9
(1—1/6÷5/12)×7/6(4/25×99+4/25)÷1/8
学生独立计算,每人任选三题,同时指名学生板演。
教师结合学生板演情况进行讲评并及时总结分数四则混合运算的运算顺序。
3、练习十五第8题。
(1)图中告诉我们哪些信息,你会计算梯形的面积吗?
(2)学生独立列式计算,任选一题。
4、练习十五第9—11题。
(1)分析第9题,学生先读题并列出算式,然后请学生说说解题思路。
(2)分析第10题,先说说数量关系再列算式,要让学生明白要求两个小队平均每人采集树种多少千克,先要算这两个小队一共采集树种的千克数和这两个小队的`总人数。
(3)分析第11题,解决每一问时鼓励学生说数量关系并注意第2小题与第3小题之间的联系。
二、拓展练习
解决实际问题:m.yjS21.COm
1、一个食堂,星期一用去煤气7/4立方米,星期二用去煤气3/2立方米,两天用的煤气量占本周计划用气量的3/8。这一周计划用多少立方米煤气?
2、工程队运来黄沙9/2吨,运来的水泥比黄沙重量的2/3少1/5吨。黄沙和水泥一共运来多少吨?
3、小华看一本120页的故事书,前3天看了总页数的3/4,后2天准备按1:2看完剩下的页数,最后一天要看多少页?
三、全课总结
进行分数四则混合运算时不仅要注意运算顺序,还要注意分数加、减法与分数乘、除法的计算方法的不同,必须看清什么时候需要通分,什么时候需要先约分再计算;解决实际问题时要认真读题,分析数量关系再列式解答。
四、布置作业
练习十五第7、9、10、11题。
⬭ 小学6年级数学教案第五单元
教学目标:
1、结合具体事例,经历综合运用所学知识解决合理购物问题的过程。
2、了解合理购物的意义,能自己做出购物方案,并对方案的合理性作出充分的解释。
3、体验数学在解决现实问题中的价值,丰富购物经验。
重难点分析:
教学重点:学会理财,能对自己设计的理财方案作出合理的解释。
教学难点:能对自己设计的理财方案作出合理的解释。
教学过程
一、创设情境
师:同学们,现实生活中,商家为了吸引顾客或扩大销售量,经常搞一些促销活动,谁来说一说,你都知道哪些促销方式?
师:同学们知道的可真多,日常生活中,我们如何利用商家的促销手段,学会合理购物呢?
二、促销问题
(一)观察情境图,先了解方便面的三种包装和一袋的价格,计算出其他两种包装的价格写在书上,再了解三个商店的优惠条件。
师:这节课,我们就来研究购物问题。
板书:学会购物
师:同学们打开书第80页,看方便面促销问题,认真观察上面的图,说说你们从图上都发现了哪些信息?
师:一袋方便面1.5元,5袋一包的多少钱?24袋一箱的多少钱?
师:三家商店都买这种方便面,他们推出了不同的优惠条件。看图,说一说甲、乙、丙三个店的优惠条件各是什么?
生:我发现甲店是“买一包送一袋,买一箱送一包。”乙店是打九折优惠;丙店是购物达到30元就能打八折优惠。
(二)提出:不计算,判断买一袋方便面去哪家商店合适的问题,学生发表意见后,再
讨论“买2袋、3袋呢?”“买几袋才能享受甲店的优惠条件?”
师:作为消费者,买同样的东西肯定愿意买便宜的,也就是少花钱。同学们不计算,你能判断出买1袋方便面去哪家店合适吗?
生:在乙店合适,因为买一袋在甲店、丙店都得不到优惠。
师:那买2袋、3袋呢?
生:买2袋、3袋也不行。
师:买几袋才能享受到甲店的优惠条件呢?
生:买5袋或5袋以上就可以得到甲店的优惠条件。
(三)提出:买5袋方便面在哪个店合适的问题。学生计算后,全班交流。
师:你们真聪明。那么,如果要买5袋,算一算,甲店便宜还是乙店便宜?
学生算完后,指名回答。
(四)先讨论买7袋方便面在甲店可以怎样买,再让学生计算买7袋方便面在哪个商店合适,然后交流。
师:现在如果想买7袋方便面,在甲店可以怎样买?
生:只买6袋就行了。因为商店会送一袋。
师:真聪明,那就是说,要买7袋,只算6袋的钱就可以了。那大家算一算,买7袋方便面,在哪个商店买比较合适?
学生自己计算,然后交流。
甲店:1.5×6=9(元)
乙店:1.5×7×90%=9. 45(元)
结论:甲店合适。
(五)提出:买几袋方便面到乙店就比较合适的问题,鼓励学生自主计算。然后,交流学生探索的过程和结论。
师:通过比较计算结果,买7袋去甲店合适。那么买几袋方便面到乙店就比较合适呢?请同学们自己算一算。
学生自主计算,教师个别指导。
师:谁来说一说你是怎样做的,结果是什么?
如果有学生算到10袋就推出结论,给予表扬。
(六)提出:买10袋方便面能享受丙店的优惠条件?得到否定的答案,并算出买20袋才能达到丙店的优惠条件。
师:现在,请同学们想一想,买10袋方便面能享受丙店的优惠条件吗?
生:不能。因为买10袋方便面才花10元钱,不够丙店的优惠条件。
师:那买多少袋方便面才能达到丙店的优惠条件呢?请同学们算一算。
学生计算后汇报:
生:30÷1.5=20(袋),买20袋才能达到丙店的优惠条件。
(七)提出问题(4)启发学生计算,然后用计算法等说明问题的原因,进一步认识到“合理购物”的意义。
师:看来丙店的优惠条件不是很容易享受到的。请同学们课件中第(4)个问题。两位同学都在丙店买方便面,奇怪的是,李明花钱多买的少,而王强花钱少买的多,这是为什么?
请同学们讨论,并算一算是什么原因。(学生独立计算)
师:谁能解释这到底是为什么?
生1:李明只花了27元不够丙店的优惠条件。
生2:因为王强买了20袋,20×1.=30(元),可以打八折优惠,所以只花了24元,20×1.5×80%=24(元)
师:通过这两位同学的经历,你们有什么收获?
生:在购物时,一定要先算一算在哪家购物合适,才去买,就能充分利用商家的促销手段,少花钱多购物。
(八)出示“议一议”问题,启发学生可以算一算,然后,交流解决问题的方法和结果。
师:那么现在请大家发挥你的聪明才智讨论一下,如果买35袋方便面,怎样买比较合适?也可以算一算。
给学生思考和计算的时间。
师:谁愿意说说你是怎样判断的,结果是什么?
师:比较这几位同学的方案,哪一种比较合适?
结论:在丙店买最合适。
师:比较一下上面几种购买方案,我们发现,最合适的'要少花5元多钱,所以,购物时我们要根据购物多少的不同,选择不同的商店,充分利用商家的优惠政策,就能够少花钱多购物,这种“合理购物”。
三、有奖销售
(一)出示“购物广场”上的销售广告,学生阅读了解广告中的数量信息。
师:为了促进销售,商家还会搞另外一种促销方式——有奖销售。现在让我们到购物广场去看一看吧。打开书77页,读一读上面的销售广告。
学生阅读“购物广场”上的销售广告。交流一下广告中的信息。
(二)出示问题(1),计算奖金额和中奖率。
师:根据这则广告,请同学们算一算,这次有奖销售活动的奖品总金额是多少元?中奖率是百分之几?
学生独立思考并计算。然后全班交流。
1、奖品总金额:500×10+100×20+50×60=10000(元)
2、中奖率:(60+20+10)÷1000=9%
(三)出示问题(2),学生计算销售额,并分析奖金额与销售额之间的关系,进一步认识“有奖销售”的意义。
师:谁知道如果奖券已经全部发出,商家至少卖出了多少元的商品?
生:商家每发出一张奖券,说明至少已卖出了100元商品,所以1000张奖券全部发完,1000×100=100000(元),商家至少卖出10万元的商品。
师:为什么用“至少”这个词?
生:因为还有很多顾客买的商品不足100元或超过整百的余额部分不能领取奖券,我们无法计算。
师:那么奖金额至多占销售额的百分之几?
学生计算后汇报。
生:奖金额是10000元,而销售额是100000元,10000÷100000=10%,奖金额最多占销售额的10%。
师:至多“10%”说明了什么?
生:说明最多占10%,很可能不到10%。
师:算一算,这次有奖销售,商家计划让利给顾客多少钱?
生:1万元。
四、分析讨论
(一)教师谈话,提出问题(3),让学生自主计算。
师:很好。我们了解到这个商家有奖销售让利给顾客1万元,现在我们换一种方式比较一下,如果这10万元的商品全部按八五折销售,同学们算一算,会让利给顾客多少元?
学生独立思考、计算。生:100000—100000×85%=15000(元)
(二)分别提出“议一议”的两个问题,让学生充分发表自己的意见。教师进行正确引导。
师:请同学们对比一下这两种结果,你有什么感想?
师:那么如果你是顾客,你会选择哪种销售方式?为什么?
师:大家都可以有不同的想法,但是,我们还是小学生,不能单独参与抽奖活动。如果要做,也要在大人的带领下去做。
⬭ 小学6年级数学教案第五单元
教学内容:
教材第68—69页含有圆的组合图形的面积。
教学目标:
1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
教学重难点:
组合图形的认识及面积计算、图形分析。
教具学具准备:
多媒体课件、各种基本图形纸片。
教学设计:
⊙创设情境,认识圆环
1.师:我们来欣赏一组美丽的图片。
课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……
2.同学们,你们从图中发现了什么?(它们都是环形的)
3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。
你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?
(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)
- ⬬幼儿教师教育网晨间知识充电站:
- 小学6年级数学教案第五单元 | 小学6年级数学教案 | 小学苏教版五年级下册第五单元数学教案 | 小学三年级数学教案人教版下册第五单元 | 小学6年级数学教案第五单元 | 小学6年级数学教案
4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)
设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。
⊙探索交流,解决问题
1.画一画,剪一剪,发现环形特点。
(1)画一画。
让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。
(学生按照要求画圆)
(2)剪一剪。
指导学生先剪下所画的'大圆,再剪下所画的小圆。
问:剩下的部分是什么图形?(环形)
师:我们也称它为圆环。
(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?
生明确:圆环是从外圆中去掉一个内圆得到的。
(4)借助图示认识圆环的各部分名称。
你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)
①外圆:又名大圆,它的半径用R表示。
②内圆:又名小圆,它的半径用r表示。
③环宽:指外圆半径和内圆半径相差的宽度。
2.探究圆环面积的计算方法。
(1)小组讨论,怎样求圆环的面积?
(2)汇报讨论结果。
(3)小结:环形的面积=外圆面积-内圆面积。
设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。
3.课件出示例2。
光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?
(1)学生读题。
观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?
(2)学生试做,指生板演。
(3)交流算法,学生将列式板书:
解法一
外圆的面积:πR2=3。14×62
=3。14×36
=113。04(cm2)
内圆的面积:πr2=3。14×22
=3。14×4
=12。56(cm2)
圆环的面积:πR2-πr2=113。04-12。56
=100。48(cm2)
解法二
π×(R2-r2)=3。14×(62-22)=100。48(cm2)
答:圆环的面积是100。48cm2。
(4)比较两种算法的不同。
(5)小结:圆环的面积计算公式:S=πR2-πr2或
S=π×(R2-r2)(板书公式)
(6)讨论。
知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)
①知道内、外圆的面积,可以计算圆环的面积。
S环=S外圆-S内圆
②知道内、外圆的半径,可以计算圆环的面积。
S环=πR2-πr2或S环=π×(R2-r2)
③知道内、外圆的直径,可以计算圆环的面积。
④知道内、外圆的周长,也可以计算圆环的面积。
S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2
或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]
⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。
S环=π×[(r+环宽)2-r2]
或S环=π×[R2-(R-环宽)2]
……
设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。
⊙巩固练习,拓展提高
1.完成教材68页1题。
学生独立完成,然后在班内说一说解题思路。
2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?
3.已知阴影部分的面积是75cm2,求圆环的面积。
[引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]
设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。
⊙反思体验,总结提高
这节课我们学习了什么?你有哪些收获?还有什么问题?
⊙布置作业,巩固应用
1.完成教材72页8题。
2.找一些关于环形的资料读一读。
板书设计
圆环的面积
圆环面积=外圆面积-内圆面积
S环=πR2-πr2或S环=π×(R2-r2)
- 幼儿教师教育网小编为您推荐小学6年级数学教案第五单元专题,欢迎访问:小学6年级数学教案第五单元
.png)
.png)
.png)