最新质因数课件(模板9篇)

06-21

俗话说,手中无网看鱼跳。。在幼儿园教师的生活工作中,时常需要提前准备资料作为参考。资料通常是指书籍、报刊、图表、图片等。参考资料有助于我们的工作进一步发展。所以,你是否知晓幼师资料到底是怎样的形式呢?小编特别整理来自网络的最新质因数课件(模板9篇),更多相关信息请继续关注本网站。

质因数课件【篇1】

教学目标

(一)理解质因数、分解质因数的意义。

(二)会把一个合数分解质因数,掌握用短除式分解质因数。

(三)培养学生观察分析,概括的能力。

教学重点和难点

(一)质因数与分解质因数的意义。

(二)用短除式分解质因数。

教学用具

投影片。

教学过程设计

(一)复习准备

1.请说出1~12这些数中的质数和合数。(投影片)

学生口答后,投影出示答案:

①2,3,5,7,11是质数;

②4,6,8,9,10,12是合数。

2.说一说质数与合数的区别?

3.请想一想,第1题答案中的两组数,哪一组数能分成比它本身小的两个数相乘的形式?哪一组不能?为什么?

学生口答后,老师指出:像这样的数,即合数,因为它们除了1和本身外,还有别的约数,所以都可以用几个比本身小的数相乘的形式表示出来。这节课就来研究要求连乘式子里的因数都是质数的情况。

(二)学习新课

1.质因数的意义,分别质因数的意义和方法。

(1)板书例36,28和60可以写成哪几个质数相乘的形式?

教师板书出6,学生口答后,老师再用塔式分解式写出2,3,圈上。

教师:用算式如何表示,学生口答后老师板书;6=23。

教师板书出28,学生口答后,老师按塔式分解式写出:4,7,7是质数,圈上。问:4老师为什么没圈?(4不是质数,继续分解。)

板书;2,2,圈上。请用算式表示。板书;28=227。

教师:请用上面的方法把60分成几个质数相乘的形式。老师巡视中请一位同学板书出塔式分解式和算式。(如下)

(2)教师:请观察,(指塔式分解式和算式)每个合数都写成什么形式?(每个合数都写成了几个质数相乘的形式。)

教师:这些质数,在式子里与原来的合数是什么关系?(这些质数都是原来合数的因数。)

教师:像这样,把一个合数写成几个质因数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。板书:质因数。教师:请说一说什么是质因数。

请说一说上面三个算式中谁是谁的质因数。

针对学生口答,老师说明:讲质因数时,要说出这个质数是哪个合数的质因数,不能单独说一个数是质因数。

教师:(指上面的式子)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。(板书:分解质因数的意义)这就是这节课研究学习的内容。(板书课题:分解质因数。)

(3)口答练习:(学生口答后老师板书)

把24,36分解质因数。

2.用短除式分解质因数。

教师:为了简便,通常用短除法来分解质因数。

介绍步骤:

第一步,用能整除6的质数2去除,商3;

第二步,3是质数;

第三步,把除数和最后的商相乘。

教师:试用短除式分解28。(学生口答老师板书)

教师:第一步做什么?

14是最后结果吗?第二步做什么?

第三步做什么?

教师:请观察上面两个短除式中的除数和最后的商,都是什么数?(质数。)

(2)请一位同学板书把60分解质因数。其余同学在本上试把18和42分解质因数(两位同学写投影片)。

教师:请观察短除式,第二步与第三步的做法有什么相同点和不同点?

学生讨论后,归纳:这两步除的方法与第一步相同,也就是说那一步除得的商如果是合数,就照同样的方法继续去除,除到最后商为质数为止。

用学生投影片订正把18和42分解质因数的短除式。

(3)谁能说一说用短除式分解质因数的步骤吗?

学生口答后教师归纳。并作简要板书:

第一步:先用一个能整除这个合数的质数(通常从最小的开始)去除;

第二步:看上一步除得的商,如果商是合数,就照上面的方法继续除下去,直到得出的商是质数为止;第三步:把各个除数和最后的商写成连乘形式。

(三)巩固反馈

1.口答填空。(投影片)

①18的质因数有();5和7是()的质因数。

②分解质因数。

2.判断正误。对的画,错的画并找出错误原因。(学生用反馈牌)

①2和5是质因数;()

②一个合数的约数,就是它的质因数;()

③24分解质因数:24=12223;()

④8分解质因数:8=222;()

⑤30分解质因数:30=56;()

⑥21分解质因数:37=21。()

3.用短除式把34,54,72分解质因数。

(四)课堂总结和课后作业

1.质因数,分解质因数。

2.用短除法分解质因数。

2.作业:课本P63练习十三:7,8,9。

课堂教学设计说明

本节内容是在学生已经掌握了求一个数的约数的方法和质数,合数概念的基础上进行的。先安排学生列塔式分解式对具体数进行分解,让学生清楚地认识到质因数是一个合数的因数,同时还必须是质数的双层含义。在学习用短除法分解质因数时,让学生按照:了解格式,试算,归纳分解步骤这几步进行,这样使学生能准确把握住用短除式分解质因数的关键和方法,也培养了学生观察,分析和概括的能力。

新课教学分为两部分。

第一部分学习质因数与分解质因数的意义和方法。共分为三层,写塔式分解式对合数进行分解;归纳质因数,分解质因数的意义;会用塔式分解式分解质因数。

第二部分学习用短除式分解质因数。分为三层。掌握用短除法分解质因数的方法;巩固用短除式分解质因数的方法;归纳用短除法分解质因数的步骤。

质因数课件【篇2】

教学过程

一、创设情境

1.谁能说说什么是约数?

2.请写出自己学号的所有约数。

二、揭示课题

我们学过求一个数的约数,那么每个数的约数的个数又有什么规律?下面我们一起来观察。

三、探索研究

1.学习质数和合数。

(1)请同学报出你们学号的所有约数?(根据学生的回答板书)

(2)观察:①每个约数的个数是否完全相同?②按照每个数的约数的多少,可以分几种情况?(学生讨论后归纳)

(3)可分为三种情况:(让学生填)

①有一个约数的数是:。

这些数中②有两个约数的数是:。

③有两个以上约数的数是:。

(4)再观察。

①有两个约数的如:2、3、5、7、11、13、17、19等。这几个数的约数有什么特征?

讲:一个数,如果只有1和它本身两个约数,我们把这样的数叫做质数(或素数)。

②4、6、8、9、10、12、14、15这些数的约数与上面的数的约数相比有什么不同?

讲:一个数,如果除了1和它本身两个约数外还有别的约数,我们把这样的数叫做合数。(板书合数)

请学号是合数的同学举手,点两名同学板演学号,大家检查。

③请学号既不是合数也不是质数的同学举手并报出学号,大家检查。

④学生看书第59页,读书上的小结语。

2、质数、合数的判断方法。

(1)根据什么判断一个数是质数还是合数?

(2)教学例2。

让学生独立写出后讲所写的数为什么是质数(或合数)。

四、课堂实践

1.做教材第60页的做一做。

2.做练习十三的第1题。

(1)按要求去做后看剩下的数都是什么数?

(2)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如第59页的100以内的质数表。(或者看6的倍数的左右)

3、做练习十三的2、4题。

五、课堂小结

学生小结今天学习的内容。

质数只有两个约数。

自然数(按约数的个数分为)合数两个以上的约数

1只有1个约数

六、课堂作业

1、做练习十三的第3题。

2、你知道吗?

课题二:分解质因数

教学要求①使学生理解质因数和分解质因数的概念。②初步学会分解质因数的方法。③培养学生分析和推理的能力。

教学重点①质因数和分解质因数的概念。②分解质因数的方法。

教学难点分清因数和质因数,质因数和分解质因数的联系和区别。

教学用具投影仪。

教学过程

一、创设情境

1.回答:什么叫做质数?什么叫做合数?

2.填空:1~12的质数有,合数有。

3.观察:2、3、5、7、11等质数,能写成比它本身小的两个数相乘的形式吗?为什么?4、6、8、9、10、12合数,能写成比它本身小的两个数相乘的形式吗?为什么?

二、揭示课题

下面我们学习每个合数能否用几个质数相乘的形式表示出来。(板书课题)

三、探索研究

1.小组合作学习

(1)把6、28、60写成比它本身小的两个数相乘的形式。

6=2328=4760=61060=23060=415

(2)写出的两个数中如果还是合数的,再用上面的方法继续写下去。

6=23

28=227

60=2235

(3)从上面的例子可以看出什么来?

师生归纳:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。

做练习十三的第7题,学生口答。

⊙把一个合数用质因数相乘的形式表示出来,叫做分解质因数。(板书课题:分解质因数)

如把6、28、60分解质因数右以写成:

6=23

28=227

60=2235

书写格式说明:要分解的合数写在等号左边,把它的质因数相乘的形式写在等号的右边。质因数按从小往大的顺序排列。

2.学习用短除法分解质因数。

(1)介绍短除法。

它是笔算除法的简化叫做短除号。

除数26被除数

3商

(2)用短除法分解质因数。

228260

214230

7315

5

28=22760=2235

(3)学生小结用短除法分解质因数的方法后看教材第62页的结语。

(4)再让学生讨论一下:分解质因数应注意什么?

四、课堂实践

做练习十三的第8题,让学生说后集体订正。

五、课堂小结

学生小结今天学习的内容。

六、课堂作业

1、做练习十三的第8题。

2、学有余力的同学做练习十三的第17*题。

质因数课件【篇3】

教学目标

1、进一步理解自然数、整数、整除、除尽、约数、倍数、奇数、偶数、素数、合数、质因数、分解质因数的概念,掌握能被2、5、3整除数的特征。

2、能对以上概念作正确判断,能熟练地把合数分解质因数。

教学重点、难点

重点、难点:理解概念,并能熟练运用。

教具、学具准备

教学过程

备注

一、知识整理与基本练习

1、判断:下列各式,哪些能整除?哪些不能整除?哪些能除尽?把算式填到相应的圈里。

6.991113除尽整除

186691

1042.40.8

反馈后提问:什么叫做整除?什么叫约数?什么叫倍数?说一说上面整除算式中谁是谁的约数?谁是谁的倍数?

2、练习:课本P65第1题。

(1)学生在课本上全体练(1人做在投影片上)

(2)投影反馈,矫正错误。

(3)提问:

A、自然数与整数之间有什么关系?(学生回答后出示投影片)

B、什么是素数?什么是合数?怎样判断一个数是素数还是合数?有哪些方法?171和395是素数还是合数?为什么?

C、么是奇数?什么是偶数?判断一个数是奇数还是偶数的标准是什么?

D、答:自然数()和()组成,或者由(),()和()组成。

3、练习,课本P66第4题(学生练习后反馈)

4、出示:在36、48、84、75、15、210、130、204这些数中,

(1)能被2整除的数有(),能被5整除的数有(),能被3整除的数有()。

(2)能同时被2、5整除的数有(),能同时被3、5整除的数有(),能同时被2、3整除的数有()。

(3)说一说,它们各有什么特征?

5、提问:

什么叫分解质因数?把课本P65第1题中的合数分解质因数。

教学过程

备注

(1)生练习(两个做在投影片上)

(2)反馈,矫正。

(3)练习:课本P66第6题(学生练习后反馈)

二、综合练习

1、填空:(投影片逐题出示,学生先思考,想好后再回答)

(1)12的全部约数有(),把72分解质因数是()。

(2)最小的自然数是(),最小的素数是()最小的合数是(),最小的奇数是(),最小的偶数是()。

(3)一个数的最大约数是60,则它的最小倍数是(),最小约数是()。

(4)自然数AB=4,则A能被B(),B是A的(),4能整除()。

2、练习:课本P66第5题(学生练习后反馈,说理)

3、思考题:

有一位初中生参加一次数学竞赛,别人问他成绩如何?他说:我的分数在60分以上并且我的分数,我的年龄和取得的名词的乘积是4275,你们说我考了几分?得了第几名?你能想出来吗?

三、课堂作业《作业本》

四、学生总结

通过知识整理及填空、选择、判断各种题型的训练,学生进一步掌握了各个概念,并能对各个概念加以区分。

质因数课件【篇4】

教学要求

①使学生理解质因数和分解质因数的概念。

②初步学会分解质因数的方法。

③培养学生分析和推理的能力。

教学重点①质因数和分解质因数的概念。②分解质因数的方法。

教学难点分清因数和质因数,质因数和分解质因数的联系和区别。

教学用具投影仪。

教学过程

一、创设情境

1.回答:什么叫做质数?什么叫做合数?

2.填空:1~12的质数有,合数有。

3.观察:2、3、5、7、11......等质数,能写成比它本身小的两个数相乘的形式吗?为什么?4、6、8、9、10、12......合数,能写成比它本身小的两个数相乘的形式吗?为什么?

二、揭示课题

下面我们学习每个合数能否用几个质数相乘的形式表示出来。(板书课题)

三、探索研究

1.小组合作学习

(1)把6、28、60写成比它本身小的两个数相乘的形式。

6=2328=4760=61060=23060=415...

(2)写出的两个数中如果还是合数的,再用上面的方法继续写下去。

6=23

28=227

60=2235

(3)从上面的例子可以看出什么来?

师生归纳:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。

做练习十三的第7题,学生口答。

⊙把一个合数用质因数相乘的形式表示出来,叫做分解质因数。(板书课题:分解质因数)

如把6、28、60分解质因数右以写成:

6=23

28=227

60=2235

书写格式说明:要分解的合数写在等号左边,把它的质因数相乘的形式写在等号的右边。质因数按从小往大的顺序排列。

2.学习用短除法分解质因数。

(1)介绍短除法。

它是笔算除法的简化叫做短除号。

除数...26...被除数

3...商

(2)用短除法分解质因数。

228260

214230

7315

5

28=22760=2235

(3)学生小结用短除法分解质因数的方法后看教材第62页的结语。

(4)再让学生讨论一下:分解质因数应注意什么?

四、课堂实践

做练习十三的第8题,让学生说后集体订正。

五、课堂小结

学生小结今天学习的内容。

六、课堂作业

1、做练习十三的第8题。

2、学有余力的同学做练习十三的第17*题。

质因数课件【篇5】

第二课时

教学内容:分解质因数

教学目标:

1、使学生了解每一个合数,都可以写成几个质数相乘的形式

2、掌握质因数和分解质因数的概念,学会用短除法分解质因数。

教学过程:

一、复习

学生回答质数的概念,并举例说明

二、引入新课

1、教学例2

把合数10、24和63分别用质因数相乘的形式表示出来。

10=2524=222363=337

(1)一个合数可以用几个质数相乘的形式表示

(2)一个合数可以写成几个质数相乘的形式,其中每个

(3)把合数写成质数相乘的形式叫做分解质因数。

2、区别几个概念

(1)质数,因数,质因数,分解质因数

(2)分解质因数,是把一个合数用质因数相乘的形式表示出来,

(3)质因数要求因数本身必须是质数。

3、教学例3

把15、42、60分解质因数

(1)用短除法分解质因数

(2)什么是短除法

(3)练习,

(4)注意:用短除法分解质因数,除数一定要用质数,看被除数能被哪个质数,整除,就用这个质数去除,直到得出的商是质数为止。

三、巩固练习

1、练一练

四、总结归纳,布置作业

反思:我认为这节课最重要的的是:

1、让学生理解短除法的意思。

2、分解质因数的时候,因数必须是质数。

质因数课件【篇6】

教研内容:

质数与合数、分解质因数

教学目标:

1、能够理解质数与合数的意义。能正确判断一个数是质数还是合数。了解100以内的质数,熟悉20以内的质数。理解质因数、分解质因数的意义。会把一个合数分解质因数,掌握用短除式分解质因数。

2、培养学生观察、比较、概括和判断的能力,以及自主探索、独立思考、合作交流的能力。

3、在研究过程中体验成功带来的学习乐趣,感受数学文化的魅力,同时在教学中渗透“对立统一”的辩证唯物主义的观点。

教学重点:

1、理解质数和合数的意义,质因数和分解质因数的意义。

2、分解质因数的方法。

教学难点:

1、如何判断一个数是质数还是合数。

2、分清因数和质因数,质因数和分解质因数的联系与区别。用短除法分解质因数。

重难点突破:

1、从研究团体操表演中各方阵人数的特点这一情境入手,抓住学生日常生活中喜闻乐见的事物,把抽象的数学概念与学生的生活实际紧密相连。通过把每个数的因数罗列出来,思考:有两个以上因数的,都能排成方阵吗?进一步研究,验证,概况出质数和合数的定义。再出示几个数,让学生学会判断是质数还是合数,也可让学生自己写出几个质数和合数。给学生充分的时间交流、评判,以达到辨析概念的目的。

2、在认识质因数、分解质因数时,可让学生用自己的方法对合数进行分解,然后从学生中选择用塔式分解式的方法,进行交流,归纳质因数,分解质因数的意义;然后学会用塔式分解式分解质因数。学习短除法分解质因数时,教师可先让学生了解格式,然后学生自己试算,然后归纳步骤。

教学要点:

1、认识质数和合数。围绕“排成各个方阵的人数,分别是24、25、40、35、32,这些数有什么特点呢”这一问题,放手让学生寻找这些数的特点。教师在学生思考后可适当引导,看组成方阵的人数与它们的因数有关系吗,让学生观察因数的个数,初步得出这些数因数的个数都在两个以上的结论。再利用学具摆一摆,在感知的基础上,对列举的个数按因数的个数进行分类,得出非零自然数按照因数的个数分类可分成质数、合数和1.

2、分解质因数。先安排学生列塔式分解式对具体数进行分解,让学生清楚地认识的到质因数时一个合数的因数,同时还必须是质数的双层含义。在学习用短除法分解质因数时,让学生按照:了解格式,试算,对分解步骤进行归纳这三步完成的。

质因数课件【篇7】

教学目标

(1)使学生了解每一个合数,都可以写成几个素数相乘的形式。

(2)掌握质因数和分解质因数的概念,学会用短除法分解质因数。

教学重点、难点

重点:掌握质因数和分解质因数的概念。

难点:

教具、学具准备

教学过程

备注

一、复习准备

1、什么叫做素数?什么叫做合数?各举例说明。

2、20以内的素数有哪几个?为什么1既不是素数又不是合数?

二、教学新识

1、教学例2

(1)10是由哪几个素数相乘得到的?

(2)教学归纳:10是由2和5两个素数乘得到的,板书:10=25

(3)同时出示24和63的分解图。提问:4和6是素数吗?谁能继续分解,在□内填上素数?(指两名学生分别板演)那么,怎样把24和63分别写成几个素数相乘的形式呢?

学生答后板书:24=2223;63=337

(4)把以上3个合数,分别写成了几个素数相乘的形成,是不是每一个合数都可以写成几个相乘的形式呢?再举例说明。

(5)小结:从以上的合数可以看出,每个合数都可以写成几个素数相乘的形式。出示:一个合数可以写成几个素数相乘的形式,其中一个素数都叫做这个合数的()。把一个合数用质因数相乘的形式表示出来,叫做()。引导学生看书作答。(板书:质因数、分解质因数并举例例2说明)

2、练一练

(1)P44第1题,同桌讨论后口答反馈,并说出打x的理由。教师小结:2和5,都是素数,但不能叫质因数。因为2和5都是10、20......这些合数的素数,离开这些合数,就不能孤立地叫质因数。4和5都是20的因数,但4和5不都是20的质因数。

(2)P45第2题,提问:把下面各数分解质因数是什么意思?学生答后独立作业在书上之后再评讲。

如果:51=151对吗?为什么?

42=314对吗?为什么?

我们已经懂得了什么叫做分解质因数。我们通常用短除法来分解质因

教学过程

备注

数,如何用短除法进行分解呢?

3、教学例3。

(1)15可用哪几种素数相乘的形式来表示?

教师说:用短除法来分解,先用一个能整除15的素数3除。(板书:3),用3去除得出的商是几?(板书:5),商5是素数还是合数?得出的商是素数,就不要再除下去了,就把除数和商写成相乘的形式。板书:15=35。这就是用短除法把15分解质因数。

(2)42怎样用短除法进行分解呢?学生答后,教师强调先用一个最小的能整除这个合数的素数去除,板书。

商21是素数还是合数?商21是合数还不是素数怎么办(继续分解?照上面的方法,继续除下去。)第二次除时,把21当被除数,除数应该是几?为什么?(除数必须整除这个合数的素数,其中最小,通常用3作除数。)学生答后,板书。

商7是素数还是合数?商7已经是素数,短除到此为止。问:合数42,怎样用质因数相乘的形式表示?板书:42=237

(3)学生试练:用短除法把60分解质因数。练后,让学生与书中对照,统计正确率。把学生中的错误写在黑板上,讨论错在哪里?为什么?

(4)学生看书上概括用短除法分解质因数的结语。要求分清三层意思,划出没层中的关键词语。

三、巩固练习

1、用短除法分解质因数。

365475123

2、不用短除法,分解质因数。

(1)口答:

6=21=22=12=

(2)共同练习:

25=66=16=91=

3、课内作业:书上P45第4题。

四、教学总结

通过这节课的学习,你懂得了什么?学会了什么?

五、作业《作业本》

对于分解质因数的形式,学生较易掌握,但在实际分解过程中,往往分解得不彻底,最后的因数不都是质数。强调质因数既是质数又是因数。

课后反思:在教学分解质因数这一课时,反馈阶段把24分解质因数,我请做得快的同学上黑板板书,板书情况如下:书写非常端正工整,答题步骤及答案无可挑剔。集体订正时,我表扬了这位同学做题迅速、正确、工整,同时也委婉的指出,今后书写时最好按从左到右的顺序写。这时,一个同学突然举手,我让他说说有什么问题,他大声说:老师,我不同意你的看法,我认为从右往左写是一种创新,你不是经常要我们多创新,常创新吗?我怔了一下,然后微笑着肯定了他敢于发表自己不同的见解及自己的想法,同时引导大家来讨论,这算不算是一种创新?许多同学都踊跃的发表自己的看法。

质因数课件【篇8】

教学内容:教材P/57页内容用分解质因数的方法求最大公约数,完成P/57练一练及P/58-59页练习十第6-11题及思考题。

教学要求:

1、知识与能力:使学生学会用分解质因数的方法求两个数的最大公约数。能正确、迅速地求两个数的最大公约数。

教学重点:用分解质因数的方法求最大公约数。

教学难点:用分解质因数的方法求最大公约数。

教学过程:

一、复习

1、说说下列每组数的最大公约数,并说明理由。

17和2066和1115和16

13和919和811和58

2、求12和30的最大公约数。

3、想不想找一个更简单一些的方法。

二、探求新知。

1、寻找新方法。

(1)想一想我们前面学到的知识,哪个可以来解决求最大公约数?

(2)学生猜一猜,找办法。

(3)交流:

12=223

30=235

12和30的公有的质因数是2和3,2和3的乘积就是12和30的最大公约数。

分解质因数可以用短除法,我也尝试用短除法求两个数的最大公约数。

21230

3615

25

其实2和3是12和30的公有的质因数,将除数2和3相乘,所得的积就是1和30的最大公约数。

(4)验证。(举例)

(5)追根:上面两种方法有没有道理呢?

寻找用分解质因数的方法求最大公约数与上节课的方法之间的相通之处。

2、试一试:求36和54的最大公约数。

3、小结方法:

想一想,怎样用分解质因数的方法求两个数的最大公约数?

4、完成P/57练一练

三、巩固练习。

P/59练习十第7、8、9。

四、思维训练。

P/59练习十思考题。

五、课外作业。

P/59--60练习十第6、10、11题。

质因数课件【篇9】

教学内容:24页内容

教学目标

理解质因数和分解质因数的意义,并会用一种方法或自己喜欢的方法分解质因数。

教学重点:分解质因数

教学难点:准确分解

教学准备:实物投影

教学活动

(一 )基础训练

【口答】

什么是质数?什么是合数?1是什么?

【解答题】

下面各数是质数还是合数?把你判断的填在指定的圈里。

19,21,43,67,27,37,41,51,57,69,83,87,81,91

质数合数

(二) 新知学习

引入:今天,我们学习合数与质数之间关系

揭示课题-------分解质因数

【典型例题】

合数

1.看合数21

(1)有多少个因数?并写出:1、3、7、21

(2)回到今天讨论的问题是合数与质数之间的关系,排除1和它本身21,即1×21=21。

(3)只剩下研究3×7=21的问题,表示成21=3×7。那么,3和7叫做21的质因数

(4)质因数与因数的分别?(也就是1和合数做质因数,也就是分解质因数中不能有1和合数;什么数都可以做因数)

2.研究讨论合数的分解方法。

(1)“树枝”图式分解法。

(2)“短除法”分解质因数。

3.把27,51,57,87,81分解质因数

【小结】(分解质因数时,你认为应注意什么?)

(三) 巩固练习(10题)

【基础练习】

1.判断下面的横式哪些是分解质因数?哪些不是?理由?

24=2×2×6 6=1×2×3 60=2×2×3×5

2.把分解不正确的改正过来。

【提高练习】

把16,12,45,56分解质因数。

【拓展练习】

把下面各数分解质因数,并分别写出它们所有的因数。

分解质因数因数

1515=

1818=

20xx=

(五)教学效果评价(小测题2—3题)

把8,72分解质因数

课后反思:

分解质因数虽不是教材要求教授内容,但由于对后面

相信《最新质因数课件(模板9篇)》一文能让您有很多收获!“幼儿教师教育网”是您了解幼师资料,工作计划的必备网站,请您收藏yjs21.com。同时,编辑还为您精选准备了质因数课件专题,希望您能喜欢!

相关文章

最新文章